Что в конце вселенной

Как умрёт Вселенная

Что в конце вселенной. Смотреть фото Что в конце вселенной. Смотреть картинку Что в конце вселенной. Картинка про Что в конце вселенной. Фото Что в конце вселеннойВселенная — глобальный объект, который включает в себя время, космос и всё его содержимое: галактики, звёзды, планеты, их луны, все прочие тела, всю материю, всю энергию. Этот огромный и замечательный объект когда-то зародился. Как у всего хорошего, у Вселенной тоже есть свой конец. С прошлым и зарождением Вселенной учёные вроде как определились. А вот предсказания о конце Вселенной остаются набором теорий, которые выдают разный результат в зависимости от принимаемых значений нескольких постоянных.

Рождение и жизнь

За пикосекунды из кварк-глюонной плазмы зародились элементарные частицы. В дальнейшем из них образовались протоны и нейтроны, те в свою очередь дали ядра лёгких изотопов. Пока лишь ядра — до атомов веществу далеко.

Спустя 70 тысяч лет от начальной точки вещество начинает доминировать над излучением. Примерно с 380 тысяч лет после Большого взрыва электроны и ядра впервые образуют нейтральные атомы. Звёзд ещё не существует. Самые первые образуются с 550 миллионов лет после Большого взрыва. Звёзды собираются в галактики. Последних гравитационное взаимодействие формирует в скопления.

Согласно небулярной гипотезе, через ≈9 миллиардов лет после Большого взрыва (или ≈4,6 миллиардов лет назад) из одного газопылевого облака начало формироваться то, что позже станет Солнечной системой. Фрагмент облака сжался в шар по центру, окружающие его части тоже сжимались и вращались быстрее, формируя характерный диск. Из шара зажглась наша звезда, в холодных краях в сгущениях материи образовывались планеты.

Через 2,4 миллиарда лет от настоящего момента Млечный путь и Галактика Андромеды столкнутся. С Земли это наблюдать будет некому. Жизнь на нашей планете вымрет через примерно миллиард лет — Солнце будет давать слишком много тепла, и океаны просто испарятся. Сама звезда просуществует долго.

Что в конце вселенной. Смотреть фото Что в конце вселенной. Смотреть картинку Что в конце вселенной. Картинка про Что в конце вселенной. Фото Что в конце вселенной
Жизненный цикл Солнца.

Через миллиарды лет Солнце уже будет красным гигантом, давно израсходовавшим свои запасы водородного топлива. Оно расширится в примерно 250 раз. Некоторые исследования показывают, что до схлапывания в белый карлик Солнце всё же захватит Землю, поскольку орбита планеты опустится ниже. Впрочем, это неважно — через 7,6 миллиардов лет, когда это произойдёт, на нашей планете уже не будет ничего живого. Солнце будет светить ещё миллиарды лет, но куда тусклее. В конце концов оно превратится в чёрного карлика. Ещё через миллиарды лет гравитация других звёзд отберёт оставшиеся планеты. Солнечная система прекратит существование.

В ближайшие сотни миллионов лет о гибели Земли беспокоиться не нужно — в этот период Солнечная система устойчива. Выгорание топлива ближайшей звезды через миллиарды лет невозможно назвать даже проблемами. У современного человечества есть настоящие задачи, которые грозят значительным ухудшением качества жизни. Их много: от перестающих работать антибиотиков из-за появления супербактерий до глобального изменения климата из-за выброса парниковых газов. Наконец, есть банальная опасность развязать термоядерную войну или уничтожить самих себя каким-либо ещё образом.

Возможно, наши потомки сдвинут орбиту Земли или вовсе переселятся с неё. Возможно, Земля переживёт этот процесс без лишней помощи. Но какие проблемы будут стоять перед постчеловечеством, которое покинет «колыбель цивилизации»? Что ожидает другие, внеземные формы жизни? Вопрос конечной судьбы Вселенной стоит на границе современной космологической науки.

Cжатие

Вселенная расширяется, галактики разбегаются друг от друга. Быть может, скорость расширения замедлится, дойдёт до нуля, а затем пойдёт в обратном направлении. Вселенная может начать сжиматься, постепенно схлопываясь в черные дыры. И эти чёрные дыры сольются в одну. Эта гипотеза носит название «Большое сжатие».

В законе Хаббла состояние расширения Вселенной определяется её плотностью. Если плотность ниже критической, то Вселенная продолжит увеличиваться в размерах и остывать. Если плотность Вселенной выше, то гравитационная сила постепенно остановит разбегание и направит его вспять. Вселенная будет сжиматься.

Что в конце вселенной. Смотреть фото Что в конце вселенной. Смотреть картинку Что в конце вселенной. Картинка про Что в конце вселенной. Фото Что в конце вселенной

Коллапс будет отличаться от изначального расширения. Огромные скопления галактик сблизятся, затем начнут сливаться целые галактики. В какой-то момент звёзды подойдут друг к другу настолько близко, что дойдёт до частых столкновений. Звёзды не смогут рассеивать вырабатываемое тепло и начнут взрываться, оставляя горячий неоднородный газ. Из-за растущей температуры его атомы распадутся на элементарные частицы, которые будут поглощены срастающимися чёрными дырами. Гипотеза не указывает, каков будет финал.

Но последние экспериментальные наблюдения дальних сверхновых как объектов стандартной светимости и составление карты реликтового излучения показывают, что расширение не замедляется, а лишь ускоряется.

Расширение

Большой разрыв предполагает, что когда-то в будущем вся материя Вселенной, звезды и галактики, субатомные частицы, само пространство и время будут разорваны скоростью расширения. Сценарий этой смерти гласит, что за 60 миллионов лет до финала распадётся Млечный путь, за три месяца расстроится работа Солнечной системы. За полчаса до Большого разрыва разрушится Земля (или похожая планета), за одну наносекунду начнут разрушаться атомы. Согласно гипотезе, всё это произойдёт лишь через 22 миллиарда лет, уже после угасания Солнца в белый карлик.

За миллиарды лет звёзды выгорят. Из их останков родятся белые карлики, нейтронные звёзды и чёрные дыры. Через 150 миллиардов лет от текущего момента при том же ускорении разбегания галактик все галактики за пределами Местной группы выйдут за космологический горизонт. События в Местной группе никак не смогут влиять на события в удалённых галактиках, и наоборот. При наблюдении удалённой галактики время будет замедляться, а затем просто остановится. Другими словами, через 150 миллиардов лет наблюдатель в Местной группе никогда не увидит событий в удалённых галактиках. Более не будут возможны ни полёты к ним, ни какие-либо формы связи.

Через 800 миллиардов лет светимость Местной группы заметно снизится. Стареющие звёзды будут выдавать всё меньше света, красные карлики будут вымирать в белые. Через 2 триллиона лет от текущего момента из-за красного смещения удалённые галактики будет невозможно как-либо обнаружить: даже длина волн их гамма-лучей будет выше, чем размер наблюдаемой вселенной.

Через 100 триллионов лет закончится формирование звёзд, в космосе будут тускло светить их остатки. После того, как потухнет последняя звезда, космос изредка будут озарять вспышки слияний двух белых карликов. Через 10 15 лет планеты либо упадут на остатки своих бывших звёзд, либо уйдут к другим телам. Похожим образом через 10 19 —10 20 лет объекты покинут галактики. Небольшая часть объектов упадёт в сверхмассивную чёрную дыру.

Дальнейшее развитие зависит от того, стабилен протон или нет. Некоторые эксперименты утверждают, что минимальный период полураспада протона составляет 10 34 лет. Если это действительно так, через 10 40 лет во Вселенной останутся почти лишь только лептоны и фотоны. Исчезнут остатки звёзд, останутся лишь чёрные дыры. Возможно, процесс гибели нуклонов займёт больше времени.

Через 10 100 лет от текущего момента чёрные дыры испарятся излучением Хокинга. Наконец, Вселенная будет почти полностью пуста. В ней будут летать фотоны, нейтрино, электроны и позитроны, изредка сталкиваясь.

Если протоны стабильны, то через 10 1500 холодным слиянием и квантовым туннелированием лёгкие ядра превратятся в атомы железа 56 Fe. Элементы тяжелее этого изотопа распадутся с излучением альфа-частиц. Через 10 10 26 лет квантовое туннелирование превратит большие объекты в чёрные дыры. Возможно, железные звёзды превратятся в нейтронные через 10 10 76 лет от настоящего момента.

Есть и другие, более экзотические гипотезы. К примеру, в 2010 году учёные предсказали, что через пять миллиардов лет время закончится. Это событие трудно будет увидеть или как-то предсказать, его обещают внезапным. Пространство может кончиться из-за схлапывания ложного вакуума в истинный, в более энергетически низкое состояние, что, возможно, повлечёт полное разрушение объектов Вселенной.

Все эти гипотезы разработаны для текущих реалий простого уравнения состояния для тёмной энергии. Как и следует из имени, о тёмной энергии известно мало. Если верна инфляционная модель Вселенной, то в первые моменты после Большого взрыва существовали другие формы тёмной энергии. Возможно, уравнение состояния поменяется. Изменятся выводы, которые можно сделать из него. Трудно предсказать, что мы узнаем о тёмной энергии, если она получила развитие лишь в конце прошлого века.

Но во всех случаях гибель Вселенной — очень далёкое по меркам человечества явление. Если рассматривать её с масштаба продолжительности жизни одного человека, это слишком глобальное событие, чтобы о нём беспокоиться.

Источник

Гибель Вселенной — как и когда это будет происходить

Существует множество мнений на этот счет, но недавно физик-теоретик из Университета штата Иллинойс сделал важное заявление. Его расчеты говорят о том, что последним событием во Вселенной станут взрывы черных карликов. Сверхновые черные карлики приведут к так называемой «тепловой смерти». Но не волнуйтесь, к тому времени нас уже давно не будет, ведь Землю поглотит разросшееся до невиданных ранее масштабов Солнце.

Как зарождалась Вселенная — короткий экскурс

Принято считать, что точкой отсчета является Большой взрыв: около 13,7 миллиарда лет назад все вещество находилось в одной точке нулевого размера. Эта субстанция имела бесконечную плотность и температуру, после чего началось ее расширение.

Сперва появились элементарные частицы, которые дали жизнь протонам и нейтронам, которые в свою очередь стали основной ядер легких изотопов. До появления первых звезд с момента Большого взрыва прошло не менее 550 миллионов лет, затем они начали собираться в галактики.

Если говорить о Солнечной системе, то она начала формироваться только спустя 9 миллиардов лет после Большого взрыва. Фрагменты одного из газопылевых облаков в разных его частях начали сжиматься, формируя шарообразные объекты. Затем центральная часть зажглась, став Солнцем, а остальные элементы превратились в планеты. Сейчас Солнечная система находится в стабильном состоянии — когда этот баланс нарушится, сказать сложно.

К примеру, по подсчетам ученых, спустя 2,5 миллиарда лет от сегодняшнего дня Млечный путь и Галактика Андромеды столкнутся, но увидеть это мы не сможем. Почему? Примерно через миллиард лет наше светило совсем немного увеличится в размерах, но этого окажется достаточно, чтобы выжечь все живое на Земле.

Само Солнце просуществует еще миллиарды лет и постоянно расширяясь, расходуя запасы водородного топлива, в конце своего пути оно увеличится в 250 – 300 раз относительно нынешних габаритов. До схлопывания в белый карлик звезда успеет поглотить Землю — ориентировочно это событие произойдет через 7,5 млрд лет.

Настанет эпоха догорания, когда Солнце, уменьшившись в несколько раз, еще миллиарды лет будет выглядеть как крохотное белое светило. Постепенно остывая, оно превратится в черного карлика, но станет ли оно сверхновой? Пока точного ответа нет.

Источник

Начало конца Вселенной: тайны темной энергии

Наша Вселенная расширяется с самого момента своего рождения около 14 миллиардов лет назад. И хотя может показаться, что со временем этот процесс должен замедлится, этого не происходит. Вселенная, вопреки нашим ожиданиям, расширяется со все возрастающей скоростью. Благодаря главенствующей в космологии теории Большого взрыва мы знаем, почему другие галактики удаляются от нас по мере того, как пространство продолжает расширяться. Этот феномен объясняет слабое свечение, наблюдаемое повсюду во Вселенной (свечение – это оставшееся тепло от рождения Вселенной, которое теперь остыло всего на несколько градусов выше абсолютного нуля). Словом, это удивительно мощное и элегантное объяснение того, как возникла наблюдаемая Вселенная. Но почему она расширяется все быстрее и быстрее? Концепция Большого взрыва, увы, не указывает на то, продолжит ли Вселенная расширяться и охлаждаться или же она в конечном итоге сократится до другой сверхгорячей сингулярности, тем самым, возможно, перезапустив весь цикл. Окончательная же судьба Вселенной, вероятно, зависит от свойств двух таинственных явлений – темной материи и темной энергии. Дальнейшее изучение того и другого может показать, как погибнет Вселенная.

Что в конце вселенной. Смотреть фото Что в конце вселенной. Смотреть картинку Что в конце вселенной. Картинка про Что в конце вселенной. Фото Что в конце вселенной

Теория Большого взрыва гласит, что Вселенная возникла из одной невообразимо горячей и плотной точки под названием сингулярность более 13 миллиардов лет назад. Это произошло не в уже существующем пространстве. Скорее, это инициировало расширение — и охлаждение — самого пространства.

Как возникла Вселенная?

Итак, теория Большого взрыва объясняет создание самых легких элементов во Вселенной — водорода, гелия и лития — из которых «родились» все более тяжелые элементы в звездах и сверхновых. Продолжение Большого взрыва или космическая инфляция объясняет, почему Вселенная настолько однородна (равномерно составлена) и как галактики распределены в пространстве.

Интересно, что многие особенности современной Вселенной имеют смысл, только если пространство очень рано подверглось сверхбыстрому расширению. Теория инфляции гласит, что Вселенная резко расширилась за крошечную долю секунды после Большого взрыва, движимая фантастическими количествами энергии, содержащейся в самом пространстве. После этого периода Вселенная продолжала расширяться и охлаждаться, но гораздо более медленными темпами.

Что в конце вселенной. Смотреть фото Что в конце вселенной. Смотреть картинку Что в конце вселенной. Картинка про Что в конце вселенной. Фото Что в конце вселенной

в большинстве моделей инфляции флуктуации в чрезвычайно малых масштабах раздуваются, превращаясь в макроскопические различия. Эти различия невероятно крошечные и чтобы описать с их помощью реальность, потребуется новая теория физики.

Выходит, инфляция растянула пространство так быстро, что оно стало чрезвычайно однородным. Но пространство неоднородно: небольшие колебания плотности материи, присутствовавшие в ранней Вселенной, значительно усилились во время инфляции. Эти флуктуации плотности в конечном итоге создали крупномасштабную структуру Вселенной.

Подробнее о том, что представляет собой эта удивительная структура, я рассказывала в этой статье, рекомендую к прочтению!

Несмотря на то, что теория Большого взрыва является общепринятой среди большинства исследователей, она не указывает на то, будет продолжит ли Вселенная расширяться и охлаждаться или же она в конечном итоге сократится до сверхгорячей сингулярности, возможно, перезапустив весь цикл. Окончательная судьба Вселенной, вероятно, зависит от свойств двух таинственных явлений – темной материи и темной энергия. Именно дальнейшее изучение того и другого может показать, каким будет конец Вселенной.

Проблема заключается в том, что вся знакомая материя — Земля, остальная часть Солнечной системы, звезды, галактики и межзвездный газ — составляет лишь около одной шестой массы Вселенной. Но ученые могут видеть влияние остальной массы Вселенной – ее-то они и называют темной материей.

Присутствие этой таинственной субстанции в галактиках заставляет их вращаться быстрее, чем если бы там была только обычная материя. Высокие концентрации темной материи заметно искривляют свет, идущий издалека. Однако его природа остается загадкой.

Что в конце вселенной. Смотреть фото Что в конце вселенной. Смотреть картинку Что в конце вселенной. Картинка про Что в конце вселенной. Фото Что в конце вселенной

Ранее исследователи составили самую подробную карту распределения темной материи во Вселенной на сегодняшний день.

Напомним, что темная материя, вероятно, состоит из элементарных частиц, созданных в результате Большого взрыва, но еще не обнаруженных на Земле. Одна из причин, по которой физики хотят построить более мощные ускорители частиц, заключается в поиске темной материи. Но еще более таинственной, чем темная материя, является сила, которая, как считается, ответственна за расширение Вселенной.

Еще больше увлекательных статей о последних научных открытиях в области астрономии и космологии, читайте на нашем канале в Google News.

Темная энергия

Наблюдения далеких сверхновых звезд показывают, что пространство пронизано энергией – той самой темной энергией, которая раздвигает объекты, подобно тому, как два положительных электрических заряда отталкиваются друг от друга. Эта таинственная субстанция, на долю которой приходится более 70% энергетического содержания Вселенной, может быть связана с той энергией, что породила Инфляцию.

И все же сегодня ученым практически ничего не известно о том, что такое темная энергия и как она воздействует на материю. Некоторые физики считают, что объяснение этого феномена может потребовать совершенно новых представлений о пространстве и времени.

Когда астрономы смотрят в телескоп, они смотрят назад во времени. Они видят галактику Андромеды, ближайшую к нам крупную галактику, не такой, какая она сегодня, а такой, какой она была более 2 миллионов лет назад, потому что именно столько времени потребовалось свету галактики, чтобы пройти через космос к Земле.

Что в конце вселенной. Смотреть фото Что в конце вселенной. Смотреть картинку Что в конце вселенной. Картинка про Что в конце вселенной. Фото Что в конце вселенной

Галактика Андромеды – ближайшая Галактика Местной группы

Другие галактики находятся гораздо дальше в пространстве и времени. Космический телескоп Hubble способен видеть галактики, которым более 13 миллиардов лет и которые образовались вскоре после Большого взрыва. Были также проведены наблюдения реликтового излучения – слабого свечения, оставшегося после Большого взрыва, которое помогает ученым получить представление о том, какой была ранняя Вселенная, особенно до образования первых звезд.

Состав Вселенной и другие вопросы

Большинство исследователей полагают, что состав вселенной на удивление сложно определить, ведь помимо темной энергии, пространство также заполнено темной материей. (Обычная видимая материя составляет всего 5% Вселенной, в то время как темная материя и темная энергия составляют 26% и 69% соответственно). Другими словами, астрономы на самом деле не понимают, из чего состоит около 95% Вселенной.

Все потому, что понять и измерить темную материю и темную энергию больше чем сложно. Представьте, что вы бродите по темной комнате и время от времени прикасаетесь к слону, которого никогда не видели и отчаянно пытаетесь понять что это такое и как он выглядит. Исходя из этой аналогии, темная комната размером со Вселенную, и вместо того, чтобы прикасаться к слону, астрономы могут видеть только его воздействие на другие объекты.

Что в конце вселенной. Смотреть фото Что в конце вселенной. Смотреть картинку Что в конце вселенной. Картинка про Что в конце вселенной. Фото Что в конце вселенной

Материя во Вселенной распределена не равномерно

Мы видим, что темная материя гравитационно взаимодействует с видимой материей и подозреваем, что она состоит из одной или нескольких неизвестных частиц. Темная энергия может быть пятой фундаментальной силой Вселенной. (Известны четыре: слабое взаимодействие, сильное взаимодействие, гравитация и электромагнетизм.)

Но точные свойства темной энергии и темной материи остаются загадкой, тем более что темная энергия, похоже, не более чем случайность. Некоторые физики, как пишет портал Astronomy.com, полагают, что темная энергия является причиной ускоренного расширения Вселенной и произошло около 5-6 миллиардов лет назад, с тех являясь доминирующей силой.

Самое простое объяснение темной энергии состоит в том, что это – внутренняя энергия самого пространства. Альберт Эйнштейн первоначально ввел такую концепцию, чтобы учесть плоскую вселенную, когда излагал теорию относительности (ОТО). Так называемая космологическая постоянная Эйнштейна – это сила отталкивания, которая противодействует силе притяжения гравитации, чтобы Вселенная не сжималась и не расширялась.

Что в конце вселенной. Смотреть фото Что в конце вселенной. Смотреть картинку Что в конце вселенной. Картинка про Что в конце вселенной. Фото Что в конце вселенной

Сегодня никто не знает, будет ли Вселенная расширяться вечно или этот процесс когда-нибудь закончится

Но, в конце концов, Эйнштейн отказался от своей концепции после того, как Эдвин Хаббл наблюдал расширение Вселенной. Нобелевская премия по сверхновым в 1990-х годах возродила космологическую постоянную и в конечном итоге связала ее с темной энергией. И хотя астрономы не могут видеть темную материю напрямую, они могут определить ее местоположение по наблюдениям. Распределение темной материи (пурпурного цвета) в сверхскоплении Abell 901/902 показано на этой фотографии путем объединения изображения сверхскопления в видимом свете и карты области темной материи.

В заключении

И все же, для окончательного решения этой загадки ученым потребуется нечто большее, чем просто измерения. Лучшие физики-теоретики мира пытались разработать единую физическую теорию, которая полностью объясняет все аспекты Вселенной. Но до сих пор гравитация и квантовая физика не нашли точек соприкосновения, несмотря на то, что теоретики считают, что их объединение необходимо для любой теории, способной объяснить темную энергию. Исследователи также отмечают, что если вклад темной энергии будет расти по мере старения Вселенной, то со временем Вселенная будет расширяться все быстрее.

Другие галактики за пределами нашей Локальной группы — которые сольются в единую гигантскую галактику по прозвищу Милкомеда — в конечном итоге будут унесены на такие большие расстояния, что любые обитатели нашей Солнечной системы в далеком будущем не смогут их увидеть.

Что в конце вселенной. Смотреть фото Что в конце вселенной. Смотреть картинку Что в конце вселенной. Картинка про Что в конце вселенной. Фото Что в конце вселенной

Местная Группа галактик, в которой находимся мы и наша соседка Галактика Андромеды

В настоящее время астрономы планируют создание новых космических и наземных телескопов, а также более мелкомасштабное оборудование и проведение исследований. С помощью новейших инструментов они планируют дальнейшее изучение фундаментальных загадок Вселенной. Такой огромной и непрерывно расширяющейся.

Источник

Что находится на краю Вселенной?

В 2019 году это обычная эмоция — желать по четыре-пять раз на дню отправиться не то, чтобы в космос, но на самый край света, как можно дальше, чтобы избавиться от дурного наваждения или плохой погоды, задерживающегося поезда или тесных брюк, таких заурядных на Земле вещей. Но что будет ждать вас на этой космологической границе? Что это вообще такое — край света, край Вселенной — что мы там увидим? Это граница или бесконечность вообще?

Что в конце вселенной. Смотреть фото Что в конце вселенной. Смотреть картинку Что в конце вселенной. Картинка про Что в конце вселенной. Фото Что в конце вселенной

Давайте спросим у ученых.

Что находится на краю света

Шон Кэрролл, профессор физики Калифорнийского технологического института

«Насколько мы знаем, у Вселенной нет границ. У наблюдаемой Вселенной есть край — предел того, что мы можем увидеть. Это связано с тем, что свет движется с конечной скоростью (один световой год в год), поэтому, когда мы смотрим на далекие вещи, мы вглядываемся назад во времени. В самом конце мы видим, что происходило почти 14 миллиардов лет, остаточное излучение Большого Взрыва. Это космический микроволновый фон, который окружает нас со всех стороны. Но это не физическая «граница», если уж так посудить.

Поскольку мы можем видеть лишь настолько далеко, мы не знаем, на что похожи вещи за пределами нашей наблюдаемой Вселенной. Та вселенная, которую мы видим, довольно однородна в больших масштабах и, возможно, так будет продолжаться буквально всегда. В качестве альтернативы вселенная могла бы свернуться в сферу или тор. Если это так, вселенная будет ограничена по общему размеру, но все равно не будет иметь границы, точно так же, как круг не имеет начала или конца.

Также возможно, что вселенная неоднородна за пределами того, что мы можем видеть, и что условия сильно отличаются от места к месту. Эту возможность представляет космологическая мультивселенная. Мы не знаем, существует ли мультивселенная в принципе, но поскольку не видим ни то, ни другое, разумно было бы сохранять непредвзятость».

Джо Данкли, профессор физики и астрофизических наук в Принстонском университете

«Да все то же самое!

Окей, на самом деле мы не считаем, что у вселенной есть граница или край. Мы думаем, что она либо продолжается бесконечно во всех направлениях, либо оборачивается вокруг себя, так что она не является бесконечно большой, но все равно не имеет краев. Представьте поверхность пончика: у нее нет границ. Может быть, вся вселенная такая (но в трех измерениях — у поверхности пончика всего два измерения). Это значит, что вы можете отправиться на космическом корабле в любом направлении, и если будете путешествовать достаточно долго, вернетесь туда, откуда начали. Нет края.

Но есть также то, что мы называем наблюдаемой вселенной, которая является частью пространства, которую мы можем реально видеть. Край этого места находится там, откуда свету не хватило времени, чтобы добраться до нас с начала существования вселенной. Мы можем увидеть только такой край, а за ним, вероятно, будет все то же самое, что мы видим вокруг: сверхскопления галактик, в каждой из которых миллиарды звезд и планет».

Поверхность последнего рассеяния

Джесси Шелтон, доцент кафедры физики и астрономии Университета Иллинойса в Урбана-Шампейн

«Все зависит от того, что вы подразумеваете под краем вселенной. Поскольку скорость света ограничена, чем дальше и дальше в космос мы смотрим, тем дальше и дальше назад во времени мы заглядываем — даже когда смотрим на соседнюю галактику Андромеду, мы видим не то, что происходит сейчас, а что происходило два с половиной миллиона лет назад, когда звезды Андромеды излучали свет, попавший в наши телескопы только сейчас. Самый старый свет, который мы можем увидеть, пришел из самых дальних глубин, поэтому, в некотором смысле, край вселенной — это самый древний свет, который нас достиг. В нашей вселенной это космический микроволновый фон — едва заметное, продолжительное послесвечение Большого Взрыва, которое отмечает момент, когда Вселенная остыла достаточно, чтобы позволить сформироваться атомам. Это называется поверхностью последнего рассеяния, поскольку отмечает место, где фотоны перестали прыгать между электронами в горячей, ионизированной плазме и начали вытекать через прозрачное пространство, на миллиарды световых лет в нашу сторону. Таким образом, можно сказать, что край вселенной — это поверхность последнего рассеяния.

Что находится на краю вселенной прямо сейчас? Ну, мы не знаем — и не можем узнать, нам пришлось бы ждать, пока свет, испущенный там сейчас и идущий к нам, пролетит много миллиардов лет в будущем, но поскольку вселенная расширяется все быстрее и быстрее, мы вряд ли увидим новый край вселенной. Можем лишь догадываться. На крупных масштабах наша вселенная выглядит по большей части одинаковой, куда ни глянь. Велики шансы, что если бы вы оказались на краю наблюдаемой вселенной сегодня, вы увидели бы вселенную, которая плюс-минус похожа на нашу собственную: галактики, больше и малые, во всех направлениях. Я думаю, что край вселенной сейчас это попросту еще больше вселенной: больше галактик, больше планет, больше живых существ, задающихся таким же вопросом».

Вселенная не плоская

Майкл Троксель, доцент физики в Университете Дьюка

«Несмотря на то, что Вселенная, вероятно, бесконечна в размерах, на самом деле существует не один практический «край».

Мы думаем, что Вселенная на самом деле бесконечно — и у нее нет границ. Если бы Вселенная была «плоской» (как лист бумаги), как показали наши тесты с точностью до процента, или «открытой» (как седло), то она действительно бесконечна. Если она «закрыта», как баскетбольный мяч, то она не бесконечна. Однако, если вы зайдете достаточно далеко в одном направлении, вы в конечном итоге окажетесь там, откуда начали: представьте, что вы движетесь на поверхности шара. Как однажды сказал хоббит по имени Бильбо: «Убегает дорога вперед и вперед…». Снова и снова.

Подписывайтесь на наш канал в Яндекс Дзен. Там можно найти много всего интересного, чего нет даже на нашем сайте.

У Вселенной есть «край» для нас — даже два. Это связано с частью общей теории относительности, которая гласит, что все вещи (включая свет) во Вселенной имеют ограничение скорости — 299 792 458 м/с — и этот предел скорости сохраняется всюду. Наши измерения также говорят нам, что Вселенная расширяется во всех направлениях, причем расширяется все быстрее и быстрее. Это значит, что когда мы наблюдаем объект, который очень далеко от нас, свету от этого объекта нужно время, чтобы добраться до нас (расстояние, деленное на скорость света). Хитрость заключается в том, что поскольку пространство расширяется, пока свет идет к нам, расстояние, которое должен пройти свет, также увеличивается с течением времени на пути к нам.

Итак, первое, что вы могли бы спросить: на каком самом дальнем расстоянии мы могли бы наблюдать свет от объекта, если бы он был испущен в самом начале существования Вселенной (которой около 13,7 миллиарда лет). Оказывается, это расстояние — 47 миллиардов световых лет (световой год примерно в 63 241 раз больше расстояния между Землей и Солнцем), и называется космологическим горизонтом. Можно поставить вопрос несколько иначе. Если бы мы отправили сообщение со скоростью света, на каком расстоянии мы могли бы его получить? Это еще интереснее, потому что скорость расширения Вселенной в будущем возрастает.

Оказывается, что даже если это послание будет лететь вечно, оно сможет добраться только до тех, кто находится сейчас на расстоянии 16 миллиардов световых лет от нас. Это называется «горизонт космических событий». Однако самая дальняя планета, которую мы могли наблюдать, находится в 25 тысячах световых лет, поэтому мы все равно могли бы поприветствовать всех, кто живет в этой Вселенной на сегодняшний момент. А вот самое дальнее расстояние, на котором наши нынешние телескопы могли бы различить галактику, составляет около 13,3 миллиарда световых лет, поэтому мы не видим, что находится на краю вселенной. Никто не знает, что находится на обоих краях».

Эбигейл Вирегг, доцент Института космологической физики им. Кавила при Чикагском университете

«Используя телескопы на Земле, мы смотрим на свет, исходящий из отдаленных мест Вселенной. Чем дальше находится источник света, тем больше времени требуется, чтобы этот свет попал сюда. Поэтому, когда вы смотрите на отдаленные места, вы смотрите на то, на что были похожи эти места, когда был рожден увиденный вами свет — а не на то, как эти места выглядят сегодня. Вы можете продолжать смотреть дальше и дальше, что будет соответствовать продвижению дальше и дальше назад во времени, пока не увидите нечто, что существовало спустя несколько тысячелетий после Большого Взрыва. До этого вселенная была настолько горячей и плотной (задолго до того, как появились звезды и галактики!), что любой свет во вселенной ни за что не мог зацепиться, его нельзя увидеть современными телескопами. Это и есть край «наблюдаемой вселенной» — горизонт — потому что за ним ничего не разглядеть. Время идет, этот горизонт меняется. Если бы вы могли посмотреть на Вселенную с другой планеты, вы вероятно увидели бы то же самое, что видим мы на Земле: ваш собственный горизонт, ограниченный временем, которое прошло с момента Большого Взрыва, скоростью света и расширением вселенной.

Что в конце вселенной. Смотреть фото Что в конце вселенной. Смотреть картинку Что в конце вселенной. Картинка про Что в конце вселенной. Фото Что в конце вселенной

Космический корабль SpaceShip будет вмешать до 100 пассажиров, но до конца Вселенной он точно не долетит.

Как выглядит то место, которое соответствует земному горизонту? Мы не знаем, потому что можем увидеть это место таким, каким оно было сразу после Большого Взрыва, а не каким оно стало сегодня. Но все измерения показывают, что вся видимая вселенная, включая край наблюдаемой вселенной, выглядит примерно одинаково, так же, как и наша локальная вселенная сегодня: со звездами, галактиками, скоплениями галактик и огромным пустым пространством.

Мы также думаем, что вселенная намного больше той части вселенной, которую мы сегодня можем увидеть с Земли, и что у самой вселенной нет «края» как такового. Это просто расширяющееся пространство-время».

У вселенной нет границ

Артур Косовский, профессор физики Питтсбургского университета

«Одним из самых фундаментальных свойств вселенной является ее возраст, который, согласно различным измерениям, мы сегодня определяем как 13,7 миллиарда лет. Поскольку мы также знаем, что свет распространяется с постоянной скоростью, это означает, что луч света, который появился в ранние времени, прошел к сегодняшнему дню определенное расстояние (назовем это «расстоянием до горизонта» или «расстоянием Хаббла»). Поскольку ничто не может двигаться быстрее скорости света, расстояние Хаббла будет самым дальним расстоянием, которое мы когда-либо сможем наблюдать в принципе (если не обнаружим какой-либо способ обойти теорию относительности).

Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.

У нас есть источник света, идущий к нам почти с расстояния Хаббла: космическое микроволновое фоновое излучение. Мы знаем, что у вселенной не существует «края» на расстоянии до источника микроволнового излучения, которое находится почти на целой дистанции Хаббла от нас. Поэтому мы обычно предполагаем, что вселенная намного больше, чем нам собственный наблюдаемый объем Хаббла, и что настоящий край, который может существовать, находится намного дальше, чем мы когда-либо могли наблюдать. Возможно, это неверно: возможно, край вселенной находится сразу за дистанцией Хаббла от нас, а за ним — морские чудища. Но поскольку вся наблюдаемая нами вселенная везде относительно одинакова и однородна, такой поворот был бы очень странным.

Боюсь, у нас никогда не будет хорошего ответа на этот вопрос. У Вселенной может вообще не быть края, а если он и есть, то будет достаточно далеко, чтобы мы его никогда не увидели. Нам остается постигать лишь ту часть Вселенной, которую мы действительно можем наблюдать».

А у вас есть предположения, что находится на краю Вселенной? Расскажите в нашем чате в Телеграме.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *