Что в математике не требует доказательств
Как в математике называется теорема не требующая доказательства?
Как в математике называется теорема не требующая доказательства?
Это аксиома. Только вопрос поставлен не совсем точно. В математике есть два утверждений
Т.о. теоремы не требующей доказательства вроде как и быть не должно.
Утверждение не требующее доказательств, потому, что оно, якобы, очевидно, а может просто недоказуемо, называется аксиомой.
Например, в геометрии их пять и самая последняя, пятая, о параллельности прямых, самая длинная и самая сомнительная и самая загадочная с далеко идущими выводами.
Аксиома-именно такое название носит утверждение,которое не требует доказательства.То есть это утверждение очевидно.
Одной из аксиом,которые мне запомнились из школьных учебников,является аксиома о том,что параллельные прямые не пересекаются.А ведь и правда очевидное утверждение!
Данная теорема говорит нам следующее:
если дана произвольная окружность и к ней из точки, лежащей вне этой окружности, проведены касательная и секущая, то квадрат отрезка касательной от данной точки до точки касания равен произведению длин отрезков секущей от данной точки до точек пересечения секущей с окружностью.
Что касается недоказанных теорем, то почитай список 23 проблем Гильберта, составленный Гильбертом в конце 19 века.
Правда, большинство этих проблем либо доказано, либо опровергнуто, либо доказано, что их нельзя доказать.
Никакой теоремы Рема мне найти не удалось.
Есть Теорема Римана о рядах: Пусть ряд сходится условно, тогда можно так поменять порядок суммирования, что сумма нового ряда может стать равна произвольному действительному числу или ряд разойдется.
Она доказана, и на Вики вы можете найти ее доказательство.
Еще есть Теорема Римана об отображении (в комплексном анализе именуемая просто теоремой Римана).
Пусть U — область на расширенной комплексной плоскости, являющаяся односвязной, причём её граница содержит более одной точки. Тогда существует голоморфная функция f на единичном круге, отображающая его на U взаимно однозначно.
Еще есть Гипотеза Римана о распределении нулей дзета-функции Римана, была сформулирована Бернхардом Риманом в 1859 году.
В то время как не найдено какой-либо закономерности, описывающей распределение простых чисел среди натуральных, Риман обнаружил, что количество простых чисел, не превосходящих x — функция распределения простых чисел, обозначаемая π ( x ) — выражается через распределение так называемых «нетривиальных нулей» дзета-функции.
Круг не имеет длины, а «теорема о дощечках», известная более сорока как задача венгерского математика Ласло Тота утверждает, что
изящное решение этой теоремы дискретной геометрии предложил Александр Полянский из Московского физтеха в Долгопрудном
Абсолютно надуманная и бесполезная в реальной жизни проблема.
Что такое аксиома, теорема и доказательство теоремы
Понятие аксиомы
Аксиома — это правило, которое считают верным и которое не нужно доказывать. В переводе с греческого «аксиома» значит принятое положение — то есть взяли и договорились, что это истина, с которой не поспоришь.
Аксиоматический метод — это подход к получению знаний, при котором сначала разрабатывают аксиомы, а потом с их помощью формулируют новые теории.
Синоним аксиомы — постулат. Антоним — гипотеза.
Основные аксиомы евклидовой геометрии
Учить наизусть эти аксиомы не обязательно. Главное — помнить о них и держать под рукой, чтобы при доказательстве теоремы сослаться на одну из них.
А теперь давайте рассмотрим несколько аксиом из геометрии за 7 и 8 класс.
Самая известная аксиома Евклида — аксиома о параллельных прямых. Звучит она так:
Это значит, что если дана прямая и любая точка, которая не лежит на этой прямой, то через неё можно провести только одну единственную прямую, которая будет параллельна этой первой данной прямой.
У этой аксиомы два следствия:
Аксиома Архимеда заключается в том, что, если отложить достаточное число раз меньший из двух отрезков, то можно покрыть больший из них. Звучит так:
Если на прямой есть меньший отрезок А и больший отрезок B, то, можно сложить А достаточное количество раз, чтобы покрыть B.
На картинке можно увидеть, как это выглядит:
Из этого следует, что не существует бесконечно малых и бесконечно больших величин. В качестве математической формулы аксиому можно записать так: А + А + … + А = А * n > В, где n — это натуральное число.
Понятие теоремы
Что такое аксиома мы уже поняли, теперь узнаем определение теоремы.
Теорема — логическое следствие аксиом. Это утверждение, которое основано на аксиомах и общепринятых утверждениях, которые были доказаны ранее, и доказывается на их основе.
Состав теоремы: условие и заключение или следствие.
Среди теорем выделяют такие, которые сами по себе не используются в решениях задач. Но их используют для доказательства других теорем.
Лемма — это вспомогательная теорема, с помощью которой доказываются другие теоремы. Пример леммы: если одна из двух параллельных прямых пересекает плоскость, то и вторая прямая тоже пересекает эту плоскость.
Следствие — утверждение, которое выводится из аксиомы или теоремы. Следствие, как и теорему, необходимо доказывать.
Примеры следствий из аксиомы о параллельности прямых:
Доказательство теоремы — это процесс обоснования истинности утверждения.
Каждая доказанная теорема служит основанием доказательства для следующей теоремы. Именно поэтому так важно изучать геометрию последовательно, переходя от аксиом к теоремам.
Способы доказательства геометрических теорем
Часть аналитического способа — доказательство от противного, когда для доказательства данного предложения убеждают в невозможности предположения противоположного.
Приемы для доказательства в геометрии:
Обратная теорема — это такой перевертыш: в ней условие исходной теоремы дано заключением, а заключение — условием.
Прямая и обратная теорема взаимно-обратные. Например:
В первой теореме данное условие — это равенство сторон треугольника, а заключение — равенство противолежащих углов. А во второй всё наоборот.
Противоположная теорема — это утверждение, в котором из отрицания условия вытекает отрицание заключения.
Вот, как выглядит взаимное отношение теорем на примере:
В геометрическом изложении достаточно доказать только две теоремы, тогда остальные справедливы без доказательства.
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).
Теоремы без доказательств
Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.
Доказательств может быть несколько. Одно из них звучит так: если построить квадраты на сторонах прямоугольного треугольника, то площадь большего из них равна сумме площадей меньших квадратов. На картинке понятно, как это работает:
Теорема косинусов: квадрат одной стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними. В виде формулы это выглядит так:
где a, b и c — стороны плоского треугольника,
α — угол, противолежащий стороне а.
Следствия из теоремы косинусов:
Понятия свойств и признаков
У нас есть список аксиом и мы уже знаем, что такое теорема и как ее доказывать. Есть два типа утверждений среди теорем, которые часто встречаются при изучении новых фигур: свойства и признаки.
Свойства и признаки — понятия из обычной жизни, которые мы часто используем.
Свойство — такое утверждение, которое должно выполняться для данного типа объектов. У ноутбука есть клавиатура — это свойство есть у каждого ноутбука. А у электронной книги такого свойства нет.
Примеры геометрических свойств мы уже знаем: у квадрата все стороны равны. Это верно для любого квадрата, поэтому это — свойство.
Такое свойство можно встретить у другого четырехугольника. И клавиатура может быть на других устройствах, помимо ноутбука. Из этого следует, что свойства не обязательно должны быть уникальными.
Признак — это то, по чему мы однозначно распознаем объект.
Звезды в темном небе — признак того, что сейчас ночь. Если человек ходит с открытым зонтом — это признак того, что сейчас идет дождь. При этом ночью не обязательно должны быть видны звезды, иногда может быть облачно. Значит это не свойство ночи.
А теперь вернемся к геометрии и рассмотрим четырехугольник ABCD, в котором AB = BD = 10 см.
Является ли равенство диагоналей признаком прямоугольника? У такого четырехугольника, где AB = BD, диагонали равны, но он не является прямоугольником. Это свойство, но не его признак.
Но если в четырехугольнике противоположные стороны параллельны AB || DC и AD || BC и диагонали равны AB = BD, то это уже верный признак прямоугольника. Смотрите рисунок:
Иногда свойство и признак могут быть эквивалентны. Лужи — это верный признак дождя. У других природных явлений не бывает луж. Но если приходит дождь, то лужи на асфальте точно будут. Значит, лужи — это не только признак, но и свойство дождя.
Такие утверждения называют необходимым и достаточным признаком.
Почему аксиома не требует доказательства?
В основе любой теории лежит какой-нибудь незыблемый постулат. Это та база, которая не требует доказательств, и в рамках данной теории принимается безоговорочно. Это и есть аксиома-постулат, не требующий доказательств. Понятно, что с этим можно и поспорить. Ведь любую, даже самую правдивую теорию, можно подвергнуть сомнению. Но при таком проходе создать целый ряд наук было бы просто невозможно. Не было бы той же евклидовой геометрии, которая базируется на пятом постулате, а также других наук. К тому же, никакую теорему доказать без аксиомы невозможно. Этот постулат необычайно важен, так как именно на него опирается любое доказательство. Без аксиомы любое утверждение нуждалось бы в доказательстве, и этот процесс был бы бесконечным. Чтобы этого не произошло, нужно отдельные утверждения выставлять в качестве аксиомы, и принимать без доказательства.
Другое дело, как относиться к этим аксиомам. Их можно либо принять, либо отвергнуть. То есть, в данном случае мы говорим об истинности аксиом. Но это уже совершенно другой вопрос, который решается в рамках каждой отдельной теории.
В научных кругах есть такой термин, как степень аксиоматизации теории. Он отражает количество аксиом, которым подчинены отношениям между всеми изучаемыми в данной теории объектами. Все дальнейшие теоремы и утверждения должны базироваться на этих аксиомах. Что касается набора аксиом, то он выбирается, исходя из чисто логических рассуждений, которые не должны вступать в противоречия друг с другом.
Математик Курт Гедель доказал, что математических аксиомных систем может быть сколько угодно. На их основании большинство математических утверждений невозможно ни доказать, ни опровергнуть. При этом такая система ни в коем разе не будет противоречивой. Свой труд Гедель назвал «теоремой о неполноте».
Первым аксиомы стал использовать Аристотель. Присутствуют они в математических учениях Древних Греков, а также в математике Евклида. Древние ученые считали аксиому очевидной истиной, не нуждающейся в доказательстве. Аналогичным образом интерпретирует понятие аксиомы и Даль.
Все изменилось с появлением геометрии Лобачевского. Он попытался опровергнуть некоторые аксиомы Евклида в научном труде, который получил название неевклидова геометрия. Так, например, он высказывал мнение, что пятый постулат Евклида, касающийся непересекающихся параллельных прямых, является всего лишь частным случаем, и не может быть использован для пространства с «отрицательной кривизной».
Так, или иначе, но пятый постулат Евклида оказался аксиомой, принятой за основу без доказательств. Это говорит о том, что его не следует доказывать, так как это приведет к возникновению целого ряда противоречий. Пусть пятый постулат и вызывал у Лобачевского определенные сомнения, но именно на его основе была построена геометрическая система Евклида.
Идеи Лобачевского также не были оставлены без внимания. Они получили свое развитие в новом виде непротиворечивой геометрии, которая получила название геометрии Лобачевского. Она также базируется на математической системе аксиом.
Аксиоматизацию математики выполнял и Гильберт. Он считал, что это необходимо сделать для доказательства ее непротиворечивости. Осуществить задуманное он так и не смог, ввиду появления теорем Геделя о «неполноте». Но это уже иная история.
а к с и о м а
не требующее доказательства утверждение
• бесспорная, не требующая доказательств истина
• доказательство без доказательства
• исходная бездоказательность, истина, не требующая доказательств
• полная недоказуемость, равная полной неопровержимости. Александр Круглов
• положение, принимаемое без логического доказательства
• утверждение, которое неопровержимо, пока в нем хватает соединительной силы
• у древних греков, таких как Пифагор и Евклид, это слово означало «то, что достойно почести»
• полная недоказуемость, равная полной неопровержимости
• истина, на которую не хватило доказательств
• само собой разумеющееся
• положение, не требующее доказательств
• постулат в геометрии
• принятая в науке истина
• постулат в математике
• догма в математике
• положение, принимаемое без доказательств
• не требует доказательств
• положение, принимаемое без доказ.
• истиное исходное положение теории
• истинное исходное положение теории
• Истина, не требующая доказательства
• Исходное положение какой-либо теории или науки, принимаемое без доказательств
• Положение, принимаемое без доказательств
• ж. греч. очевидность, ясная по себе и бесспорная истина, не требующая доказательств, напр. целое всегда, больше части своей; основная истина, самоистина, ясноистина
• положение не требующее доказательств
• положение, принимаемое без доказ
• у древних греков, таких как Пифагор и Евклид, это слово означало «то, что достойно почести»
а к с и о м а
не требует доказательств
• бесспорная, не требующая доказательств истина
• доказательство без доказательства
• исходная бездоказательность, истина, не требующая доказательств
• не требующее доказательства утверждение
• полная недоказуемость, равная полной неопровержимости. Александр Круглов
• положение, принимаемое без логического доказательства
• утверждение, которое неопровержимо, пока в нем хватает соединительной силы
• у древних греков, таких как Пифагор и Евклид, это слово означало «то, что достойно почести»
• полная недоказуемость, равная полной неопровержимости
• истина, на которую не хватило доказательств
• само собой разумеющееся
• положение, не требующее доказательств
• постулат в геометрии
• принятая в науке истина
• постулат в математике
• догма в математике
• положение, принимаемое без доказательств
• положение, принимаемое без доказ.
• истиное исходное положение теории
• истинное исходное положение теории
• Истина, не требующая доказательства
• Исходное положение какой-либо теории или науки, принимаемое без доказательств
• Положение, принимаемое без доказательств
• ж. греч. очевидность, ясная по себе и бесспорная истина, не требующая доказательств, напр. целое всегда, больше части своей; основная истина, самоистина, ясноистина
• положение не требующее доказательств
• положение, принимаемое без доказ
• у древних греков, таких как Пифагор и Евклид, это слово означало «то, что достойно почести»