Что быстрее молния или пуля
какая скорость у молнии
Молнии различаются не только по размеру, они вспыхивают в небе с различными скоростями. «Медленная» молния за секунду преодолевает расстояние примерно 200 километров, что означает, что двухкилометровой молнии требуется одна сотая доля секунды, чтобы «вырасти» от корня до верхушки. Но в некоторых случаях молнии могут быть в десять раз быстрее. При отдаче они могут достичь наивысшей скорости — 140 000 километров в секунду; это составляет почти половину скорости света.
50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду.
Молнии в г. Ессентуки
По мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода.
100 000 километров в секунду, а в конце уменьшающейся до
10 000 километров в секунду. Температура канала при главном разряде может превышать 25 000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр — несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары.
Интересные и малоизвестные факты о молниях
Для одних молния — это застежка, для других — обозначение того, как быстро надо сбегать в магазин, а для третьих — то, что нарисовано на радиаторной решетке их немецкого автомобиля или на лбу Гари Потера. Но для большинства молния — это все же то самое природное явление, которое возникает во время грозы, и вызывает большой интерес фотографов. Действительно молнии красивые и завораживающие, но большинство знает о них только то, чего достаточно для того, чтобы перестать их бояться, как это делали наши предки сотни лет тому назад. Хотя, многие опасаются их и сейчас. В этой статье мы поговорим об интересных фактах, касающихся молний, и о том, чего в них действительно стоит бояться.
Знаменитый бог грома из скандинавской мифологии Тор.
Статистика ударов молний
Наверное, вы догадывались, что молнии имеют очень большую температуру, но почти уверен, что большинство даже не предполагало, что она в пять раз превышает температуру поверхности Солнца и достигает почти 30 000 градусов Цельсия. Конечно, это примерное значение, но в несколько раз превышение идет совершенно точно.
Молния — электрический искровой разряд в атмосфере, обычно может происходить во время грозы, проявляющийся яркой вспышкой света и сопровождающим её громом.
Скорость распространения молнии достигает 56000 км в секунду. То есть, всего на одну секунду она может сделать почти полтора оборота вокруг нашей планеты. При этом среднее время самого разряда составляет порядка четверти секунды, а средняя длина молнии — 9-10 километров.
Куда менее торопливыми являются грозы, которые ”переносят” молнии. Они перемещаются за час всего на 40 км. Зато ежесекундно на Земле гремят 1800 гроз, а каждую секунду по поверхности планеты бьет по разным подсчетам от 40 до 60 молний.
Так молнии выглядят их космоса.
Если вы думали, что молния, согласно поговорке, не бьет два раза в одно место, то вы ошибались. Это очень частое явление. Особенно, если гроза движется не очень быстро. Обратное мнение сформировалось как раз из-за быстрого движения гроз. В этом случае молния просто не успевает два раза ударить в одно место.
Опасно ли попадание молнии для человека
А вот на вопрос ”можно ли выжить после удара молнии” однозначного ответа нет. Точнее, он звучит, как ”может да, а может и нет”. Примерно 25 процентов из тех, в кого попала молния, погибают. На самом деле это не так много, если учитывать особенности данного явления.. Проблема в том, что в случае выживания, есть риск серьезных повреждений органов и нервной системы. В числе побочных явлений можно отметить потерю памяти, потерю чувствительности, нарушение сна, нарушение работы органов чувств и постоянные боли, сохраняющиеся много лет.
Примерно так выглядит человек, в которого ударила молния. Через его тело проходит очень сильный разряд.
Точную мировую статистику попаданий молний по миру найти сложно, так как в каких-нибудь африканских деревнях она просто не ведется. Зато есть статистика по России и США. В первом случае это около 500 человек в год, а во втором — 200 человек в год. ПО некоторым подсчетам вероятность погибнуть от удара молнии составляет один к двум миллионам. С такой же вероятностью можно умереть, упав с кровати. Что делать с этой информацией, решайте сами.
Немного неоднозначные данные утверждают, что в мужчин молния бьет примерно в 6 раз чаще, чем в женщин. Скорее всего, это не связано с мистикой или с тем, о чем вы подумали. Наиболее вероятным объяснением является то, что мужчины больше времени находятся на улице. Особенно в полях во время сельскохозяйственных работ, где их и застает гроза.
При этом чаще всего молния бьет в людей не в самый разгар грозы. Согласно данным национальной метеорологической службы США, молния может ”дотянуться” с расстояния в 15 км. Поэтому, если вы слышите гром, то уже находитесь в потенциальной опасности.
Мало кто захочет быть убитым молнией.
И не стойте рядом с коровами и дубами. Согласно приметам, рядом с коровами шанс быть пораженным молнией выше (логично, ведь погибали пастухи, которые не могли бросить стадо и отставались на улице), а в дубы молнии чаще попадают просто по статистике. Как таковой защиты нет, хотя в некоторых источниках встречается информация, что в середине прошлого тысячелетия дамы носили шляпы, в которых был металлический элемент, а по земле волочилась проволока. Такой вот портативный громоотвод.
А еще говорят, что если одежда мокрая, то молния причинит меньше вреда. Скорее всего, это произойдет как и в случае с попаданием молнии в автомобиль.
Обсудить молнии и многое другое можно в нашем специальном Telegram-чате. Присоединяйтесь!
Опасно ли попадание молнии в машину, самолет, дом
Тут тоже сложно дать однозначный ответ, но если с техникой все нормально, а на здании стоит громоотвод, то это скорее безопасно. Есть даже статистика, согласно которой в самолеты молния попадает в среднем каждые семь-десять тысяч часов налета. Это достаточно часто.
Молния попадает в самолет не так красочно, но по понятным причинам реальных фото нет.
В случае с автомобилями попадание тоже безопасно. Дело в том, что кузов представляет из себя по сути клетку Фарадея. Заряд проходит через него и не причиняет вреда человеку внутри. Правда, может повредиться электрическая аппаратура. В самолетах все более надежно. Фюзеляж имеет дополнительные элементы защиты, которые проводят ток через него дальше в землю. Попадание молнии в самолет даже не является внештатной ситуацией. Просто проводится проверка систем и, если все нормально, самолет продолжает движение.
Так выглядит клетка Фарадея. Человек в безопасности.
Клетка Фарадея — устройство, изобретенное для экранирования аппаратуры от внешних электромагнитных полей. Обычно представляет собой клетку, выполненную из токопроводящего материала. Клетка может проводить ток, нивелируя воздействие на аппаратуру внутри.
Громоотвод в домах представляет собой вынесенный выше крыши элемент, который соединен с землей и надежно изолирован от конструкции дома. Так как молния идет по кратчайшему пути к земле, она попадает в этот элемент и безопасно разряжается, не причиняя вреда другим объектам. Для примера можно сказать, что в знаменитую Эмпайр-стейт-билдинг молния бьет около 25 раз в год. Громоотвод решает.
Так выглядит громоотвод на крыше дома.
Обычно нет смысла ставить громоотводы на каждый дом — достаточно одного на относительно большую площадь. Естественно он должен быть на самом высоком строении или специальной вышке.
Почему гром слышен после молнии
Наверняка ответ на этот вопрос многие знают, но без этого рассказ будет не полным. Тут достаточно углубиться в физику и ответ появится сам собой.
Гром и молния возникают в один момент. При этом гром является следствием выделения большого количества энергии при ударе молнии. Тут надо понимать, что гром — это звук, а молния — это свет. Скорость распространения звуковой волны у поверхности Земли составляет примерно 340 метров в секунду. Скорость света составляет 300 000 километров в секунду.
При примерном расчете можно допустить, что свет достигает нас моментально без задержек, а звук проходит 340 метров за одну секунду. В итоге, умножив количество секунд между вспышкой и тем, как мы услышим гром, на 340, можно получить расстояние до молнии в метрах.
Молния и планеты
Молнии могут появляться не только на нашей планете, но и на других, если там есть благоприятные условия для их формирования — газовая среда. Так, молнии можно наблюдать на Сатурне, Уране, Венере и Юпитере. На некоторых из этих планет молнии в стони, тысячи и даже миллионы раз мощнее земных.
На Юпитере тоже есть молнии.
При этом даже на Земле при попадании молнии в песок в нем потом можно найти полоски стекла, которые образовались от такого воздействия. Правда, это актуально только при обычной молнии. Шаровая такого эффекта не даст. Да и увидеть ее большая редкость. Вероятность сделать это хотя бы раз в жизни не превышает одного шанса из десяти тысяч.
Казалось бы, наша планета на три четверти покрыта водой и именно в воду должны бить молнии. Но это не так. Над сушей формируются мощные конвекционные воздушные потоки и 80 процентов молний бьет именно в твердую поверхность.
Впрочем, иногда молнии бьют в воду.
А вообще поверхности Земли достигает только четверть молний. Остальные разряжаются между слоями воздушных масс на разных высотах.
Молнии в народных поверьях
Подобных поверий много и перечислять все нет смысла. Остановимся только на нескольких, самых интересных и более менее подтвержденных.
Про коров и вероятность погибнуть рядом с ними я уже говорил выше. Но этому есть научное и статистическое объяснение, а тому, что в средние века молнии прогоняли колоколами, есть только религиозное. Считалось, что колокола изгоняют злых духов, а гром и молния были проявлением дьявольских сил. Именно поэтому во время грозы старались звонить во все колокола, которые только были в деревне или городе. Это приводило к тому, что жертвами часто становились звонари, так как церкви и храмы всегда были самыми высоким зданиями в округе. Возможно, им бы помог лавровый лист, но в его защитные свойства от молний верили только британцы.
Молния помогала зарождаться жемчугу. По крайней мере в это верили древние греки, считая, что его появление становится следствием удара молнии в поверхность моря. А ацтеки считали, что молния помогает душам умерших проще пройти в глубины земли. Они думали, что она расщепляет землю, сопровождая мертвых в их нелегком пути.
Откуда берутся молнии
Сейчас ответ на этот вопрос однозначен. Они появляются из атмосферы и являются разрядом между слоями воздуха или слоем воздуха и землей. Иногда они бьют в землю, а иногда между слоями атмосферы, но для современного образованного человека в них нет ничего мистического. Зато раньше люди что только не придумывали.. Самым известным персонажем является Зевс — бог неба, грома и молний в древнегреческой мифологии. Он был не только главным из богов-олимпийцев, мужем Геры и братом Посейдона, но и ведал всем миром. То есть, был главным богом. В римской мифологии его отождествляли с Юпитером, у славян был Перун, а у скандинавов — Тор.
Зевса всегда изображали очень по-разному.
Вариантов всегда было много, что неудивительно, так как объяснить принцип работы молнии без знаний физики и ее раздела электрики, было просто невозможно. Вот люди и придумывали что не попадя, по факту просто делясь своими фантазиями.
Почему люди боятся гроз и молний
В качестве последнего факта в этой статье, пожалуй, приведу причины боязни грома и молнии в наше время. В первую очередь, стоит отметить, что такая боязнь называется бронтофобией и чаще всего встречается у молодых людей до 25 лет и преимущественно у девушек.
Больше всего случаев боязни грозы встречается у детей, но не редки случаи, когда этот страх проносится через всю жизнь, почти не ослабевая. Это может произойти даже из-за однократного сильного испуга, когда ребенок встретился с этим явлением, не будучи готов к нему и ничего не зная о нем.
Молния зачаровывает и пугает одновременно.
Раскаты грома имеют определенную тональность, которая воспринимается на подсознательном уровне, а яркая вспышка света в темноте, когда ночь озаряется как днем, но фиолетовым свечением, вызывает еще больше страха. Особенно это актуально для детей до четырех лет, которые просто не знают чего ждать от нового явления.
Также есть и генетический момент, ведь наши предки не были так защищены, как мы. У них не было понимания, о котором я уже писал выше, и надежного жилища. Деревянные и соломенные дома сгорали от удара молнии, деревья падали, а людей часто убивало на месте.
Все это приводило, приводит и будет приводить к появлению у людей бронтофобии, которая не мешает жить в прямом понимании этого слова, но делает ее не комфортной в дождливые дни. Приходится с этим мириться.
Ученые сравнили скорости у «молниеносно» и «в мгновение ока»
Ученые выяснили, что быстрее: «в мгновение ока», «с быстротой молнии» или «со скоростью света».
Британские исследователи из Университетского кампуса Саффолк составили рейтинг «самых быстрых» клише, измерив скорость упомянутых в них событий. Первые три места заняли устойчивые выражения, в которых упоминаются природные явления. «Со скоростью света» (300 млн м/с) оказалось на первом месте, «молниеносно, с быстротой молнии» (6 млн м/с) — на втором, «как комета» (84 909 м/с; с такой скоростью мимо Земли пролетела в 1910 году комета Галлея) — на третьем.
Далее следуют выражения, связанные с изобретениями человечества. Клише «сверхзвуковая скорость» означает скорость перемещения космического челнока. Рекордный показатель составил 8047 м/с. За ним идет выражение «пулей». По подсчетам ученых, пуля вылетает из дула ружья со скоростью 1524 м/с. Скорость, обозначаемую клише «на полной скорости», рассчитали как максимально возможную скорость автомобиля, мотор которого выдает предельную мощность при полном открытии дроссельной заслонки. Она составила 236 м/с. Далее следует клише «не успеешь оглянуться» (before you know it). Обозначенную в нем скорость ученые рассчитали как скорость передачи импульсов по нервным клеткам в человеческом теле (100 м/с).
«Мчаться со всех ног» (дословно — «бежать, как заяц»), по мнению исследователей, подразумевает скорость перемещения зайца-русака, которая составляет 19,4 м/с. За ним идет похожее выражение «бежать, как борзая», что эквивалентно 17 м/с. Клише «живо» (make it snappy) подразумевает в британской версии скорость, с которой человек может щелкать (snap) пальцами (13 м/с). Следом — выражение «распространяться со сверхъестественной быстротой» (дословно — «как лесной пожар»). Такие пожары распространяются со скоростью 7 м/с.
«Учащенное сердцебиение» оказалось на предпоследнем месте, так как скорость прохождения крови по телу при таком сердцебиении составляет, по данным ученых, 0,4 м/с. «В мгновение ока» замыкает рейтинг. Ученые посчитали, что скорость движения век, когда человек мигает, составляет 0,033 м/с. Об результатах исследования сообщает «Вокруг света».
Новое в блогах
От пуль инженера Герлиха до высокоскоростных боеприпасов
Весной 1930 года Гарольд Герлих объявил, что при стрельбе из винтовки своей конструкции калибра7 миллиметровполучил начальную скорость пули 1400 м/сек. и уверен в возможности увеличения скоростей выше 1650 м/сек.
Эта информация вызвала бурную полемику в оружейной печати, причем многие видные специалисты отнеслись к заявлению Герлиха довольно скептически.
В марте 1931 года Герлих испытал на полигоне в Ванзее винтовку и патроны калибра7 мм, дававшие пуле массой 6,5 грамма начальную скорость 1475 м/сек. В июне того же года подобная пуля достигла скорости 1600 м/сек., а при использовании увеличенного заряда – немыслимой скорости 1700 м/сек. Эти факты опровергли сомнения тогдашних оппонентов конструктора.
В своих опубликованных материалах Герлих упорно сохранял ноу-хау, умалчивая об устройстве своей пули и конструкции ствола винтовки. Однако позднее оказалось, что «сверхскоростная» пуля Герлиха представляла собой доработанную и усовершенствованную пулю системы Карла Пуффа, которая испытывалась еще в 1907-1908 годах. Пуля Пуффа имела диаметр, равный диаметру ствола по полям нарезов, ведущей частью служил специальный поясок. Нарезка ствола была также необычной – здесь были применены прогрессивные нарезы: в казенной части они были глубокими, а в дульной части – более мелкими. Поясок пули заполнял нарезы и при прохождении канала ствола сплющивался; благодаря этому пуля встречала неослабевающее сопротивление во время прохождения ствола. Кроме того, на тыльную часть пули был надет поддон из прессованного пороха; входя в нарезы, это пороховое кольцо разламывалось, образовавшиеся обломки пороха горели медленнее основного заряда, что приводило к более низкому максимальному давлению в стволе, а это способствовало нарастанию скорости пули. До выстрела пороховой поддон играл роль дополнительного приспособления для правильного расположения пули в гильзе, а при выстреле центрировал пулю, входящую в нарезку ствола.
Пуля Пуффа имела калибр ведущей части 7,78 мм (по пояску – 9,22 мм), массу 12,7 г, поперечную нагрузку 27,7 г/см2. Начальная скорость этой пули достигала 902 м/сек. Однако в то время конструкция Карла Пуффа не была использована ни в боевом, ни в охотничьем оружии.
Гарольд Герлих через 20 лет удачно развил систему Пуффа, добавив к пуле еще один ведущий поясок, при этом оба пояска были сделаны «значительно увеличенного диаметра».
При стрельбе по броневому листу толщиной 12 мм с дистанции 50 метров пуля Герлиха проламывала дыру диаметром 15 мм. Дальнейшие исследования показали, что при скорости пули свыше 1150 м/сек. в броне получаются не пробоины обычного вида, а проломы. При этом броневая плита в месте удара пули становится хрупкой, как стекло.
Винтовка и боеприпасы Герлиха первоначально разрабатывались как охотничьи, поэтому проводились опытные стрельбы по средним и крупным зверям. Это испытание показало, что пуля Герлиха имеет усиленное останавливающее действие и наносит совершенно чудовищной силы ранения: поражаемые кости как бы взрывались, разбрасывая осколки и увеличивая тем самым площадь раны.
Кучность системы Герлиха также значительно превосходила обычные армейские винтовки: на дистанции 100 метров 5 пуль массой 6,5 г укладывались в круг диаметром 1,7 см, а при стрельбе на 1000 метров 5 пуль массой 11,7 г ложились в круг диаметром 26,6 см.
Кроме того, благодаря высокой скорости пули внешнее воздействие на нее (ветер, влажность, температура воздуха) очень незначительно сказывались на ее точности. Форма траектории была настильной, поэтому при стрельбе требовалось меньше перестановок прицела.
В СССР разработки Герлиха вызвали определенный интерес, и потому уже в 1932 году на Научно-испытательном полигоне была испытана 7-мм винтовка «Хальгер». Однако явные недостатки конструкции – чрезмерно сильная отдача, большой вес, слабое запирание патрона затвором, малая живучесть всей системы – привели к заключению, что данный образец не имеет практической ценности и представляет интерес только как экспериментальная модель.
Несмотря на явные недоработки конструкции, сверхскоростные боеприпасы требовали дальнейших испытаний, так как, несомненно, имели перспективу дальнейшего развития. Однако германские власти не поддержали исследований Герлиха, поэтому он переехал в Великобританию, где проводил работы по созданию сверхскоростной пушки, а затем – в США. Там на Эбердинском полигоне в 1932-1933 годах испытывалась сверхскоростная винтовка «Хальгер-ультра» калибра 6,197 мм. Начальная скорость пули этой системы составляла 1760 м/сек.
Утверждения Шарпа о том, что сверхскоростная пуля Герлиха, по сути, не более чем обычный рекламный трюк, имеют под собой некоторые основания. Дело в том, что при испытаниях «магнума» Герлиха в СССР в самом деле были обнаружены странные несоответствия между заявленными фирмой характеристиками и реальными данными.
С теоретической же точки зрения выводы советских оружейников сводились к следующему: во-первых, основным преимуществом конического ствола является то, что он короче цилиндрического (при одинаковых выходных калибрах); при других равных условиях, уменьшение массы снаряда в два раза приводит к увеличению начальной скорости на 33 процента (правда, для реализации этого требуется существенное изменение качества заряда – толщину горящего свода порохового зерна необходимо уменьшить на 25 процентов); наконец, переход к снаряду легкого типа при сохранении того же веса заряда нагрузка на лафет существенно уменьшается, несмотря на увеличение скорости снаряда.
Однако на этом история сверхскоростных пуль не закончилась. Точнее, она плавно перетекла в начало разработок высокоскоростных артиллерийских снарядов. В противотанковой артиллерии вермахта уже к 1941 году появились орудия калибра28 ммс цилиндро-коническим стволом, стрелявшие бронебойными и осколочными снарядами. А вслед за этим в германские войска начали поступать пушки калибра 42 мм и 75 мм.
Снаряд для стрельбы из орудия с коническим стволом (вверху – до выстрела, внизу – после)
Неизвестно достоверно, насколько эффективными оказались эти артиллерийские системы в качестве противотанкового средства вермахта, зато более известно, что с подобной проблемой столкнулись и советские конструкторы, когда на фронте появились тяжелые немецкие танки, и это вызвало активные поиски путей повышения бронепробиваемости.
Схема подкалиберного бронебойного снаряда:
1 – баллистический наконечник;
3 – бронебойный сердечник;
Примерно так же ведут себя при встрече с броней сердечник и поддон. Поддон при ударе полностью разрушается, а сердечник по инерции продвигается вперед, пробивая слой брони. Поскольку площадь сечения сердечника намного меньше площади поперечного сечения обычного снаряда, а плотность его материала намного выше, то с учетом высокой скорости встречи достигается такая концентрация энергии на единицу площади сердечника, которая в несколько раз выше, чем у обычного снаряда.
В послевоенные годы сотрудник одного из закрытых советских НИИ В.Яворский сделал еще более удивительную разработку на основе той же технологической схемы. Сконструированные им подкалиберные бронебойные снаряды, калибр которых был в два с небольшим раза меньше калибра орудийного ствола, имели в стволе относительный вес 3,5 куба калибра, после вылета из ствола это значение увеличивалось до 50, что обеспечивало снарядам скорость от 1800 до 2000 м/сек. Поразительнее всего тот факт, что подобные скорости достигались при стрельбе из гладкоствольного орудия. Стабилизация снаряда в полете производилась с помощью специальных перьев. Подкалиберные снаряды конструкции Яворского были приняты на вооружение к 100-мм противотанковой пушке Т-12 «Рапира», а также к 115-мм и 125-мм танковым пушкам.
О том, что это действительно так может говорить появившееся в СМИ в начале двухтысячных годов сообщение, что казахский физик И.Ибрагимов сделал сенсационное открытие, которое позволило изобрести супероружие.
Если таким запатентованным устройством снабдить крупнокалиберный пулемет, то очередь из него прошьет танк, как фанеру. Такими пулеметами можно заменить современные зенитные комплексы и сбивать сверхзвуковые истребители. А снайперские винтовки позволят вести огонь на поражение на расстоянии свыше двух километров.
Автору был задан вопрос, почему стандартный карабин с обычным патроном вдруг побивает все рекорды дульной скорости?
— Как известно, при сгорании пороха в патроне происходит расширение газов. Но только одна треть сил направлена вдоль оси, то есть лишь треть пороховых газов давит на пулю. Мы изменили конфигурацию ствола, и теперь все силы направлены на то, чтобы вытолкнуть пулю.
С тех пор информация об этой уникальной разработке мне больше не попадалась.