что значит число с плавающей запятой
Тип float
Числа с плавающей запятой используют формат IEEE (Института инженеров по электротехнике и электронике). Значения с одиночной точностью и типом float имеют 4 байта, состоят из бита знака, 8-разрядной двоичной экспоненты excess-127 и 23-битной мантиссы. Мантисса представляет число от 1,0 до 2,0. Поскольку бит высокого порядка мантиссы всегда равен 1, он не сохраняется в числе. Это представление обеспечивает для типа float диапазон примерно от 3,4E–38 до 3,4E+38.
Можно объявить переменные в качестве типа float или double в зависимости от нужд приложения. Основные различия между двумя типами значения заключаются в представляемой ими значимости, требуемых ресурсах хранения и диапазоне. В следующей таблице показана связь между значимостью и требованиями к хранению.
Типы с плавающей запятой
Переменные с плавающей запятой представлены мантиссой, которая содержит значение числа, и экспонентой, которая содержит порядок возрастания числа.
В следующей таблице показано количество битов, выделенных мантиссе и экспоненте для каждого типа с плавающей запятой. Наиболее значимый бит любого типа float или double — всегда бит знака. Если он равен 1, число считается отрицательным; в противном случае — положительным.
Длина экспонент и мантисс
Type | Длина экспоненты | Длина мантиссы |
---|---|---|
float | 8 бит | 23 бита |
double | 11 бит | 52 бита |
Поскольку экспоненты хранятся в форме без знака, экспоненты смещены на половину своего возможного значения. Для типа float смещение составляет 127; для типа double это 1023. Можно вычислить фактическое значение экспоненты, вычтя значение смещения из значения экспоненты.
Мантисса хранится в виде бинарной доли, которая больше или равна 1 и меньше 2. Для типов float и double в мантиссе подразумевается наличие начального 1 в наиболее значимой битовой позиции, поэтому фактически длина мантисс составляет 24 и 53 бит соответственно, даже если наиболее значимый бит никогда не хранится в памяти.
Вместо только что описанного метода хранения пакет значений с плавающей запятой может хранить двоичные числа с плавающей запятой как денормализованные числа. Денормализованные числа — это ненулевые числа с плавающей запятой и зарезервированными значениями экспонент, в которых наиболее значимый бит мантиссы равен 0. Используя денормализованный формат, можно расширить диапазон числа с плавающей запятой в ущерб точности. Невозможно контролировать, в какой форме будет представлено число с плавающей запятой — нормализованной или денормализованной. Пакет значений с плавающей запятой определяет представление. В пакете значений с плавающей запятой никогда не используется денормализованная форма. Исключение составляют случаи, когда экспонента становится меньше, чем минимальное значение, которое может быть представлено в нормализованной форме.
В следующей таблице показаны минимальное и максимальное значения, которое можно сохранить в переменных каждого типа с плавающей запятой. Значения, указанные в этой таблице, применяются только к нормализованным числам с плавающей запятой; денормализованные числа с плавающей запятой имеют меньшее минимальное значение. Обратите внимание, что номера, сохраненные в регистрах 80x87, всегда представлены в 80-разрядной нормализованной форме; при сохранении в 32- или 64-разрядных переменных с плавающей запятой числа могут быть представлены только в ненормализованной форме (переменные типов float и long).
Диапазон типов с плавающей запятой
Type | Минимальное значение | Максимальное значение |
---|---|---|
плавающее | 1,175494351 E – 38 | 3,402823466 E + 38 |
double | 2,2250738585072014 E – 308 | 1,7976931348623158 E + 308 |
Если точность менее важна, чем размер хранимых данных, имеет смысл использовать тип float для переменных с плавающей запятой. И наоборот, если точность — наиболее важный критерий, используйте тип double.
Уровень переменных с плавающей запятой можно повысить до типа большей значимости (преобразование типа float в тип double). Повышение уровня часто происходит при выполнении арифметических действий с переменными плавающего типа. Это арифметическое действие всегда выполняется на том же уровне точности, что и переменная с наивысшим уровнем точности. Например, проанализируйте объявления следующих типов.
В следующем примере (с использованием объявлений из предыдущего примера) арифметическая операция выполняется на уровне точности переменной типа float (32-разрядной). Уровень результата затем повышается до уровня double.
Одинарная или двойная точность?
Введение
Статья также написана для тех из вас, у кого много данных. Если вам требуется несколько чисел тут или там, просто используйте double и не забивайте себе голову!
Точность данных
У 32-битных чисел с плавающей запятой точность примерно 24 бита, то есть около 7 десятичных знаков, а у чисел с двойной точностью — 53 бита, то есть примерно 16 десятичных знаков. Насколько это много? Вот некоторые грубые оценки того, какую точность вы получаете в худшем случае при использовании float и double для измерения объектов в разных диапазонах:
Почему всегда не хранить всё с двойной точностью?
Влияние на производительность вычислений с одинарной и двойной точностью
Когда производить вычисления с увеличенной точностью
Даже если вы храните данные с одинарной точностью, в некоторых случаях уместно использовать двойную точность при вычислениях. Вот простой пример на С:
Если вы запустите этот код на десяти числах одинарной точности, то не заметите каких-либо проблем с точностью. Но если запустите на миллионе чисел, то определённо заметите. Причина в том, что точность теряется при сложении больших и маленьких чисел, а после сложения миллиона чисел, вероятно, такая ситуация встретится. Практическое правило такое: если вы складываете 10^N значений, то теряете N десятичных знаков точности. Так что при сложении тысячи (10^3) чисел теряются три десятичных знака точности. Если складывать миллион (10^6) чисел, то теряются шесть десятичных знаков (а у float их всего семь!). Решение простое: вместо этого выполнять вычисления в формате double :
Пример
Предположим, что вы хотите точно измерить какое-то значение, но ваше измерительное устройство (с неким цифровым дисплеем) показывает только три значимых разряда. Измерение переменной десять раз выдаёт следующий ряд значений:
Чтобы увеличить точность, вы решаете сложить результаты измерений и вычислить среднее значение. В этом примере используется число с плавающей запятой в base-10, у которого точность составляет точно семь десятичных знаков (похоже на 32-битный float ). С тремя значимыми разрядами это даёт нам четыре дополнительных десятичных знака точности:
В сумме уже четыре значимых разряда, с тремя свободными. Что если сложить сотню таких значений? Тогда мы получим нечто вроде такого:
Всё ещё остались два неиспользованных разряда. Если суммировать тысячу чисел?
Пока что всё хорошо, но теперь мы используем все десятичные знаки для точности. Продолжим складывать числа:
Заметьте, как мы сдвигаем меньшее число, чтобы выровнять десятичный разделитель. У нас больше нет запасных разрядов, и мы опасно приблизились к потере точности. Что если сложить сто тысяч значений? Тогда добавление новых значений будет выглядеть так:
Обратите внимание, что последний значимый разряд данных (2 в 3.12) теряется. Вот теперь потеря точности действительно происходит, поскольку мы непрерывно будем игнорировать последний разряд точности наших данных. Мы видим, что проблема возникает после сложения десяти тысяч чисел, но до ста тысяч. У нас есть семь десятичных знаков точности, а в измерениях имеются три значимых разряда. Оставшиеся четыре разряда — это четыре порядка величины, которые выполняют роль своеобразного «числового буфера». Поэтому мы можем безопасно складывать четыре порядка величины = 10000 значений без потери точности, но дальше возникнут проблемы. Поэтому правило следующее:
(Существуют численно стабильные способы сложения большого количества значений. Однако простое переключение с float на double гораздо проще и, вероятно, быстрее).
Выводы
Приложение: Что такое число с плавающей запятой?
Я обнаружил, что многие на самом деле не вникают, что такое числа с плавающей запятой, поэтому есть смысл вкратце объяснить. Я пропущу здесь мельчайшие детали о битах, INF, NaN и поднормалях, а вместо этого покажу несколько примеров чисел с плавающей запятой в base-10. Всё то же самое применимо к двоичным числам.
Вот несколько примеров чисел с плавающей запятой, все с семью десятичными разрядами (это близко к 32-битному float ).
1.875545 · 10^-18 = 0.000 000 000 000 000 001 875 545
3.141593 · 10^0 = 3.141593
2.997925 · 10^8 = 299 792 500
6.022141 · 10^23 = 602 214 100 000 000 000 000 000
Выделенная жирным часть называется мантиссой, а выделенная курсивом — экспонентой. Вкратце, точность хранится в мантиссе, а величина в экспоненте. Так как с ними работать? Ну, умножение производится просто: перемножаем мантисссы и складываем экспоненты:
Сложение немного хитрее: чтобы сложить два числа разной величины, сначала нужно сдвинуть меньшее из двух чисел таким образом, чтобы запятая находилась в одном и том же месте.
Заметьте, как мы сдвинули некоторые из значимых десятичных знаков, чтобы запятые совпадали. Другими словами, мы теряем точность, когда складываем числа разных величин.
4.8 – Числовые типы с плавающей точкой
Типы данных с плавающей запятой всегда идут со знаком (могут содержать положительные и отрицательные значения).
Категория | Тип | Минимальный размер | Типовой размер |
---|---|---|---|
С плавающей запятой | float | 4 байта | 4 байта |
double | 8 байт | 8 байт | |
long double | 8 байт | 8, 12 или 16 байт |
Ниже показан пример определения чисел с плавающей запятой:
При использовании литералов с плавающей точкой всегда включайте хотя бы один знак после десятичной точки (даже если этот знак равен 0). Это помогает компилятору понять, что число принадлежит типу плавающей точкой, а не к целочисленному типу.
Лучшая практика
Всегда проверяйте, соответствует ли тип ваших литералов типу переменных, которым они назначаются или используются для инициализации. В противном случае произойдет ненужное преобразование, возможно, с потерей точности.
Предупреждение
Убедитесь, что вы не используете целочисленные литералы там, где должны использоваться литералы с плавающей точкой. Это включает в себя инициализацию или присвоение значений объектам с плавающей точкой, выполнение арифметических операций с плавающей точкой и вызов функций, ожидающих значений с плавающей точкой.
Печать чисел с плавающей точкой
Теперь рассмотрим следующую простую программу:
Результаты работы этой, казалось бы, простой программы могут вас удивить:
В первом случае std::cout напечатал 5, хотя мы ввели 5.0. По умолчанию std::cout не будет печатать дробную часть числа, если она равна 0.
Во втором случае число печатается так, как мы и ожидали.
В третьем случае напечаталось число в экспоненциальном представлении (если вам нужно освежить в памяти экспоненциальное представление, смотрите урок «4.7 – Введение в экспоненциальную запись»).
Диапазоны значений типов с плавающей точкой
Предполагая, что используется представление IEEE 754:
80-битный тип с плавающей запятой – это своего рода историческая аномалия. На современных процессорах он обычно реализуется с использованием 12 или 16 байтов (что является более естественным размером для обработки процессорами).
Может показаться немного странным, что 80-битный тип с плавающей запятой имеет тот же диапазон значений, что и 16-байтовый тип с плавающей запятой. Это связано с тем, что у них одинаковое количество бит, выделенных для показателя степени, однако 16-байтовое число может хранить больше значащих цифр.
Точность с типов плавающей запятой
Рассмотрим дробь 1/3. Десятичное представление этого числа – 0,33333333333333… с тройками, уходящими в бесконечность. Если бы вы писали это число на листе бумаги, ваша рука в какой-то момент устала бы, и вы, в конце концов, прекратили бы писать. И число, которое у вас осталось, будет близко к 0,3333333333…. (где 3-ки уходят в бесконечность), но не совсем.
На компьютере число бесконечной длины потребует для хранения бесконечной памяти, но обычно у нас есть только 4 или 8 байтов. Эта ограниченная память означает, что числа с плавающей запятой могут хранить только определенное количество значащих цифр – и что любые дополнительные значащие цифры теряются. Фактически сохраненное число будет близко к необходимому, но не точно.
Точность числа с плавающей запятой определяет, сколько значащих цифр оно может представлять без потери информации.
При выводе чисел с плавающей точкой std::cout по умолчанию имеет точность 6, то есть предполагает, что все переменные с плавающей точкой имеют только до 6 значащих цифр (минимальная точность с плавающей точкой), и, следовательно, он будет отсекать всё, что идет дальше.
Следующая программа показывает усечение std::cout до 6 цифр:
Эта программа выводит:
Обратите внимание, что каждое из напечатанных значений имеет только 6 значащих цифр.
Число цифр точности переменной с плавающей запятой зависит как от размера (у float точность меньше, чем у double ), так и от конкретного сохраняемого значения (некоторые значения имеют большую точность, чем другие). Значения float имеют точность от 6 до 9 цифр, при этом большинство значений float имеют не менее 7 значащих цифр. Значения double имеют от 15 до 18 цифр точности, при этом большинство значений double имеют не менее 16 значащих цифр. Значения long double имеет минимальную точность 15, 18 или 33 значащих цифр в зависимости от того, сколько байтов этот тип занимает.
Проблемы с точностью влияют не только на дробные числа, они влияют на любое число со слишком большим количеством значащих цифр. Рассмотрим большое число:
Следовательно, нужно быть осторожным при использовании чисел с плавающей запятой, которые требуют большей точности, чем могут содержать переменные.
Лучшая практика
Ошибки округления затрудняют сравнение чисел с плавающей запятой
С числами с плавающей запятой сложно работать из-за неочевидных различий между двоичными (как хранятся данные) и десятичными (как мы думаем) числами. Рассмотрим дробь 1/10. В десятичном формате ее легко представить как 0,1, и мы привыкли думать о 0,1 как о легко представимом числе с 1 значащей цифрой. Однако в двоичном формате 0,1 представлен бесконечной последовательностью: 0,00011001100110011… Из-за этого, когда мы присваиваем 0,1 числу с плавающей точкой, мы сталкиваемся с проблемами точности.
Эффект от этого можно увидеть в следующей программе:
Эта программ выводит следующее:
Ошибки округления также могут иметь неожиданные последствия:
Хотя можно было ожидать, что d1 и d2 должны быть равны, мы видим, что это не так. Если бы мы сравнивали d1 и d2 в программе, программа, вероятно, не работала бы так, как ожидалось. Поскольку числа с плавающей запятой имеют тенденцию быть неточными, их сравнение обычно проблематично – мы обсудим эту тему (и решения) подробнее в уроке «5.6 – Операторы отношения и сравнение значений с плавающей запятой».
Последнее замечание об ошибках округления: математические операции (такие как сложение и умножение), как правило, приводят к увеличению ошибок округления. Таким образом, даже несмотря на то, что 0,1 имеет ошибку округления в 17-й значащей цифре, когда мы складываем 0,1 десять раз, ошибка округления добралась бы и до 16-й значащей цифры. Продолжение операций приведет к тому, что эта ошибка станет всё более значительной.
Ключевые выводы
Следствие этого правила: будьте осторожны с использованием чисел с плавающей запятой для финансовых или валютных данных.
NaN и Inf
Ниже приведена программа, показывающая все эти три категории чисел с плавающей точкой:
И результаты работы этой программы при использовании Visual Studio 2008 в Windows:
INF означает бесконечность, а IND означает неопределенность. Обратите внимание, что результаты печати Inf и NaN зависят от платформы, поэтому ваши результаты могут отличаться.
Лучшая практика
Вообще избегайте деления на 0, даже если ваш компилятор поддерживает это.
Заключение
Подводя итог, вы должны помнить две вещи о числах с плавающей запятой:
Наглядное объяснение чисел с плавающей запятой
В начале 90-х создание трёхмерного игрового движка означало, что вы заставите машину выполнять почти не свойственные ей задачи. Персональные компьютеры того времени предназначались для запуска текстовых процессоров и электронных таблиц, а не для 3D-вычислений с частотой 70 кадров в секунду. Серьёзным препятствием стало то, что, несмотря на свою мощь, ЦП не имел аппаратного устройства для вычислений с плавающей запятой. У программистов было только АЛУ, перемалывающее целые числа.
При написании книги Game Engine Black Book: Wolfenstein 3D я хотел наглядно показать, насколько велики были проблемы при работе без плавающей запятой. Мои попытки разобраться в числах с плавающей запятой при помощи каноничных статей мозг воспринимал в штыки. Я начал искать другой способ. Что-нибудь, далёкое от и их загадочных экспонент с мантиссами. Может быть, в виде рисунка, потому что их мой мозг воспринимает проще.
В результате я написал эту статью и решил добавить её в книгу. Не буду утверждать, что это моё изобретение, но пока мне не приходилось видеть такого объяснения чисел с плавающей запятой. Надеюсь, статья поможет тем, у кого, как и у меня, аллергия на математические обозначения.
Как обычно объясняют числа с плавающей запятой
Цитирую Дэвида Голдберта (David Goldbert):
Для многих людей арифметика с плавающей запятой кажется каким-то тайным знанием.
Полностью с ним согласен. Однако важно понимать принципы её работы, чтобы полностью осознать её полезность при программировании 3D-движка. В языке C значения с плавающей запятой — это 32-битные контейнеры, соответствующие стандарту IEEE 754. Они предназначены для хранения и выполнения операций над аппроксимациями вещественных чисел. Пока я видел только такое их объяснение. 32 бита разделены на три части:
Три части числа с плавающей запятой.
Пока всё нормально. Пойдём дальше. Способ интерпретации чисел обычно объясняется с помощью такой формулы:
Именно это объяснение чисел с плавающей запятой все ненавидят.
И здесь я обычно начинаю терять терпение. Возможно, у меня аллергия на математическую нотацию, но когда я это читаю, в моём мозгу ничего не «щёлкает». Такое объяснение похоже на способ рисования совы:
Другой способ объяснения
Хоть это изложение и верно, такой способ объяснения чисел с плавающей запятой обычно не даёт нам никакого понимания. Я виню эту ужасную запись в том, что она разочаровала тысячи программистов, испугала их до такой степени, что они больше никогда не пытались понять, как же на самом деле работают вычисления с плавающей запятой. К счастью, их можно объяснить иначе. Воспринимайте экспоненту как окно (Window) или интервал между двумя соседними целыми степенями двойки. Мантиссу воспринимайте как смещение (Offset) в этом окне.
Три части числа с плавающей запятой.
Окно сообщает нам, между какими двумя последовательными степенями двойки будет число: [0,1], [1,2], [2,4], [4,8] и так далее (вплоть до [,
]. Смещение разделяет окно на
сегментов. С помощью окна и смещения можно аппроксимировать число. Окно — это отличный механизм защиты от выхода за границы. Достигнув максимума в окне (например, в [2,4]), можно «переплыть» вправо и представить число в пределах следующего окна (например, [4,8]). Ценой этого будет только небольшое снижение точности, потому что окно становится в два раза больше.
Викторина: сколько точности теряется, когда окно закрывает больший интервал? Давайте возьмём пример с окном [0,1], в котором 8388608 смещений накладываются на интервал размером 1, что даёт нам точность . В окне [2048,4096] 8388608 смещений накладываются на интервал
, что даёт нам точность
.
На рисунке ниже показано, как кодируется число 6,1. Окно должно начинаться с 4 и заканчиваться следующей степенью двойки, т.е. 8. Смещение находится примерно посередине окна.
Значение 6,1 аппроксимированное с помощью числа с плавающей запятой.
Давайте возьмём ещё один пример с подробным вычислением представлением в виде числа с плавающей точкой хорошо известного всем нам значения: 3,14.
Двоичное представление с плавающей точкой числа 3,14.
То есть значение 3,14 аппроксимируется как 3,1400001049041748046875.
Соответствующее значение в непонятной формуле:
И, наконец, графическое представление с окном и смещением:
Окно и смещение числа 3,14.
Интересный факт: если модули операций с плавающей запятой были такими медленными, почему в языке C в результате использовали типы float и double? Ведь в машине, на которой изобретался язык (PDP-11), не было модуля операций с плавающей запятой! Дело в том, что производитель (DEC) пообещал Деннису Ритчи и Кену Томпсону, что в следующей модели он будет. Они были любителями астрономии и решили добавить в язык эти два типа.
Интересный факт: те, кому в 1991 году действительно нужен был аппаратный модуль операций с плавающей запятой, могли его купить. Единственными, кому он мог понадобиться в то время, были учёные (по крайней мере, так Intel понимала потребности рынка). На рынке они позиционировались как «математические сопроцессоры». Их производительность была средней, а цена огромной (200 долларов 1993 года — это 350 долларов в 2016 году.). В результате уровень продаж оказался посредственным.