Что бывает в виде ромба
Ромб. Свойства и признаки ромба
Ромб – это параллелограмм, у которого все стороны равны.
Если у ромба – прямые углы, то он называется квадратом.
Свойства ромба
1. Поскольку ромб – это параллелограмм, то все свойства параллелограмма верны для ромба.
Помимо этого:
2. Диагонали ромба перпендикулярны.
3. Диагонали ромба являются биссектрисами его углов.
4. Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4.
Признаки ромба
Чтобы параллелограмм оказался ромбом, необходимо выполнение одного из следующих условий:
1. Все стороны параллелограмма равны между собой ().
2. Диагонали пересекаются под прямым углом ().
3. Диагонали параллелограмма являются биссектрисами его углов.
Площадь ромба
Смотрите также таблицу-шпаргалку «Площади простейших фигур» здесь.
Чтобы не потерять страничку, вы можете сохранить ее у себя:
Ромб. Формулы, признаки и свойства ромба
Рис.1 | Рис.2 |
Признаки ромба
∠BAC = ∠CAD или ∠BDA = ∠BDC
Δ ABO = Δ BCO = Δ CDO = Δ ADO
Основные свойства ромба
∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC
Сторона ромба
Формулы определения длины стороны ромба:
2. Формула стороны ромба через площадь и синус угла:
a = | √ S |
√ sinα |
a = | √ S |
√ sinβ |
3. Формула стороны ромба через площадь и радиус вписанной окружности:
a = | S |
2 r |
6. Формула стороны ромба через большую диагональ и половинный угол:
a = | d 1 |
2 cos ( α /2) |
a = | d 1 |
2 sin ( β /2) |
7. Формула стороны ромба через малую диагональ и половинный угол:
a = | d 2 |
2 cos ( β /2) |
a = | d 2 |
2 sin ( α /2) |
Диагонали ромба
Формулы определения длины диагонали ромба:
d 1 = a √ 2 + 2 · cosα
d 2 = a √ 2 + 2 · cosβ
d 1 = 2 a · cos ( α /2)
d 1 = 2 a · sin ( β /2)
d 2 = 2 a · sin ( α /2)
d 2 = 2 a · cos ( β /2)
7. Формулы диагоналей через площадь и другую диагональ:
d 1 = | 2S |
d 2 |
d 2 = | 2S |
d 1 |
8. Формулы диагоналей через синус половинного угла и радиус вписанной окружности:
d 1 = | 2 r |
sin ( α /2) |
d 2 = | 2 r |
sin ( β /2) |
Периметр ромба
Периметром ромба называется сумма длин всех сторон ромба.
Длину стороны ромба можно найти за формулами указанными выше.
Формула определения длины периметра ромба:
Площадь ромба
Формулы определения площади ромба:
4. Формула площади ромба через две диагонали:
5. Формула площади ромба через синус угла и радиус вписанной окружности:
6. Формулы площади через большую диагональ и тангенс острого угла ( tgα ) или малую диагональ и тангенс тупого угла ( tgβ ):
S = | 1 | d 1 2 · tg ( α /2) |
2 |
S = | 1 | d 2 2 · tg ( β /2) |
2 |
Окружность вписанная в ромб
Формулы определения радиуса круга вписанного в ромб:
1. Формула радиуса круга вписанного в ромб через высоту ромба:
2. Формула радиуса круга вписанного в ромб через площадь и сторону ромба:
3. Формула радиуса круга вписанного в ромб через площадь и синус угла:
4. Формулы радиуса круга вписанного в ромб через сторону и синус любого угла:
r = | a · sinα |
2 |
r = | a · sinβ |
2 |
5. Формулы радиуса круга вписанного в ромб через диагональ и синус угла:
r = | d 1 · sin ( α /2) |
2 |
r = | d 2 · sin ( β /2) |
2 |
6. Формула радиуса круга вписанного в ромб через две диагонали:
r = | d 1 · d 2 |
2√ d 1 2 + d 2 2 |
7. Формула радиуса круга вписанного в ромб через две диагонали и сторону:
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Что бывает в виде ромба
Содержание
Этимология
Термин «ромб» происходит от др.-греч. ῥόμβος — «бубен». Если сейчас бубны в основном делают круглой формы, то раньше их делали как раз в форме квадрата или ромба. Кстати, название карточной масти бубны, знаки которой имеют ромбическую форму, происходит ещё с тех времён, когда бубны не были круглыми.
Слово «ромб» впервые употребляется у Герона и Паппа Александрийского.
Свойства
Признаки
Параллелограмм является ромбом, если выполняется одно из следующих условий:
Площадь ромба
где — угол между двумя смежными сторонами ромба.
В геральдике
Червлёный ромб в серебряном поле
В червлёном поле 3 сквозных ромба: 2 и 1
Просверленный червлёный ромб в серебряном поле
В лазури левая перевязь, составленная из пяти вертикальных золотых ромбов
См. также
Планигон
Полезное
Смотреть что такое «Ромб» в других словарях:
ромб — ромб, а … Русский орфографический словарь
ромб — ромб/ … Морфемно-орфографический словарь
РОМБ — (греч.). Равносторонний параллелограмм, с неравными углами, но равными сторонами. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. РОМБ греч. rhombos. Равносторонний четырехугольник, у которого два противоположные… … Словарь иностранных слов русского языка
ромб — а; м. [греч. rhombos] 1. Матем. Параллелограмм, все стороны которого равны. 2. В Красной Армии (до введения погон в 1943 г.): знак различия высшего командного состава, имевший такую форму. ◁ Ромбический, ая, ое. (1 зн.). Р ая форма. Кровать с… … Энциклопедический словарь
ромб — РОМБ, РОМБОС, РОМБУС а, м. rhombe m., нем. Rhombus <, лат. rhombus <гр. 1. Параллелограмм, все стороны которого равны. БАС 1. || О чем л., имеющем такую форму. БАС 1. У этого искусника <повара Полутыкина> ни одна морковка не попадала… … Исторический словарь галлицизмов русского языка
РОМБ — РОМБ, фигура на плоскости, четырехугольник с равными сторонами. Ромб частный случай ПАРАЛЛЕЛОГРАММА, у которого или две смежные стороны равны, или диагонали пересекаются под прямым углом, или диагональ делит угол пополам. Ромб с прямыми углами… … Научно-технический энциклопедический словарь
РОМБ — муж. равносторонний, косой четвероугольник, как бы сдвинутый набок квадрат. Ромбовые шашки, клетки, косые. Ромбоид муж. ромб; | толстый ромб, тело ромбоидное, ромбоидальное, косоугольная призма. Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля
Ромб (КА) — Ромб серия многоэлементных юстировочно кабровочных космических аппаратов, служащих для контроля точностных характеристик и разрешающей способности РЛС (систем СПРН, СККП, ПКО, ПРО) и для калибровки их каналов. Данные КА проводят точные… … Википедия
РОМБ — РОМБ, ромба, муж. (греч. rhombos). 1. Параллелограмм, все стороны которого равны. Квадрат частный случай ромба (мат.). 2. Равносторонний косоугольник в отличие от квадрата (разг.). 3. Знак различия, имеющий форму косоугольника (воен.). Толковый… … Толковый словарь Ушакова
РОМБ — РОМБ, а, муж. 1. В математике: параллелограмм, все стороны к рого равны. 2. Название высшего офицерского знака различия такой формы на петлицах в Красной Армии (с 1919 по 1943 г.). Р. в петлице. | прил. ромбический, ая, ое (к 1 знач.) и ромбовый … Толковый словарь Ожегова
РОМБ — (от греческого rhombos веретено), равносторонний параллелограмм … Современная энциклопедия
Ромб, свойства, признаки, формулы, площадь и периметр
Ромб, свойства, признаки, формулы, площадь и периметр.
Ромб – это параллелограмм, у которого все стороны равны.
Ромб (определение и понятие):
Ромб (др.-греч. ῥόμβος, лат. rombus, в буквальном переводе – «бубен») – это параллелограмм, у которого все стороны равны.
Так как ромб является параллелограммом, то он обладает всеми свойствами параллелограмма.
Ромбы отличаются друг от друга размером углов и длиной стороны.
Свойства ромба:
1. Противолежащие стороны ромба равны, т. к. все стороны ромба равны.
2. Противолежащие стороны ромба попарно параллельны.
Рис. 3. Ромб
3. Соседние углы ромба дополняют друг друга до 180°. Иными словами, сумма углов, прилежащих к любой из сторон ромба, равна 180°.
4. Диагонали ромба взаимно перпендикулярны.
5. Диагонали ромба точкой пересечения делятся пополам.
7. Диагонали ромба являются биссектрисами его углов и делят углы пополам.
∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC
8. Сумма квадратов диагоналей равна квадрату стороны умноженному на четыре.
9. В любой ромб можно вписать окружность, центр которой лежит на пересечении его диагоналей.
Центром окружности вписанной в ромб будет точка пересечения его диагоналей.
Признаки ромба:
Параллелограмм ABCD является ромбом тогда и только тогда, когда выполняется хотя бы одно из следующих условий:
– если две смежные стороны параллелограмма равны (отсюда следует, что все стороны равны), то он является ромбом.
AB = BC, то AB = BC = CD = AD;
– если диагонали параллелограмма пересекаются под прямым углом, то он является ромбом.
– если одна из диагоналей параллелограмма делит содержащие её углы пополам, то он является ромбом.
∠BAC = ∠CAD или ∠ABD = ∠DBC или ∠BCA = ∠ACD или ∠ADB = ∠BDC;
– если в параллелограмм можно вписать круг, то он является ромбом;
– если диагонали делят параллелограмм на четыре равных прямоугольных треугольника, то он является ромбом.
Примечание: © Фото https://www.pexels.com, https://pixabay.com
Мировая экономика
Справочники
Востребованные технологии
Поиск технологий
О чём данный сайт?
Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.
Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.
Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!
Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.
О Второй индустриализации
Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.
Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.
Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.
Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.
Ромб – между параллелограммом и квадратом
Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru.
Сегодня мы расскажем о такой геометрической фигуре, как РОМБ. Многие наверняка знают, как он выглядит.
Особенно спортивные болельщики, так как эмблемы многих команд связаны именно с ромбом. Тут достаточно вспомнить одну из главных российских команд – Спартак. Вот так она выглядит.
Ромб — это.
А вот как звучит официальное определение ромба:
История возникновения самого слова весьма примечательна. На древнегреческом оно звучит как «ῥόμβος», а на латыни «rombus». И переводятся оба слова как «бубен».
Дело в том, что в Древней Греции делали барабаны и прочие ударные инструменты чаще именно такой формы. Просто натягивать ткань на параллелограмм было гораздо проще. А вот круглые, более привычные нам сегодня барабаны появились позже.
И еще один интересный факт – карточная масть «бубны» называется так точно по той же причине.
Говоря об определении РОМБА, не лишним будет тогда сказать и что такое параллелограмм, раз он там фигурирует.
Параллелограмм – это геометрическая фигура, которая представляет собой четырехугольник, у которого противоположные стороны равны между собой и параллельны друг другу.
Выглядит классический параллелограмм вот так:
Впервые его описал знаменитый древнегреческий математик Евклид в своей книге «Начала». Это произведение вышло в 300 году до нашей эры. И было посвящено основам математики, которые были известны на то время.
В частности, Евклид в своей книге разделил все четырехугольники на две большие категории – параллелограмм и трапеция (так как у нее две стороны не параллельны друг другу). Также в «Началах» Евклид указал, что ромб является частным случаем параллелограмма, так как у него противоположные стороны равны.
И наконец, частным случаем самого ромба является квадрат. У него противоположные стороны не только равны, но еще и пересекаются под прямым углом.
Признаки ромба
Чтобы понять, что перед нами ромб, должно выполняться всего лишь одно из трех простых условий:
И тут будет не лишним подтянуть теоретическую базу и напомнить, что такое диагональ, и уж тем более что такое биссектриса.
Диагональ – это отрезок, который соединяет две любые вершины в многоугольнике, которые не находятся рядом друг с другом.
Если говорить конкретно о четырехугольнике, которым является и ромб, то диагональ соединяет две противоположные вершины и никак иначе. И таких диагоналей в ромбе две:
На этом рисунке диагоналями являются отрезки AC и BD. И как показано, они пересекаются под прямым углом, о чем и говорится во втором признаке ромба.
Биссектриса – это линия, которая выходит из угла и делит его ровно на две части.
Кстати, само слово «биссектриса» имеет латинские корни. Оно состоит из двух половин – «bi» (двойное) и sectio (разрезание).
Свойства ромба
А можно все и перевернуть таким образом. Если вы точно определи, что перед вами ромб, то тогда для этой фигуры будут характерны вот такие свойства:
И есть еще одно свойство, которое помогает решать различные задачки на уроках геометрии. Оно звучит так:
Сумма квадратов обеих диагоналей ромба равна квадрату его сторону, умноженному на четыре.
Периметр ромба
Чтобы определить периметр любого четырехугольника, надо просто сложить между собой длины всех его сторон.
В случае с ромбом это совсем просто, так как они все равны между собой. И тогда формула для вычисления периметра получается такой:
Как несложно догадаться, буква «а» здесь – это длина стороны ромба.
Есть еще одна формула для вычисления периметра ромба – через диагонали. Она более сложная, но при решении различных задач вполне может и пригодиться.
Площадь ромба
Площадь любой геометрической фигуры – это размер пространства, заключенного в границы этой самой фигуры.
Классическая формула для расчета площади ромба – через длины стороны и высоты.
Главное, надо напомнить, что такое высота. Это отрезок, проведенный из вершины геометрической фигуры под прямым углом к противоположной стороне.
Она обозначается буквой «h» или «H» и выглядит вот так:
И наконец, формула для расчета площади ромба через сторону и высоту:
Есть и другие формулы для расчета площади ромба:
Вот и все, что мы хотели рассказать о ромбе.
Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru
Эта статья относится к рубрикам:
Комментарии и отзывы (1)
Со временем, разница между квадратом, ромбом и параллелограммом забывается. То, что было само собой разумеющимся в школе, теперь кажется чем-то новым!:) Кстати, во времена СССР, именно ромб был самой популярной фигурой в дизайне всевозможных логотипов.