Что в себя включает понятие неметаллические материалы
Классификация неметаллических материалов
К неметаллическим материалам можно отнести материалы как органического, так и неорганического происхождения. Классификация неметаллических материалов по этому принципу приведена на рис 1.18.
Рис. 1.18. Классификация неметаллических материалов
К числу наиболее часто используемых в здравоохранении неорганических материалов относятся силикатные материалы (стекло, фарфор, фаянс) и минералы; из органических материалов — полимеры на основе различных олигомеров или высокомолекулярных соединений.
Классификацию высокомолекулярных соединений с точки зрения их потребительных свойств целесообразно проводить по: происхождению, методу получения, строению полимерной цепи, составу основной цепи, форме макромолекул, электрическим свойствам, отношению к температуре и по назначению.
СИЛИКАТНЫЕ МАТЕРИАЛЫ
Силикаты— соли кремневых кислот. Роль катионов в силикатах играют преимущественно элементы 2-го, 3-го и 4-го периодов периодической системы Д.И.Менделеева. В природе они широко представлены минералами, входящими в состав горных пород — полевой шпат (алюмосиликат), кварц (диоксид кремния) и др. В медицине чаще всего используют силикатные материалы, полученные из кварцевого песка и глины. К силикатным материалам относятся керамика и стекло. Изделия медицинские из стекла в основном представлены в 94 классе К-ОКП в подклассе 946000 «Изделия медицинские из стекла и полимерных материалов.
Керамика— изделия и материалы, изготовляемые соответствующей обработкой глиняного сырья с последующим обжигом отформованного и высушенного полуфабриката. При спекании или обжиге отщепляется кристаллизационная вода, что придает изделиям повышенную химическую, механическую и термическую стойкость. В состав керамических материалов входят каолин, пластичная глина, кварцевый песок, полевой шпат.
Различают два вида материалов из керамики фарфор и фаянс, которые существенно отличаются по своим потребительным свойствам. В табл. 1.4 представлены основные отличительные особенности фарфора и фаянса.
Признак | Керамика | |
Фаянс | Фарфор | |
Содержание полевого шпата, % | 5—10 | 18—22 |
Температура обжига, °С | 1050—1150 | 1250—1450 |
Кратность обжига | ||
Потребительные свойства | Высокая пористость, низкая механическая прочность | Низкая пористость, высокая механическая прочность, термостойкость до 300 °С |
В медицине керамика используется для изготовления санитарно-технических изделий, предметов ухода за больными (судна подкладные, поильники и др.), аптечной и лабораторной посуды (стаканы, кружки, тигли, чашки для выпаривания и др.), при зубопротезировании и изготовлении деталей диагностической аппаратуры (пьезокерамика). При производстве эндопротезов (кости, межпозвоночные диски, роговица, клапан сердца) используется корундовая керамика (в основе — до 99% оксида алюминия). Достоинствами корундовой керамики являются высокая механическая прочность, биоинертность (отсутствие токсичности, аллергенности, травмирующего и раздражающего действия), гемосовместимость, устойчивость к высокотемпературной стерилизации, высокая технологичность.
Стекло— это переохлажденные вещества, получаемые из жидких расплавов неорганических соединений и их смесей. Из стекла изготавливают лабораторную посуду, тару для упаковки, хранения и транспортировки ЛС, очковые линзы, элементы обычной и волоконной оптики для оптических и медицинских изделий, термометры и другие изделия
По назначению стекла классифицируют на химически стойкие, термостойкие, электровакуумные, электрические, оптические и специальные (в том числе медицинские).
Медицинское стекло (согласно ГОСТ 19808-86) изготовляется следующих марок:
• XT, ХТ-1 — хим- и термостойкое;
• СНС-1 — светозащитное, нейтральное;
• МТО — медицинское тарное обесцвеченное;
• ОС, ОС-1 — оранжевое тарное.
Потребительные свойства медицинских стекол определяются их химическим составом. Медицинское стекло проверяют на термостойкость, водостойкость, щелочестойкость, а химико-лабораторное – дополнительно на кислотостойкость.
В изделиях из натурального стекла не допускаются крупные пузырьки и капилляры, грубая свиль(прозрачные нитевидные включения, обнаруживаемые невооруженным глазом) и инородные включения. Изделия должны выдерживать испытание на термостойкость с температурным перепадом в 120 °С. Изменения рН при действии пара под давлением не должен превышать 0,6.
В изделиях из щелочного стекла не допускаются крупные и продавливающиеся пузыри, шамотные включения и грубая, ощутимая рукой свиль. Они должны выдерживать испытание на термостойкость с температурным перепадом в 100 °С, должны быть химически стойкими: изменения рН при действии пара под давлением не должен превышать 3,5.
Оптическое стекло — это стекло, используемое для изготовления очковых линз и оптических элементов медицинских приборов.
Оптическое стекло в зависимости от химического состава подразделяется на бесцветное или с нормальным светопропусканием и фотохромное. Оптическое стекло с нормальным светопропусканием имеет следующий состав (в %):
Варьируя состав, можно получить стекло с различным коэффициентом преломления — от 1,47 (легкий крон) до 1,755 (тяжелый флинт).
Оптическое стекло с пониженным светопропусканием в своем составе содержит различные красители СаО, NiO, FeO, Fe203 и др., что дает возможность получать различную степень поглощения видимых лучей. Так, солнцезащитные очковые стекла изготовляются с коэффициентом пропускания от 10 до 80% (коэффициент пропускания указывает, какая часть в процентах светового потока, падающего на стекло, пропускается им).
Стекло фотохромное обладает способностью темнеть при облучении ультрафиолетовым или коротковолновым видимым светом и просветляется при прекращении облучения.
Фотохромные свойства стекла связаны с наличием в составе стекла светочувствительных добавок: галогенидов серебра, кадмия, меди, вольфраматов и молибдатов серебра, ионов редкоземельных элементов (европия, церия, эрбия, иттербия). При облучении таких стекол происходит фотолитическая диссоциация галогенидов серебра и образование центров окрашивания из частиц коллоидного серебра.
Оптическое стекло должно быть однородным, голубоватого цвета. Зеленоватый оттенок характерен для стекла пониженного качества. Строго регламентируется наличие пузырей, например, в центральной зоне очковой линзы не допускаются пузыри диаметром более 0,15 мм. Количество пузырей должно быть не более трех при расстоянии между ними не менее 5 мм.
Достоинством всех видов стекол является их способность к многократному переплаву без изменения свойств.
ПОЛИМЕРНЫЕ МАТЕРИАЛЫ
Широкое применение в настоящее время в медицине полимерных материалов определяется их высокими потребительскими свойствами, в том числе более низкой стоимостью по сравнению с изделиями из металлов и их сплавов и способностью относительно легко перерабатываться в случае использования их в качестве изделий одноразового пользования
В настоящее время наиболее широко используют искусственные или синтетические материалы, поскольку в процессе их производства можно влиять на свойства материалов, а следовательно, можно целенаправленно изменять потребительные свойства медицинских изделий.
В классификаторе ОКП органические материалы и изделия из них можно найти в 93 и 94 классах, а также в подгруппах некоторых классов, где они выделены как изделия медицинского назначения. Например: в 25 классе Продукция резинотехническая и асбестовая в подгруппе 25 1460 5 Изделия медицинские из латекса и клеев находится 8 видов продукции, которая входит в товары аптечного ассортимента — катетеры (25 1460 5), мешки (25 1460 5), напальчники медицинские (25 1460 5), перчатки анатомические (25 1460 5), перчатки хирургические (25 1460 5), средства предохранения (25 1460 5), соски-пустышки (25 1460 5), соски молочные(25 1460 5) и т.п.
К числу наиболее часто используемых органических материалов в медицине относятся полимерные материалына основе различных олигомеров или высокомолекулярных соединений.
Особенности строения и классификация неметаллических материалов
Неметаллическими называют материалы, состоящие из конденсированных веществ с неметаллической химической связью (ковалентной (направленной), ионной или молекулярной).
Не только неорганические, но и органические неметаллические материалы имеют полимерное строение. Поэтому одним из основных отличий неметаллических материалов от металлов, сплавов и графита, имеющего также металлическую связь между плоскостями металлической решетки, являются их тепло- и электроизоляционные свойства. Другим важнейшим отличием основной массы неметаллических материалов от металлов и сплавов являются существенно меньшие значения их плотности.
Получение деталей из неметаллических материалов в большинстве случаев сводится к пластической деформации исходной сырой композиции или расплава и закрепления полученной формы последующей термообработкой или охлаждением. Такая, практически лишенная отходов, технология выгодно отличается от получения металлических деталей путем механической обработки заготовок.
Все неметаллические материалы подразделяются на два больших класса:
1) органические, т. е. на основе химических соединений (синтез) атомов углерода с H2; O2; N2 и другими элементами; а также атомов кремния и углерода с другими элементами (кремний органические):
– С – С – С – С – С – – C – Si – C – Si – C – Si – C –
органические кремний органические
Эти материалы применяют в качестве конструкционных материалов при изготовлении корпусов микросхем, футляров, ручек управления, декоративных деталей, каркасов, подложек, колодок, стоек и т. д.
Существуют следующие материалы органического происхождения: полимеры; пластмассы; каучуки и резины; лаки и эмали; клеи и герметики.
2) материалы неорганического происхождения – оксиды металлов и соединения различных оксидов, т. е. материалы на основе минеральных веществ. Эти материалы не взаимодействуют с кислородом, не горючи, обладают высокой механической прочностью (гораздо больше, чем органические).
Их применяют для изготовления деталей электротехники с высокими диэлектрическим свойствами и высокой механической прочностью при высоких температурах: основания микромодулей, высокотемпературные резисторы, подложки микросхем и т. д.
К материалам неорганического происхождения относятся:
1. Графит – одна из полимерных модификаций углерода (гальванические элементы, электроды, предохранители, осветительные угли, электрощетки).
2. Стекла – аморфные вещества, получаемые переохлаждением жидких расплавов высокой вязкости кислых и основных окислов. Стекла обрабатывают: полировкой, стравливанием поверхности. Внутреннюю структуру улучшают за счет создания стеклокристаллических материалов – ситаллов. Их получают путем полной или частичной кристаллизации. Это промежуточные материалы между стеклом и керамикой.
3. Керамика – неорганические кристаллические материалы, получаемые специальной обработкой минеральных композиций с последующим спеканием отформованного изделия (температура спекания 1500 – 2500 0 С).
В более чем 80 % развитых стран в качестве средств пожаротушении используют порошки на основе неорганических материалов. Размер частиц и удельная поверхность частиц порошка оказывают влияние на ингибирование реакций горения и антиокислительный эффект, способствуют разрыву реакционных цепей внутри пламени (пропорционально площади удельной поверхности частиц). Применяемые в настоящее время огнетушащие порошки содержат в качестве основы неорганические соли (карбамид и его соединения, фосфаты, сульфаты, карбонаты магния, бария, кальция. диоксид кремния и др. Для повышения эффективности порошковых материалов для пожаротушения стремятся уменьшить размер частиц порошков до 4,5 нм. Этого достигают с помощью специальных технологий диспергирования, основанных на механохимической обработке глин с использованием специальных ПАВ.
Что в себя включает понятие неметаллические материалы
ЛЕКЦИЯ № 12. Свойства неметаллических материалов
1. Неметаллические материалы
Еще во второй половине XX в. в нашей стране уделялось большое внимание применению неметаллических материалов в различных отраслях промышленности и народного хозяйства в целом. Было налажено и постоянно наращивалось производство самых различных неметаллических материалов: синтетических смол и пластмасс, синтетических каучу—ков, заменяющих натуральный каучук, высококачественных полимеров с заданными техническими характеристиками, включая армированные и наполненные пластмассы.
Пластические массы и другие неметаллические материалы обладают рядом превосходных физико—химических, механических и технологических свойств, что обусловило их широкое распространение в различных отраслях промышленности – машиностроении, электротехнике, электронике и др. Как конструкционный материал пластические массы все более вытесняют дорогостоящие металлы. Применение пластических масс дает возможность постоянно совершенствовать конструкции. Оснащение машин и оборудования, а также частичная комплектация различных узлов позволяют снизить их массу, улучшить надежность и долговечность работы, повысить производительность. Для производства пластмасс требуется в 2–3 раза меньше капитальных вложений, чем для производства цветных металлов. Исходными материалами для получения пластических масс служат дешевые продукты переработки каменного угля, нефти и природного газа. Пластмассы подвергают армированию для улучшения механических свойств. Для изготовления различных деталей, работающих в механизмах трения (скольжения) с небольшими нагрузками и скоростями, применяются такие неметаллические материалы, как антифрикционные полимерные и пластмассовые материалы. Эти материалы обладают небольшим коэффициентом трения, высокой износостойкостью, химической стойкостью, могут работать без смазки. Однако низкая теплопроводность, значительный (в десятки раз больше, чем у металлов) коэффициент термического расширения, небольшая твердость и высокая податливость ограничивают возможности их широкого использования. Более эффективно они применяются в комбинации с другими материалами, металлами и пластмассами.
Кроме того, в качестве фрикционных неметаллических материалов применяются тормозные тканые асбестовые ленты и фрикционные асбестовые накладки – формованные, прессованные, тканые, картонно—бакелитовые и спирально—навивные, которые могут эксплуатироваться во всех климатических зонах. Фрикционные асбестовые накладки применяются для узлов трения автомобилей, самолетов, тракторов, металлорежущих и текстильных станков, подъемно—транспортного оборудования и тепловозов. Ресурс таких неметаллических накладок, работающих в узлах трения, достаточно высок. Например, для автомобилей с дизелями он составляет 6000 моточасов, легковых автомобилей – 125 000 км, грузовых автомобилей – 75 000 км. Тормозные тканые асбестовые ленты применяются в качестве накладок в тормозных и фрикционных узлах машин и механизмов с поверхностной температурой трения до 300 °C.
Неметаллические материалы широко применяются в различных отраслях промышленности и хозяйства в целом.
2. Полимеры: строение, полимеризация и поликонденсация, свойства
В настоящее время трудно представить себе медицину без полимерных систем для переливания крови, медицинскую аппаратуру – без прозрачных полимерных трубок, предметы ухода за больными – без резиновых грелок, пузырей для льда и т. д. Значительно обогатить ассортимент материалов, применяемых в медицине, позволили синтетические полимеры.
Полимеры существенно отличаются от металлов и сплавов: их молекулы вытянуты в длинные цепочки, в результате чего полимеры имеют высокую молекулярную массу. Молекулы полимеров получают из исходных низкомолекулярных продуктов – мономеров – полимеризацией и поликонденсацией. К полимерам поликонденсационного типа относятся фенолформальдегидные смолы, полиэфиры, полиуретаны, эпоксидные смолы. К высокомолекулярным соединениям полимеризационного типа относятся поливинилхлорид, полиэтилен, полистирол, полипропилен. Высокополимерные и высокомолекулярные соединения являются основой органической природы – животных и растительных клеток, состоящих из белка.
Для изготовления многих медицинских изделий широко применяют как полимерные материалы, в основе которых лежит природное сырье, так и искусственные – синтетические и полимерные материалы. Из полимерных материалов естественного происхождения изготовляют большинство перевязочных средств: вату, марлю и изделия из них, алигнин, а также нити шовных материалов (хирургический шелк). Полимеры являются основой пластмасс, используемых при изготовлении различных инструментов, частей медицинской аппаратуры и оборудования.
Твердые фенолформальдегидные смолы новолачного и ре—зольного типов – продукты поликонденсации фенолов (или их фракций) и формальдегида в присутствии катализатора с добавкой модифицирующих веществ или без них. Выпускаются в виде порошка, чешуек и крошки. Применяются для получения резиновых смесей, прессовочных масс, слоистых пластиков, лаковых токопроводящих суспензий, антикоррозионных лакокрасочных материалов и клеев, в качестве связующих для абразивных изделий и оболочковых форм, при изготовлении поропласта, при производстве масляных лаков для лакокрасочной и пищевой промышленности. Выпускаются следующие марки смол: СФ–010А, СФ–010, СФ–010М (модифицированная), СФ–014 и т. д.
3. Пластмассы: термопластичные, термореактивные, газонаполненные
Пластмассы – пластические массы – это материалы, полученные на основе высокомолекулярного органического соединения – полимера, выполняющего роль связующего и определяющего основные технические свойства материала В зависимости от эластичности пластмассы делят на три группы: жесткие, модуль упругости 700 Мпа, до 70 МПа Пластмассы выпускаются монолитными в виде термопластичных и термореактивных и газонаполненными – ячеистой структуры. К термопластичным пластмассам относят полиэтилен низкого давления, полипропилен, ударопрочный полистирол, АБС—пластики, поливинилхлорид, стеклопластики, полиамиды и др.
К термореактивным пластмассам относятся: жесткие пенополиуретаны, аминопласты и др.
К газонаполненным пластмассам относятся пенополиуретаны – газонаполненный сверхлегкий конструкционный материал.
Ударопрочный полистирол – продукт сополимеризации стирола с каучуком или другим пластификатором, обладающий более высокими механическими свойствами, чем полистирол общего назначения. Он обладает высокой твердостью, прочностью к ударным нагрузкам, эластичностью, сопротивлением на разрыв, стоек к действию температуры в пределах от +65 до–40 °C.
Эластичный пенополиуретан применяется в производстве мягкой мебели, сидений автомобилей, тракторов и других изделий. Жесткий пенополиуретан применяется для изготовления корпусов кресел, декоративных элементов, в качестве тепло—и звукоизоляционных материалов. Широкое распространение в последние годы получили наполненные пенопласты (ППУ).
Термин «эластомеры» был введен взамен названия «синтетические каучуки», а также «натуральный каучук». Эластомерами называют полимеры, обладающие в широком температурном интервале высокой эластичностью – способностью подвергаться значительным (от нескольких сотен до 1000 % и более) обратимым деформациям при сравнительно небольших действующих нагрузках. Первым эластичным материалом такого рода был натуральный каучук, который и в настоящее время не потерял своего значения в производстве эластомеров, в том числе и для медицинских изделий, благодаря своей нетоксичности. Каучук получают из латекса (млечный сок бразильской гевеи), состоящего более чем наполовину из воды, в которой растворено 34–37 % каучука, 2–2,7 % белка, 1,65—3,4 % смолы, 1,5–4,92 % сахара. На плантациях, где приготовляют натуральный каучук как промышленное сырье, латекс коагулируют с помощью органических кислот, прокатывают в рифленые листы и коптят в камерах с дымом при температуре +50 °C. Составные вещества дыма играют роль антисептиков и стабилизаторов окисления каучука. Такие листы толщиной 2,5–3 мм с вафельным рисунком поверхности называют «смокетшит». Они служат наиболее употребительной формой сырого плантационного каучука Данные элементного анализа очищенного каучука соответствуют эмпирической формуле C5H8 (изопрен).
Синтетические каучуки (эластомеры) получают путем полимеризации из мономеров с участием катализаторов (ускорителей процесса). Первый советский синтетический каучук был получен С. Д. Лебедевым из технического спирта. В настоящее время выпускают несколько видов синтетических каучуков (эластомеров), в том числе изопреновый, мало отличающийся от натурального. Для изделий медицинского назначения применяется салоксановый (силиконовый) каучук, основная полимерная цепь которого состоит из атомов кремния и кислорода. Он термостоек и физиологически инертен. Сырьем для изготовления синтетических каучуков служат нефть, природный газ, каменный уголь.
Превращение каучука или «сырой» каучуковой смеси в эластичную резину (материал с необходимыми эксплуатационными свойствами) осуществляют путем вулканизации. Вулканизация, подобно термообработке металлов и сплавов, приводит к изменению структуры каучука. При вулканизации осуществляется соединение («сшивание») молекул эластомера химическими связями в пространственную трехмерную сетку, в результате чего получают материал, обладающий необходимыми эластическими и прочностными свойствами (прочность, упругость, твердость, сопротивление разрыву и т. д.). Основным вулканизирующим веществом служит сера; применяют также теллур и селен. Чем больше к каучуку добавляют серы, тем более твердым и менее эластичным получается эластомер. В современном производстве, помимо вулканизаторов, широко применяют органические ускорители, присутствие которых снижает количество серы (до 2 % вместо 10 %) и температуру вулканизации. Существуют ультраускорители, благодаря которым вулканизация вместо температуры в +130–150 °C протекает при комнатной температуре.
Резины различных видов и марок относятся к группе эластичных материалов – эластомеров. Резины подразделяются на формовые и неформовые. К неформовым относится большая группа так называемых сырых резин. Сырые резины выпускаются под номерами (10, 11, 14 и т. д.) в виде разнотол—щинных пластин, покрытых тальком (для предохранения от слипания), или в виде рулонов с тканевой прокладкой (из миткаля), которая также предохраняет резину от слипания.
Неформовая сырая резина получается путем вулканизации из резиновых смесей, изготавливаемых на основе синтетических каучуков или натурального. Основным вулканизирующим веществом является сера, но еще применяют селен и теллур. В зависимости от марок сырая резина используется для получения различных формовых изделий с определенными свойствами. Например, из сырой резины получают техническую листовую резину нескольких типов: кислотощелочестой—кую, теплостойкую, морозостойкую, пищевую и т. д. Морозостойкая резина сохраняет свои свойства при температуре до —45 °C. Техническую листовую резину толщиной 3–4 мм применяют для изготовления уплотнительных прокладок во фланцевых соединениях трубопроводов, транспортирующих холодную воду, а резину с тканевой прокладкой (из синтетической ткани) – и при транспортировании горячей воды температурой до +100 °C.
Из сырых резин получают различные резиновые изделия – муфты, кольца, клапаны, различные прокладки и т. д., применяя следующие методы формования: прессование, экструзию и литье под давлением. Процесс прессования резиновых изделий проходит в вулканизационных гидравлических прессах под давлением 100–300 атм. и при температуре +140–160 °C.
При производстве мягкой мебели широко применяется пенорезина, представляющая собой материал на основе синтетического или натурального каучука. Для изготовления пенорезины используют латексную смесь, которую выдерживают 18–21 ч, вспенивают и вулканизируют с последующей сушкой. Пенорезину выпускают в виде листов или формованных элементов мебели. По показателям эластичности упругости, остаточной деформации пенорезина является идеальным материалом для мягкой мебели. Пенорезина самовентилируется и охлаждается за счет прохождения воздуха через сообщающиеся поры. Для снижения веса мебельных элементов из пенорезны их делают с пустотами, но чтобы при этом сохранялась способность выдерживать значительные нагрузки, объем пустот не должен превышать 40 % объема всего элемента.
К резинам, предназначенным для изготовления отдельных групп изделий, предъявляют дополнительные требования, обеспечивающие выполнение изделиями их функционального назначения и надежность в работе. В настоящее время промышленность выпускает резину листовую трех марок: тепломорозокислотощелочестойкую (ТМКЩ); ограни—ченномаслобензостойкую (ОМБ); повышенномаслобензо—стойкую (ПМБ), которые в свою очередь подразделяются по твердости применяемой резины: мягкая (М) для работы при температурах от–45 °C до +90 °C; средней твердости (С) – при температурах от —60 °C до +80 °C, повышенной твердости (П) – при температурах от —60 °C до +80 °C.
Герметики (герметизирующие составы) применяются практически повсеместно – в строительстве, в системе ЖКХ, машиностроении, мебельном производстве, в быту, при различных ремонтных работах. Герметики представляют собой полимерные композиции в виде паст, замазок или жидкостей, которые после нанесения на поверхность сразу или спустя некоторое время густеют в результате вулканизации полимерной основы.
Для приготовления герметиков применяют жидкие синтетические каучуки и специальные добавки. Промышленностью выпускаются герметики разных видов: строительные фасадные, шовно—тиоколовые и акрилатные, строительные каучукосиликоновые, акриловые. В стекольных работах для герметизации стыков в основном применяют тиоколовые герметики 7—30М и УТ–31, которые вулканизируются при температуре от +18 °C до +30 °C. В системе ЖКХ широко применяется силиконовый герметик КЛТ–30 для уплотнения резьбовых соединений, работающих в интервале температур от —60 °C до +200 °C.
В последние годы в Россию завозится множество марок герметиков, производимых зарубежными фирмами: DAP, KVADRO, KIMTEC, KRASS.
По сравнению с другими аналогичными материалами герметики обладают влагостойкостью, газонепроницаемостью, долговечностью. Герметики на основе полиизобутилена используются для уплотнения наружных швов между элементами сборных крупнопанельных зданий. Герметики, так же как и резины, относятся к группе эластомеров.
Наиболее широко применяются тиоколовые герметики, для которых характерна универсальность. Промышленность России выпускает следующие марки тиоколовых герметиков:
1) У–30М. Поставляют комплектно в составе пасты—герме—тика черного цвета У–30, вулканизатора № 9 и ускорителя вулканизации – дифенилгуанидина, смешиваемых непосредственно перед употреблением в соотношении 100: 7: 0,35 массовых частей. Предназначен для герметизации металлических (кроме латунных, медных, серебряных) и других соединений, работающих в среде разбавленных кислот и щелочей, жидкого топлива и на воздухе во всех климатических условиях при температурах от —60 °C до + 130 °C;
2) УТ–31 – светло—серая паста У–31, вулканизатор № 9 и ускоритель вулканизации, применяется для герметизации металлических (кроме латунных, медных, серебряных) и других соединений, работающих на воздухе и в среде жидких топлив при температурах от —60 °C до +130 °C и до + 150 °C – кратковременно на воздухе; 3) 51–УТ–36А (с адгезивом) и 51–УТ–36Б (без адгезива) – темно—серая замазкообразная паста У–36, эпоксидная смола Э–40 (для 51–УТ–36Б) и двухромовый натр в качестве вулканизатора; применяются в приборостроении. Для герметизации различных соединений, швов, работающих при температурах от +200 °C до +300 °C, предназначены теплостойкие силоксановые герметики, изготавливаемые на основе жидких силоксановых каучуков. Марки силокса—новых герметиков следующие: эластосил 11–01, силпен. ВПТ–2Л, КЛ–4, КЛТ–30, КЛСЕ, ВГО–2, КЛВАЕ и др. Выпускаются также теплотопливостойкие герметики, изготавливаемые на основе фторсодержащих каучуков, следующих марок: ВГФ–1, ВГФ–2, 51–Г–1 и др.