Что в основании правильной четырехугольной призмы
Призма и ее элементы. Свойства правильной четырехугольной призмы
Призма является достаточно простой геометрической объемной фигурой. Тем не менее у некоторых школьников при определении ее основных свойств возникают проблемы, причина которых, как правило, связана с неправильно используемой терминологией. В данной статье рассмотрим, какие призмы бывают, как они называются, а также подробно охарактеризуем правильную четырехугольную призму.
Призма в геометрии
Вам будет интересно: Холю и лелею. Что значит лелеять и холить?
Элементы призмы и теорема Эйлера
Поскольку рассматриваемая объемная фигура представляет собой полиэдр, то есть образована набором пересекающихся плоскостей, то она характеризуется некоторым количеством вершин, ребер и граней. Все они являются элементами призмы.
В середине XVIII века швейцарский математик Леонард Эйлер установил связь между количеством основных элементов полиэдра. Эта связь записывается следующей простой формулой:
Для любой призмы справедливо это равенство. Приведем пример его использования. Предположим, имеется правильная четырехугольная призма. Она изображена на рисунке ниже.
Видно, что число вершин для нее равно 8 (по 4 для каждого четырехугольного основания). Число сторон, или граней составляет 6 (2 основания и 4 боковых прямоугольника). Тогда количество ребер для нее будет равно:
Все их можно посчитать, если обратится к тому же рисунку. Восемь ребер лежат в основаниях, а четыре ребра перпендикулярны этим основаниям.
Полная классификация призм
С этой классификацией важно разобраться, чтобы впоследствии не путаться в терминологии и использовать правильные формулы для вычисления, например, площади поверхности или объема фигур.
Для любой призмы произвольной формы можно выделить 4 признака, которые ее будут характеризовать. Перечислим их:
Из всех этих пунктов хотелось бы остановиться подробнее на последнем. Прямая призма также называется прямоугольной. Связано это с тем, что для нее параллелограммы являются прямоугольниками в общем случае (в некоторых случаях они могут быть квадратами).
Для примера на рисунке выше изображена пятиугольная вогнутая прямоугольная, или прямая фигура.
Правильная четырехугольная призма
Основание этой призмы представляет собой правильный четырехугольник, то есть квадрат. Выше на рисунке уже было показано, как выглядит эта призма. Помимо двух квадратов, которые ее ограничивают сверху и снизу, она также включает 4 прямоугольника.
Обозначим сторону основания правильной четырехугольной призмы буквой a, длину ее бокового ребра обозначим буквой c. Эта длина также является высотой фигуры. Тогда площадь всей поверхности этой призмы выразится формулой:
S = 2*a2 + 4*a*c = 2*a*(a + 2*c)
Учитывая введенные обозначения для длин сторон, запишем формулу для объема рассматриваемой фигуры:
То есть объем вычисляется как произведение площади квадратного основания на длину бокового ребра.
Фигура куб
Все знают эту идеальную объемную фигуру, но мало кто задумывался, что она представляет собой правильную четырехугольную призму, сторона которой равна длине стороны квадратного основания, то есть c = a.
Для куба формулы полной площади поверхности и объема примут вид:
Правильная четырехугольная призма
Четырехугольная призма — это многогранник, две грани которого являются равными квадратами, лежащими в параллельных плоскостях, а остальные грани (боковые грани) — параллелограммами, имеющими общие стороны с этими квадратами.
Основания призмы являются равными квадратами.
Боковые грани призмы являются прямоугольниками.
Боковые рёбра призмы параллельны и равны.
Размеры призмы можно выразить через длину стороны a и высоту h.
Площадь полной поверхности призмы равна сумме площади её боковой поверхности и удвоенной площади основания.
Формула площади поверхности четырехугольной призмы:
Объём и площадь поверхности правильной четырёхугольной призмы
В школьной программе по курсу стереометрии изучение объёмных фигур обычно начинается с простого геометрического тела — многогранника призмы. Роль её оснований выполняют 2 равных многоугольника, лежащих в параллельных плоскостях. Частным случаем является правильная четырёхугольная призма. Её основами являются 2 одинаковых правильных четырёхугольника, к которым перпендикулярны боковые стороны, имеющие форму параллелограммов (или прямоугольников, если призма не наклонная).
Как выглядит призма
Правильной четырёхугольной призмой называется шестигранник, в основаниях которого находятся 2 квадрата, а боковые грани представлены прямоугольниками. Иное название для этой геометрической фигуры — прямой параллелепипед.
Рисунок, на котором изображена четырёхугольная призма, показан ниже.
На картинке также можно увидеть важнейшие элементы, из которых состоит геометрическое тело. К ним принято относить:
Иногда в задачах по геометрии можно встретить понятие сечения. Определение будет звучать так: сечение — это все точки объёмного тела, принадлежащие секущей плоскости. Сечение бывает перпендикулярным (пересекает рёбра фигуры под углом 90 градусов). Для прямоугольной призмы также рассматривается диагональное сечение (максимальное количество сечений, которых можно построить — 2), проходящее через 2 ребра и диагонали основания.
Если же сечение нарисовано так, что секущая плоскость не параллельна ни основам, ни боковым граням, в результате получается усечённая призма.
Для нахождения приведённых призматических элементов используются различные отношения и формулы. Часть из них известна из курса планиметрии (например, для нахождения площади основания призмы достаточно вспомнить формулу площади квадрата).
Площадь поверхности и объём
Чтобы определить объём призмы по формуле, необходимо знать площадь её основания и высоту:
Так как основанием правильной четырёхгранной призмы является квадрат со стороной a, можно записать формулу в более подробном виде:
Если речь идёт о кубе — правильной призме с равной длиной, шириной и высотой, объём вычисляется так:
Чтобы понять, как найти площадь боковой поверхности призмы, необходимо представить себе её развёртку.
Из чертежа видно, что боковая поверхность составлена из 4 равных прямоугольников. Её площадь вычисляется как произведение периметра основания на высоту фигуры:
С учётом того, что периметр квадрата равен P = 4a, формула принимает вид:
Для вычисления площади полной поверхности призмы нужно к боковой площади прибавить 2 площади оснований:
Sполн = Sбок + 2Sосн
Применительно к четырёхугольной правильной призме формула имеет вид:
Для площади поверхности куба:
Зная объём или площадь поверхности, можно вычислить отдельные элементы геометрического тела.
Нахождение элементов призмы
Часто встречаются задачи, в которых дан объём или известна величина боковой площади поверхности, где необходимо определить длину стороны основания или высоту. В таких случаях формулы можно вывести:
Чтобы определить, какую площадь имеет диагональное сечение, необходимо знать длину диагонали и высоту фигуры. Для квадрата d = a√2. Из этого следует:
Для вычисления диагонали призмы используется формула:
Чтобы понять, как применять приведённые соотношения, можно попрактиковаться и решить несколько несложных заданий.
Примеры задач с решениями
Вот несколько заданий, встречающихся в государственных итоговых экзаменах по математике.
В коробку, имеющую форму правильной четырёхугольной призмы, насыпан песок. Высота его уровня составляет 10 см. Каким станет уровень песка, если переместить его в ёмкость такой же формы, но с длиной основания в 2 раза больше?
Следует рассуждать следующим образом. Количество песка в первой и второй ёмкости не изменялось, т. е. его объём в них совпадает. Можно обозначить длину основания за a. В таком случае для первой коробки объём вещества составит:
Для второй коробки длина основания составляет 2a, но неизвестна высота уровня песка:
Поскольку V₁ = V₂, можно приравнять выражения:
После сокращения обеих частей уравнения на a² получается:
В результате новый уровень песка составит h = 10 / 4 = 2,5 см.
ABCDA₁B₁C₁D₁ правильная призма. Известно, что BD = AB₁ = 6√2. Найти площадь полной поверхности тела.
Чтобы было проще понять, какие именно элементы известны, можно изобразить фигуру.
Поскольку речь идёт о правильной призме, можно сделать вывод, что в основании находится квадрат с диагональю 6√2. Диагональ боковой грани имеет такую же величину, следовательно, боковая грань тоже имеет форму квадрата, равного основанию. Получается, что все три измерения — длина, ширина и высота — равны. Можно сделать вывод, что ABCDA₁B₁C₁D₁ является кубом.
Длина любого ребра определяется через известную диагональ:
Площадь полной поверхности находится по формуле для куба:
Sполн = 6a² = 6·6² = 216
В комнате производится ремонт. Известно, что её пол имеет форму квадрата с площадью 9 м². Высота помещения составляет 2,5 м. Какова наименьшая стоимость оклейки комнаты обоями, если 1 м² стоит 50 рублей?
Поскольку пол и потолок являются квадратами, т. е. правильными четырёхугольниками, и стены её перпендикулярны горизонтальным поверхностям, можно сделать вывод, что она является правильной призмой. Необходимо определить площадь её боковой поверхности.
Длина комнаты составляет a = √9 = 3 м.
Обоями будет оклеена площадь Sбок = 4·3·2,5 = 30 м².
Наименьшая стоимость обоев для этой комнаты составит 50·30 = 1500 рублей.
Таким образом, для решения задач на прямоугольную призму достаточно уметь вычислять площадь и периметр квадрата и прямоугольника, а также владеть формулами для нахождения объёма и площади поверхности.
Объем призмы и другие ее характеристики
Перед вами иллюстрированный гид о призме.
В картинках. С пояснениями к формулам. С примерами.
Определение, виды призм, высота, площадь, объем призмы — все, все, все!
Читайте и делитесь впечатлениями в комментариях!
Призма — коротко о главном
Определение призмы:
Призма – это многогранник, две грани которого (основания) – равные многоугольники, лежащие в параллельных плоскостях, а боковые грани – параллелограммы.
Высота призмы – перпендикуляр, опущенный из одной из вершин призмы на плоскость противоположного основания.
Виды призм:
Параллелепипед — это призма, основанием которой является параллелограмм.
Прямая призма – это призма, у которой боковые ребра перпендикулярны плоскости основания. Другие призмы называются наклонными.
Правильная призма – это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы – равные прямоугольники.
Объем призмы
Главная формула объема призмы:
\( \displaystyle V=S<<\ >_<основания>>\cdot \text\),
где \( <<\text>_<основания>>\) – площадь основания,
\( H\) – высота.
Необычная формула объема призмы:
\( \text=<<\text >_<\bot >>\cdot l\),
где \( <<\text>_<\bot >>\) – площадь сечения, перпендикулярного боковому ребру,
\( l\) – длина бокового ребра.
Площадь призмы
А теперь чуть подробнее…
Заходите и готовьтесь к ЕГЭ.
Что такое призма
Давай ответим сперва картинками:
Смотри: у призмы сверху и снизу два одинаковых многоугольника – они называются основаниями.
Остальные грани называются боковыми.
Плоскости оснований параллельный. Боковые грани – параллелограммы.
Смотри: бывают рёбра основания и боковые рёбра.
Все боковые рёбра призмы равны и параллельны.
Думаю, теперь мы можем дать более строгое определение призмы.
Определение призмы
Призма — многогранник, две грани которого (основания) — равные многоугольники, лежащие в параллельных плоскостях, а боковые грани — параллелограммы.
Виды призм
Призма, основанием которой является параллелограмм, называется параллелепипедом.
Прямая призма – это призма, у которой боковые ребра перпендикулярны плоскости основания.
Другие призмы называются наклонными.
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Высота призмы
Высота призмы – перпендикуляр, опущенный из одной из вершин призмы на плоскость противоположного основания.
И ясно, что та же самая высота получится, если опустить перпендикуляр из любой точки на верхней плоскости.
Объем призмы
Главная формула объема призмы
Необычная формула объема призмы
\( \text
=<<\text >_<\bot >>\cdot l\),
где \( <<\text>_<\bot >>\) — площадь сечения, перпендикулярного боковому ребру,
\( l\) — длина бокового ребра.
Площадь призмы
Прямая призма
Если боковые рёбра призмы перпендикулярны основанию, то призма называется прямой.
Свойства прямой призмы:
Правильная призма
Если боковые рёбра призмы перпендикулярны основанию, а в основании лежит правильный многоугольник, то призма называется правильной.
То есть правильная призма – это прямая призма, у которой в основании правильный многоугольник.
Тебе, скорее всего, может встретиться:
Правильная треугольная призма – в основании правильный треугольник, боковые грани – прямоугольники.
Правильная четырёхугольная призма – это ещё и разновидность прямоугольного параллелепипеда – в основании квадрат, боковые грани – прямоугольники.
Правильная шестиугольная призма – в основании правильный шестиугольник, боковые грани – прямоугольники.
Главная формула объема призмы
Эта формула верна для любой призмы, но если призма прямая, то \( H\) «превращается» в боковое ребро. И тогда
\( \displaystyle V=S<<\ >_<основания>>\cdot боковое\ ребро\)
Необычная формула объёма призмы
Представь себе, есть ещё одна, «перевёрнутая» формула для объёма призмы:
\( <<\text>_<\bot >>\) – площадь сечения, перпендикулярного боковому ребру,
\( l\) – длина бокового ребра
Используется ли эта формула в задачах? Честно говоря, довольно редко, так что можешь ограничиться знанием основной формулы объёма.
Давай теперь для упражнения посчитаем объём самых популярных призм.
Объем правильной треугольной призмы
Пусть дано, что сторона основания равна \( a\), а боковое ребро равно \( b\).
Вспомним, как находить площадь правильного треугольника:
Подставляем в формулу объёма:
Объем правильной четырёхугольной призмы
Опять дано: сторона основания равна \( a\), боковое ребро равно \( b\).
Ну, площадь квадрата долго искать не надо:
Объем правильной шестиугольной призмы
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Площадь поверхности призмы
Площадь боковой поверхности призмы – сумма площадей всех боковых граней.
Есть ли общая формула?
Нет, в общем случае нет. Просто нужно искать площади боковых граней и суммировать их.
Площадь полной поверхности призмы – сумма площадей всех граней.
Формулу можно написать для прямой призмы:
\( \displaystyle <<\text \), где \( \displaystyle P\) – периметр основания. Но всё-таки гораздо проще в каждом конкретном случае сложить все площади, чем запоминать дополнительные формулы. Для примера посчитаем полную поверхность правильной шестиугольной призмы Пусть сторона основания равна \( \displaystyle a\), а боковое ребро равно \( \displaystyle b\). Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз: Курсы для тех, кому нужно получить 90+ и поступить в топовый ВУЗ страны. Многие ученики путают прямую и правильную призму. А ты теперь никогда не запутаешься! Была ли эта статья полезной? Ты все понял? Если у тебя остались вопросы, пиши внизу в комментариях! Разберёмся! Или если появились предложения. Или если просто хочешь поделиться своими мыслями. Мы будем очень рады. Тут всё понятно,впервые начинаю понимать стереометрию Супер Aper! Рады помочь! Когда читаю теорию этого учебника, такое ощущение, что я разговариваю с другом. Настолько все просто и приятно. Сказать, что я влюбилась в этот материал, ничего не сказать. Спасибо вам! Бася, вы нас растрогали таким комментарием. Спасибо большое! Удачи на экзамене! Некоторые комментарии прошлых лет об этой статье: Илья Дмитрий Regina Настя Женя Анна Жанна Николай Алексей Шевчук >_<боков.>>=\textЧитать далее…
Наши курсы по подготовке к ЕГЭ по математике, информатике и физике
А теперь мы хотим узнать твое мнение!
Добавить комментарий Отменить ответ
5 комментариев
26 ноября 2017
Огромное вам спасибо за созданный сайт, он очень удобен и информативен. Мне сложно представить какое количество времени было потрачено на «переработку» материала в понятном и доступном виде.Теперь есть источник чистых знаний, без лишней «воды», который не только помогает узнать новое, но и систематизировать информацию в голове. Жаль, что я не нашел сайт раньше. Вы лучшие!
21 февраля 2018
Сайт отличный!Все подробно описано. Никогда не понимал эту тему, но благодаря создателям этого сайта я наконец понял эту тему. Спасибо вам за ваши труды. Очень вам благодарен.
29 марта 2018
Аааааааа,это просто лучшее. Никогда не разбиралась в геометрии…Готовясь к зачету искала все сайты на эту тему. Нашла вас. Ввы все объяснили просто и доступно. Спасибо большое!
21 мая 2018
Красивый сайт, ничего глаза не режет, смотреть и читать приятно.
27 февраля 2019
можете указать свои инициалы? мне это для проекта надо)
29 апреля 2019
Преподнесено очень понятным языком, с наглядными картинками, спасибо) Хотелось бы хоть пример одной задачи и решение чтобы было открыто бесплатно, чтобы понять на сколько хорошо поясняете, но я думаю все ок.
27 апреля 2020
Спасибо! Я — учитель и мне очень понравилось!
04 июня 2020
Все очень доступно и понятно. Только вот не написано в статье про диагональ призмы. А так все просто супер, подготовился к сессии по данному материалу 🙂
05 июня 2020
Николай, спасибо. Диагонали в разных призмах разные, а в треугольной её и вовсе нет, поэтому длина диагонали — частный случай, а не какая-то полезная формула. Стоит рассмотрения разве что диагональ прямоугольного параллелепипеда — она вычисляется по теореме Пифагора и равна корню из суммы квадратов рёбер.