Что будет если пропустить ток через магнит
Электричество Магнит и его свойства
Электричество
Что собой представляет электричество, как оно выглядит, как заглянуть внутрь проводника, и как оно рождается в батарейках, каким образом электричество делает металл магнитом, а магнит вновь производит электричество, так же левитация магнита в сверх проводнике. На все эти вопросы, нет ответа, более ста лет, но давайте несколько по новому посмотрим на казалось бы, знакомые вещи.
Иногда что бы рассмотреть не видимые процессы, стоит иначе взглянуть на уже знакомые нам вещи. Предлагаю сделать контролируемое разрушение цинковой батарейки. Итак, если мы накоротко замыкаем, батарейка, начинает интенсивно разрушается, поставив реостат, мы сможем уменьшать или увеличивать разрушение.
Вот ту то, и можно увидеть какие процессы происходят в батарейке при её разрушении. Почему при разомкнутых контактах разрушение слабое, а при замыкании интенсивное. Батарейка с корпусом из цинка, заполнена агрессивным составом, и казалось бы, какая разница агрессивной среде, есть контакт или нет, и как может соединение проводов привести к резкому повышению реакции. На память приходит пример как раскачивая плоский забор с двух сторон можно его завалить, но сколько бы вы не толкали его от себя, у вас ни чего не получится. Вспомним электрическую волну, между проводниками, и приложим к нашему устройству, что мы увидим. Чтобы вырвать молекулу цинка из корпуса, требуется её расшатать.
Итак, если электричество волновой процесс, то на молекулу цинка при замыкании проводов будут действовать две силы, с внутренней стороны и снаружи, волновой процесс расшатает молекулы цинка, вырывая её из металла. При вырывании их, создаётся бегущая волна, по проводникам ударяя с обратной стороны, что делает структуру цинка нестабильной. Создаётся направленное движение волны, от внутренней стороны к внешней, так называемый постоянный ток. Становится понятным, почему батарейка всегда выдаёт полтора вольта, весь процесс распада происходит с одной стороны, в узком участке, поэтому разложение металла всегда будет давать полтора вольта, не зависимо от размеров батарейки. Перед нами контролируемый процесс разрушения, и человечество извлекает энергию разложения металлов. Но чтобы объяснить, как появляется ток от воздействия магнитов, требуется объяснить, как магнитные свойства возникают от электричества.
Магнит и его свойства
О волне в магните меня навело наблюдение за падающей тарахтящей крышкой, скорость вращения вокруг своей оси, и падение, а точка падения всегда смещалась скоростью вращения. Волна подымала и опускала крышку всякий раз чуть меньше прежнего, верхняя точка поднятия крышки соответствовала точки падения, то есть падение происходило по спирали к земле. Если проследить путь, смещающийся точки, и выпрямить спираль падения, то высота падения крышки, будет равняться нескольким метрам. Чем выше скорость вращения, тем дольше падает крышка. Так я увидел многометровое падение, на ровном месте. Желая извлечь выгоду из столь долгого и сконцентрированного падения, я долго размышлял о волне, творящей чудеса. Изучая электричество, я понял, что оно состоит из волнового процесса, а волна в куске металла творит точно такую картину, как и с крышкой. Волна, имея скорость, и пронизывающую способность, должна добираться до середины, и обратно, будучи уловленной, навсегда.
Волновой процесс электричества объясняет работу магнитов. На металлический прут намотана катушка, и по ней пропускается электрический ток, изменяя полярность электричества, меняем полярность магнита. Прямая зависимость от электричества доказывает, магнитные свойства возникают от направленного воздействия, на кусок метала. В нашем случае с магнитом, электрическая волна перемещаясь по проводнику вокруг куска железа, возмущает тонкий верхний слой, как резец от токарного станка углубляется в тело железа виток за витком. Колебания волны направленные к центру и по касательной к железу, стремятся пройти через кусок металла, из за большой скорости успевает пройти по окружности тонкую полосу в теле металла, устремляясь к центру, а достигнув центра, волна вновь устремляется к поверхности, и оказывается запертой. Этим объясняется, почему магниты сохраняют свои свойства, волна как спутник вечно вращается в теле магнита.
В опытах металлические опилки, располагаются вдоль магнитно силовых линий, мы видим срез, на самом деле волна рисует спираль, идущую к центру, Волну проходящую воздушное пространство сносит, указывая на распространение магнитно силовых линий, в иной отличной от металла материи, это Эфир. Под действием магнитно силовых линий, Эфир, в местах прохождения волны становится плотным, для электромагнитного воздействия. Помните как волна собрала опилки, устроив из них себе дорогу. Так проходя Эфир, волна делает его плотным для электромагнитного воздействия, так же как опилки собираются в каркас, собран Эфир, с каждой стороны, со своим вращением.
Магнитно силовые линии одной полярности построят Эфир как расширяющийся гриб у каждого, с разным направлением вращения волны. Скорость электрической волны в магнитно силовых линиях делает Эфир плотным, связывая в каркас, как пластичный кусок материи, Если мы поднесём другой магнит, такой же полярности, с каждой стороны Эфир будет выглядеть как пружина. Когда направление вращения волны будет совпадать, расширяющиеся магнитно силовые линии станут друг для друга как резьба для гайки, стягивая в единый кусок. Притяжение и отталкивание происходит из за расширения магнитно силовых линий в Эфире, если бы не сносило волну в эфире, не было бы эффекта магнита.
Сверхпроводники охлаждённые в азоте, в отличии от Эфира, напротив сузят магнитно силовые линии как линза, и это вызовет уже другой эффект закрепление в теле сверхпроводника. От магнита, магнитно силовые линии проходя через Эфир, расширяются, за тем в сверх проводнике сужаются, и выходя из сверх проводника вновь расширяются. Этим уступом из магнитно силовых линий, в сверхпроводнике, магнит висит в воздухе, так называемая левитация с вращением. Всё это доказывает наличие Эфира, как материи, играющей огромную роль в мироздании.
Новое в блогах
Тайны постоянного магнита
Небольшая справка, так, для общего развития: Намагничение магнетика характеризуется магнитным моментом единицы объёма. Эту величину называют намагниченностью и обозначают буквой «J».
Явление номер 2: Индукционные токи могут возбуждаться и в сплошных массивных проводниках. В этом случае их называют токами Фуко или вихревыми токами. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко могут достигать очень большой силы. В соответствии с правилом Ленца токи Фуко выбирают внутри проводника такие пути и направления, чтобы своим действием возможно сильнее противиться причине, которая их вызывает. Поэтому движущиеся в сильном магните поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Это надо знать и учитывать. К примеру, в альтернаторе, если сделать по общепринятой неправильной схеме, то в движущихся шторках возникают токи Фуко, ну и тормозят процесс, конечно. Об этом, на сколько я понимаю, вообще никто не задумывался. (Примечание: Единственным исключением является униполярная индукция, открытая Фарадеем и усовершенствованная Теслой, при которой не возникает вредного влияния самоиндукции).
Явление номер 3: Электрический ток, текущий в любом контуре, создаёт пронизывающий этот контур магнитный поток. При изменениях тока изменяется также и магнитный поток, вследствие чего в контуре индуцируется ЭДС. Это явление называется самоиндукцией. В статье об альтернаторах расскажу и об этом явлении.
Опыт Эрстеда. Магнитное поле тока. Взаимодействие магнитов. Действие магнитного поля на проводник с током
1. Опыт Эрстеда заключается в следующем. На столе располагают магнитную стрелку, которая ориентируется с севера на юг в магнитном поле Земли, и параллельно ей сверху проводник, соединённый с источником тока (см. рис. 81). При замыкании цепи стрелка повернётся на 90° и встанет перпендикулярно проводнику.
При размыкании цепи стрелка вернётся в первоначальное положение. Если изменить направление тока на противоположное, то стрелка повернётся в обратную сторону. Опыт Эрстеда доказывает, что вокруг проводника, по которому течёт электрический ток, существует магнитное поле, которое действует на магнитную стрелку.
Опыт Эрстеда показал существование взаимосвязи между электрическими и магнитными явлениями.
Об этой взаимосвязи свидетельствует и опыт, известный как опыт Ампера. Если по двум длинным параллельно расположенным проводникам пропустить электрический ток в одном направлении, то они притянутся друг к другу; если направление тока будет противоположным, то проводники оттолкнутся друг от друга. Это происходит потому, что вокруг одного проводника возникает магнитное поле, которое действует на другой проводник с током. Если ток будет протекать только по одному проводнику, то проводники не будут взаимодействовать.
Таким образом, вокруг движущихся электрических зарядов или вокруг проводника с током существует магнитное поле. Магнитное поле действует на движущиеся заряды. На неподвижные заряды магнитное поле не действует.
Силовой характеристикой магнитного поля является величина, называемая магнитной индукцией. Обозначается магнитная индукция буквой \( B \) . Магнитная индукция является векторной величиной, т.е. имеет определённое направление. Это наглядно проявляется в опыте со взаимодействием параллельных проводников с током. Направление вектора магнитной индукции совпадает с направлением северного полюса магнитной стрелки в данной точке поля.
2. Обнаружить магнитное поле вокруг проводника с током можно с помощью либо магнитных стрелок, либо железных опилок, которые в магнитном поле намагничиваются и становятся магнитными стрелками. На рисунке 87 изображён проводник, пропущенный через лист картона, на который насыпаны железные опилки. При прохождении по проводнику электрического тока опилки располагаются вокруг него по концентрическим окружностям.
Линии, вдоль которых располагаются в магнитном поле магнитные стрелки или железные опилки, называют линиями магнитной индукции. Направление, которое указывает северный полюс магнитной стрелки, принято за направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линии магнитной индукции в каждой точке поля.
Как следует из результатов опыта Эрстеда и опыта по взаимодействию параллельных проводников с током, направление линий вектора магнитной индукции (и линий магнитной индукции) зависит от направления тока в проводнике. Направление линий магнитной индукции можно определить с помощью правила буравчика. Для линейного проводника оно следующее: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.
3. Если пропустить электрический ток по катушке, то опилки расположатся, как показано на рисунке 88.
Картина линий магнитной индукции свидетельствует о том, что катушка с током становится магнитом. Если катушку с током подвесить, то она повернётся южным полюсом на юг, а северным — на север (рис. 89).
Следовательно, катушка с током имеет два полюса: северный и южный. Определить полюса, которые появляются на её концах можно, если известно направление электрического тока в катушке. Для этого пользуются правилом буравчика: если направление вращения ручки буравчика совпадает с направлением тока в катушке, то направление поступательного движения буравчика совпадает с направлением линий магнитной индукции внутри катушки (рис. 90).
4. Тела, длительное время сохраняющие магнитные свойства, или намагниченность, называют постоянными магнитами. Поднося магнит к железным опилкам, можно заметить, что они притягиваются к концам магнита и практически не притягиваются к его середине. Те места магнита, которые производят наиболее сильное магнитное действие, называются полюсами магнита. Магнит имеет два полюса: северный — N и южный — S. Принято северный полюс магнита окрашивать синим цветом, а южный — красным. Если полосовой магнит разделить на две части, то каждая из них окажется магнитом с двумя полюсами.
Положив на постоянный магнит лист бумаги или картона и насыпав на него железные опилки, можно получить картину его магнитного поля (рис. 91). Линии магнитной индукции постоянных магнитов замкнуты, все они выходят из северного полюса и входят в южный, замыкаясь внутри магнита.
Магнитные стрелки и магниты взаимодействуют между собой. Разноимённые магнитные полюсы притягиваются друг к другу, а одноимённые — отталкиваются. Взаимодействие магнитов объясняется тем, что магнитное поле одного магнита действует на другой магнит и, наоборот, магнитное поле 2-го магнита действует на 1-й.
Причиной наличия у веществ магнитных свойств является движение электронов, существующих в каждом атоме. При своём движении вокруг атома электроны создают магнитные поля. Если эти поля имеют одинаковую ориентацию, то вещество, например железо или сталь, намагничены достаточно сильно.
5. Магнитное поле действует на проводник с током. Доказать это можно с помощью эксперимента (рис. 92).
Если в поле подковообразного магнита поместить проводник длиной \( l \) , подвешенный на тонких проводах, соединить его с источником тока, то при разомкнутой цепи проводник останется неподвижным. Если замкнуть цепь, то по проводнику пойдёт электрический ток, и проводник отклонится в магнитном поле от своего первоначального положения. При изменении направления тока проводник отклонится в противоположную сторону. Таким образом, на проводник с током, помещённый в магнитное поле, действует сила, которую называют силой Ампера.
Экспериментальное исследование показывает, что сила Ампера прямо пропорциональна длине проводника \( l \) и силе тока \( I \) в проводнике: \( F\sim Il \) . Коэффициентом пропорциональности в этом равенстве является модуль вектора магнитной индукции \( B \) . Соответственно, \( F=BIl \) .
Сила, действующая на проводник с током, помещённый в магнитное поле, равна произведению модуля вектора магнитной индукции, силы тока и длины той части проводника, которая находится в магнитном поле.
В таком виде зависимость силы, действующей на проводник с током в магнитном поле, записыватся в том случае, если линии магнитной индукции перпендикулярны проводнику с током.
Формула силы Ампера, позволяет раскрыть смысл понятия вектора магнитной индукции. Из выражения для силы Ампера следует: \( B=\frac
Из приведённой формулы понятно, что магнитная индукция является силовой характеристикой магнитного поля.
Единица магнитной индукции \( [В] = [F]/[I][l] \) . \( [B] \) = 1 Н/(1 А · 1 м) — 1 Н/(А · м) = 1 Тл. За единицу магнитной индукции принимают магнитную индукцию такого поля, в котором на проводник длиной 1 м действует сила 1 Н при силе тока в проводнике 1 А.
Направление силы Ампера определяют, пользуясь правилом левой руки: если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре пальца направлены по направлению тока в проводнике, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник (рис. 93).
6. Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся (рис. 94), потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки \( ab \) , противоположна силе, действующей на сторону \( cd \) .
Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.
В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.
1) 1 — S, 2 — N
2) 1 — А, 2 — N
3) 1 — S, 2 — S
4) 1 — N, 2 — S
2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?
1) 1 — северному полюсу; 2 — южному
2) 1 — южному; 2 — северному полюсу
3) и 1, и 2 — северному полюсу
4) и 1, и 2 — южному полюсу
3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка
1) повернётся на 90°
2) повернётся на 180°
3) повернётся на 90° или на 180° в зависимости от значения силы тока
4) не изменит свое положение
4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?
5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?
1) вправо
2) влево
3) на нас из-за плоскости чертежа
4) от нас за плоскость чертежа
6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки
1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный
2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный
3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный
4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный
7. Два параллельно расположенных проводника подключили параллельно к источнику тока.
Направление электрического тока и взаимодействие проводников верно изображены на рисунке
8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная
1) вправо →
2) влево ←
3) вверх ↑
4) вниз ↓
9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена
1) вверх ↑
2) вниз ↓
3) направо →
4) налево ←
10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?
1) вверх ↑
2) вправо →
3) вниз ↓
4) влево ←
11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.
1) Вокруг неподвижных зарядов существует магнитное поле.
2) Вокруг неподвижных зарядов существует электростатическое поле.
3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный.
4) Магнитное поле существует вокруг движущихся зарядов.
5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.
12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).
Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.
1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится.
2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо.
3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А.
4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз.
5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.
Часть 2
13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.
Правило Ленца
теория по физике 🧲 магнетизм
Если присоединить катушку, в которой возникает индукционный ток, к гальванометру, можно обнаружить, что направление этого тока зависит от того, приближается ли магнит к катушке, или удаляется от нее. Причем возникающий индукционный ток взаимодействует с магнитом — притягивает или отталкивает его.
Катушка с протекающей по ней током подобна магниту с двумя полюсами — северным и южным. Направление индукционного тока определяет, какой конец катушки играет роль северного полюса, из которого выходят линии магнитной индукции. В каких случаях катушка будет притягивать магнит, а в каких отталкивать, можно предсказать, опираясь на закон сохранения энергии.
Взаимодействие индукционного тока с магнитом
Если магнит приближать к катушке, то в ней появится индукционный ток такого направления, что магнит обязательно отталкивается. Для сближения магнита и катушки при этом нужно совершить положительную работу. Катушка становится подобной магниту, обращенному одноименным полюсом к приближающемуся к ней магниту. Одноименные же полюсы отталкиваются. При удалении магнита, наоборот, в катушке возникает ток такого направления, чтобы появилась притягивающая магнит сила.
Представьте, что все было бы иначе. Тогда при введении магнита в катушку он сам бы устремлялся в нее. Это противоречит закону сохранения энергии, так как при этом увеличилась бы кинетическая энергия при одновременном возникновении индукционного тока, который также затрачивает часть энергии. Кинетическая энергия и энергия тока в этом случае возникали бы из ничего, без затрат энергии, что невозможно.
Справедливость вывода можно подтвердить с помощью следующего опыта. Пусть на свободно вращающемся стержне закреплены два алюминиевых кольца: с разрезом и без разреза. Если поднести магнит к кольцу без разреза, оно будет отталкиваться. Если поднести его к кольцу с разрезом, ничего не произойдет. Это связано с тем, что в нем не возникает индукционный ток. Этому препятствует разрез. Но если отдалять магнит от кольца без разреза, то оно начнет притягиваться.
Опыты показывают, что притягивание или отталкивание кольца с индукционным током зависит от того, удаляется магнит, или притягивается. А различаются они характером изменения линий магнитной индукции, пронизывающих поверхность, ограниченную кольцом. В первом случае (рис. а) магнитный поток увеличивается, во втором (рис. б) — уменьшается. То же самое можно наблюдать в опытах с магнитом и проводящей катушкой.
Причем в первом случае линии индукции B’ магнитного поля, созданного возникшем в катушке индукционным током, выходят из верхнего конца катушки, та как катушка отталкивает магнит. Во втором же случае напротив, они входят в этот конец.
Правило Ленца
Описанные выше опыты позволяют делать вывод, что при увеличении магнитного потока через витки катушки индукционный ток имеет такое направление, что создаваемое им магнитное поле препятствует нарастанию магнитного потока через витки катушки. Если же магнитный поток через катушку ослабевает, то индукционный ток создает магнитное поле с такой индукцией, которая увеличивает магнитный поток через витки катушки.
Правило направления индукционного тока носит название правила Ленца.
Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.
Применять правило Ленца для нахождения направления индукционного тока I i в контуре надо так:
Пример №1. Найти направление индукционного тока, возникающего в кольце во время приближения к нему магнита (см. рисунок).
Линии магнитной индукции магнита обращены в сторону кольца, так как он направлен к нему северным полюсом. Так как магнит приближается к кольцу, магнитный поток увеличивается. Следовательно, кольцо отталкивается. Тогда оно обращено к магниту одноименным — северным — полюсом. Применим правило правой руки. Так как линии магнитной индукции выходят из северного полюса, направим к нему большой палец. Теперь четыре пальца руки покажут направление индукционного тока. В нашем случае он будет направлен против направления хода часовой стрелки.
Медное кольцо на горизонтальном коромысле поворачивается вокруг вертикальной оси ОВ под действием движущегося магнита С. Установите соответствие между направлением движения магнита, вращением коромысла с кольцом и направлением индукционного тока в кольце.
К каждой позиции первого столбца подберите соответствующую позицию второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
МАГНИТ | ПОВОРОТ КОРОМЫСЛА И ТОК В КОЛЬЦЕ | ||
А) | движется по направлению к кольцу, северный полюс обращён к кольцу | 1) | коромысло с кольцом поворачивается, отталкиваясь от магнита, ток идёт по часовой стрелке |
Б) | движется к кольцу, к кольцу обращён южный полюс | 2) | коромысло с кольцом поворачивается, отталкиваясь от магнита, ток идёт против часовой стрелки |
3) | коромысло с кольцом поворачивается, притягиваясь к магниту, ток идёт по часовой стрелке | ||
4) | коромысло с кольцом поворачивается, притягиваясь к магниту, ток идёт против часовой стрелки |
Алгоритм решения
Решение
Запишем правило Ленца:
Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.
Следовательно, если поднести к кольцу магнит северным полюсом, линии магнитной индукции поля, образованного магнитом, будут направлены в сторону кольца (т.к. они выходят из северного полюса). Тогда в кольце образуется такой ток, при котором с той стороны, с которой подносят магнит, тоже сформируется северный полюс. Используем правило правой руки и расположим большой палец правой руки так, чтобы он указывал в сторону северного полюса кольца с индукционным током. Тогда четыре пальца покажут направление этого тока. Следовательно, индукционный ток направлен по часовой стрелке.
Если поднести к кольцу магнит южным полюсом, линии магнитной индукции поля, образованного магнитом, будут направлены в сторону от кольца (т.к. они выходят из северного полюса). Тогда в кольце образуется такой ток, при котором с той стороны, с которой подносят магнит, тоже сформируется южный полюс. Используем правило правой руки и получим, что в этом случае индукционный ток будет направлен против часовой стрелки.
Так как магнит подносят к кольцу, а не отодвигают от него, то кольцо всегда будет отталкиваться, поскольку в нем возникают силы противодействия. Следовательно, позиции А соответствует строка 1, а позиции Б — строка 2.
pазбирался: Алиса Никитина | обсудить разбор | оценить
На рисунке запечатлён тот момент демонстрации по проверке правила Ленца, когда все предметы неподвижны. Южный полюс магнита находится вблизи сплошного металлического кольца. Если магнит выдвигать из алюминиевого кольца, то кольцо перемещается вслед за магнитом. Это движение кольца – результат действия
а) силы гравитационного взаимодействия между кольцом и магнитом
б) силы Ампера, действующей со стороны магнитного поля магнита на кольцо, по которому идёт индукционный ток
в) кулоновских (электростатических) сил, которые возникают при движении магнита относительно кольца
г) воздушных потоков, вызванных движением руки и магнита
Алгоритм решения
Решение
Гравитационные силы между магнитом и кольцом ничтожно малы при данных массах и расстояниях, поэтому они не могли вызвать притяжения кольца к магниту.
Кулоновские силы характеризуют силу электростатического взаимодействия зарядов. Поскольку магнит не имеет заряда, между ним и кольцом такие силы не возникают.
Металлическое кольцо достаточно тяжелое для того, чтобы заставить его стремительно двигаться вслед за магнитом.
Но вариант с силой Ампера подходит, так как сила Ампера — это сила, с которой действует магнитное поле на проводник с током. В момент, когда магнит двигают в стороны от кольца, магнитный поток, пронизывающий его, меняется. Это вызывает образование в кольце индукционного тока, который также порождает магнитное поле, противодействующее магнитному полю постоянного магнита.
pазбирался: Алиса Никитина | обсудить разбор | оценить
Катушка № «>№ 1 включена в электрическую цепь, состоящую из источника напряжения и реостата. Катушка № «>№ 2 помещена внутрь катушки № «>№ 1 и замкнута (см. рисунок).
Из приведённого ниже списка выберите два правильных утверждения, характеризующих процессы в цепи и катушках при перемещении ползунка реостата вправо.
А) Сила тока в катушке № 1 увеличивается.
Б) Вектор индукции магнитного поля, созданного катушкой № 1, всюду увеличивается.
В) Магнитный поток, пронизывающий катушку № 2, увеличивается.
Г) Вектор индукции магнитного поля, созданного катушкой № 2, в центре этой катушки направлен от наблюдателя.
Д) В катушке № 2 индукционный ток направлен по часовой стрелке.
Алгоритм решения
Решение
Согласно утверждению А, при перемещении ползунка реостата вправо сила тока в катушке №1 увеличивается. Перемещая ползунок реостата вправо, мы увеличиваем сопротивление. Следовательно, сила тока уменьшается. Утверждение А — неверно.
Согласно утверждению Б, при перемещении ползунка реостата вправо вектор индукции магнитного поля, созданного катушкой №1, всюду увеличивается. Так как сила тока уменьшается, вектор индукции магнитного поля ослабевает. Утверждение Б — неверно.
Согласно утверждению В, при перемещении ползунка реостата вправо магнитный поток, пронизывающий катушку №2, увеличивается. Так как магнитное поле ослабевает, будет уменьшаться и магнитный поток, пронизывающий катушку № 2. Утверждение В — неверно.
Согласно утверждению Г, при перемещении ползунка реостата вправо вектор индукции магнитного поля, созданного катушкой №2, в центре этой катушки направлен от наблюдателя. В катушке №1 ток течёт по часовой стрелке, и по правилу буравчика эта катушка будет создавать магнитное поле, направленное от наблюдателя. В силу того, что сила тока в цепи уменьшается, будет уменьшаться и магнитный поток, пронизывающий вторую катушку. При этом согласно правилу Ленца во второй катушке будет создаваться индукционный ток, который направлен так, чтобы своим магнитным полем противодействовать изменению магнитного потока, которым он вызван. В этом случае вектор индукции магнитного поля, созданного катушкой №2, в центре этой катушки сонаправлен с внешним полем и направлен от наблюдателя. Утверждение Г — верно.
Согласно утверждению Д, при перемещении ползунка реостата вправо в катушке №2 индукционный ток направлен по часовой стрелке. По правилу правой руки, индукционный ток в катушке 2 направлен по часовой стрелке. Утверждение Д — верно.
pазбирался: Алиса Никитина | обсудить разбор | оценить