Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ

Дискриминант

Дискриминантом ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅Ρ…Ρ‡Π»Π΅Π½Π° Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ \(b^<2>-4ac\), Π³Π΄Π΅ \(a, b\) ΠΈ \(c\) – коэффициСнты Π΄Π°Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅Ρ…Ρ‡Π»Π΅Π½Π°.

НапримСр, для Ρ‚Ρ€Π΅Ρ…Ρ‡Π»Π΅Π½Π° \(3x^2+2x-7\), дискриминант Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π΅Π½ \(2^2-4\cdot3\cdot(-7)=4+84=88\). А для Ρ‚Ρ€Π΅Ρ…Ρ‡Π»Π΅Π½Π° \(x^2-5x+11\), ΠΎΠ½ Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π΅Π½ \((-5)^2-4\cdot1\cdot11=25-44=-19\).

Дискриминант ΠΈ ΠΊΠΎΡ€Π½ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния

Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ дискриминанта ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ количСство ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния:
— Ссли \(D\) ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»Π΅Π½ – ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Π΄Π²Π° корня;
— Ссли \(D\) Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ – Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡ€Π΅Π½ΡŒ;
— Ссли \(D\) ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»Π΅Π½ – ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π΅Ρ‚.

Если дискриминант ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»Π΅Π½

Π’ этом случаС ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· Π½Π΅Π³ΠΎ – это Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число, Π° Π·Π½Π°Ρ‡ΠΈΡ‚ \(x_<1>\) ΠΈ \(x_<2>\) Π±ΡƒΠ΄ΡƒΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ ΠΏΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ, вСдь Π² ΠΏΠ΅Ρ€Π²ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ \(\sqrt\) прибавляСтся, Π° Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ – вычитаСтся. И ΠΌΡ‹ ΠΈΠΌΠ΅Π΅ΠΌ Π΄Π²Π° Ρ€Π°Π·Π½Ρ‹Ρ… корня.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€: НайдитС ΠΊΠΎΡ€Π½ΠΈ уравнСния \(x^2+2x-3=0\)
РСшСниС:

ВычисляСм дискриминант ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ \(D=b^2-4ac\)

НайдСм ΠΊΠΎΡ€Π½ΠΈ уравнСния

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Π΄Π²Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… корня ΠΈΠ·-Π·Π° Ρ€Π°Π·Π½Ρ‹Ρ… Π·Π½Π°ΠΊΠΎΠ² ΠΏΠ΅Ρ€Π΅Π΄ \(\sqrt\)

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ

Если дискриминант Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ

А сколько ΠΊΠΎΡ€Π½Π΅ΠΉ Π±ΡƒΠ΄Π΅Ρ‚, Ссли дискриминант Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ? Π”Π°Π²Π°ΠΉΡ‚Π΅ Ρ€Π°ΡΡΡƒΠΆΠ΄Π°Ρ‚ΡŒ.

Π’ΠΎ Π΅ΡΡ‚ΡŒ, значСния ΠΊΠΎΡ€Π½Π΅ΠΉ уравнСния Π±ΡƒΠ΄ΡƒΡ‚ ΡΠΎΠ²ΠΏΠ°Π΄Π°Ρ‚ΡŒ, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ Π²Ρ‹Ρ‡ΠΈΡ‚Π°Π½ΠΈΠ΅ нуля Π½ΠΈΡ‡Π΅Π³ΠΎ Π½Π΅ мСняСт.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€: НайдитС ΠΊΠΎΡ€Π½ΠΈ уравнСния \(x^2-4x+4=0\)
РСшСниС:

ВычисляСм дискриминант ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ \(D=b^2-4ac\)

Находим ΠΊΠΎΡ€Π½ΠΈ уравнСния

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Π΄Π²Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Ρ… корня, поэтому Π½Π΅Ρ‚ смысла ΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΈΡ… ΠΏΠΎ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ – записываСм ΠΊΠ°ΠΊ ΠΎΠ΄ΠΈΠ½.

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ

Если дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»Π΅Π½

Π’ этом случаС ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· дискриминанта ΠΈΠ·Π²Π»Π΅Ρ‡ΡŒ нСльзя (Ρ‚.ΠΊ. ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ числа – нСвычислим), Π° Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΈ ΠΊΠΎΡ€Π½ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΌΡ‹ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π½Π΅ ΠΌΠΎΠΆΠ΅ΠΌ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€: НайдитС ΠΊΠΎΡ€Π½ΠΈ уравнСния \(x^2+x+3=0\)
РСшСниС

ВычисляСм дискриминант ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ \(D=b^2-4ac\)

Находим ΠΊΠΎΡ€Π½ΠΈ уравнСния

Оба корня содСрТат нСвычислимоС Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ \(\sqrt<-11>\), Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΈ сами Π½Π΅ вычислимы

Π’ΠΎ Π΅ΡΡ‚ΡŒ, отсутствиС ΠΊΠΎΡ€Π½Π΅ΠΉ Ρƒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния с ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ дискриминантом – Π½Π΅ Ρ‡ΡŒΡ-Ρ‚ΠΎ случайная ΠΏΡ€ΠΈΠ΄ΡƒΠΌΠΊΠ°. Π­Ρ‚ΠΎ Π½Π΅ ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ Β«Π² ΡƒΡ‡Π΅Π±Π½ΠΈΠΊΠ΅ Ρ‚Π°ΠΊ написано», Π° Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€Π°Π²Π΄Π°: Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Ρ‚Π°ΠΊΠΎΠ΅ число, Ρ‡Ρ‚ΠΎΠ± ΠΏΡ€ΠΈ подстановкС Π΅Π³ΠΎ вмСсто икса Π² Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ \(x^2+x+3\) получился ноль.

ΠœΠ°Ρ‚Ρ…Π°ΠΊ: Π·Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ссли Π²Ρ‹ Ρ€Π΅ΡˆΠ°Π΅Ρ‚Π΅ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ нСравСнство ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅Ρ‚Π΅ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ дискриминант, стоит ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π΅Ρ‰Π΅ Ρ€Π°Π·, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ это Π½Π΅ частая ситуация Π² школьном курсС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ.

Ну, Π° Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ°Ρ… всС просто: Π½Π΅Ρ‚ ΠΊΠΎΡ€Π½Π΅ΠΉ – Π½Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ пСрСсСчСния с осью икс!

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Как Π½Π°ΠΉΡ‚ΠΈ дискриминант ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ β€” это матСматичСскоС равСнство, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ нСизвСстна ΠΎΠ΄Π½Π° ΠΈΠ»ΠΈ нСсколько Π²Π΅Π»ΠΈΡ‡ΠΈΠ½. Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ нСизвСстных Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΈ ΠΈΡ… подстановкС Π² ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ Π²Π΅Ρ€Π½ΠΎΠ΅ числовоС равСнство.

НапримСр, возьмСм Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ 8 + 4 = 12. ΠŸΡ€ΠΈ вычислСнии Π»Π΅Π²ΠΎΠΉ части получаСтся Π²Π΅Ρ€Π½ΠΎΠ΅ числовоС равСнство, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ 12 = 12.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ 8 + x = 12, с нСизвСстной ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x, Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ Ρ‚Π°ΠΊΠΈΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π·Π½Π°ΠΊ равСнства Π±Ρ‹Π» ΠΎΠΏΡ€Π°Π²Π΄Π°Π½, ΠΈ лСвая Ρ‡Π°ΡΡ‚ΡŒ Ρ€Π°Π²Π½ΡΠ»Π°ΡΡŒ ΠΏΡ€Π°Π²ΠΎΠΉ.

Π‘Ρ‚Π΅ΠΏΠ΅Π½ΡŒ уравнСния ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎ наибольшСй стСпСни, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ стоит нСизвСстноС. Если нСизвСстноС стоит Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни, Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ являСтся ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ.

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ β€” это ax 2 + bx + c = 0, Π³Π΄Π΅ a β€” ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΈΠ»ΠΈ ΡΡ‚Π°Ρ€ΡˆΠΈΠΉ коэффициСнт, Π½Π΅ Ρ€Π°Π²Π½Ρ‹ΠΉ Π½ΡƒΠ»ΡŽ, b β€” Π²Ρ‚ΠΎΡ€ΠΎΠΉ коэффициСнт, c β€” свободный Ρ‡Π»Π΅Π½.

Π•ΡΡ‚ΡŒ Ρ‚Ρ€ΠΈ Π²ΠΈΠ΄Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ дискриминанта

Дискриминант ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния β€” это Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ находится ΠΏΠΎΠ΄ ΠΊΠΎΡ€Π½Π΅ΠΌ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ нахоТдСния ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния. Дискриминант Π² ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Π΅ с латинского ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ Β«ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠΉΒ» ΠΈΠ»ΠΈ Β«Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠΉΒ» ΠΈ обозначаСтся Π±ΡƒΠΊΠ²ΠΎΠΉ D.

Дискриминант β€” ΠΎΡ‚Π»ΠΈΡ‡Π½Ρ‹ΠΉ ΠΏΠΎΠΌΠΎΡ‰Π½ΠΈΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ½ΡΡ‚ΡŒ, сколько Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ ΠΊΠΎΡ€Π½Π΅ΠΉ.

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ

Π§Π°Ρ‰Π΅ всСго для поиска дискриминанта ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π’ этом ΠΊΠ»ΡŽΡ‡Π΅ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для поиска ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния выглядит Ρ‚Π°ΠΊ:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ

Π­Ρ‚Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ Π΄Π°ΠΆΠ΅ для Π½Π΅ΠΏΠΎΠ»Π½Ρ‹Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

Но Π΅ΡΡ‚ΡŒ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ β€” всС зависит ΠΎΡ‚ Π²ΠΈΠ΄Π° уравнСния. Π§Ρ‚ΠΎΠ±Ρ‹ Π² Π½ΠΈΡ… Π½Π΅ Π·Π°ΠΏΡƒΡ‚Π°Ρ‚ΡŒΡΡ, сохраняйтС Ρ‚Π°Π±Π»ΠΈΡ‡ΠΊΡƒ ΠΈΠ»ΠΈ распСчатайтС Π΅Π΅ ΠΈ Ρ…Ρ€Π°Π½ΠΈΡ‚Π΅ Π² ΡƒΡ‡Π΅Π±Π½ΠΈΠΊΠ΅.

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ

Как Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния Ρ‡Π΅Ρ€Π΅Π· дискриминант

Π’ 8 классС Π½Π° Π°Π»Π³Π΅Π±Ρ€Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡ‚Ρ€Π΅Ρ‚ΠΈΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡Ρƒ ΠΏΠΎ поиску Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния. Для этого Π²Π°ΠΆΠ½ΠΎ ΠΏΠ΅Ρ€Π΅Π΄ использованиСм Ρ„ΠΎΡ€ΠΌΡƒΠ» Π½Π°ΠΉΡ‚ΠΈ дискриминант ΠΈ ΡƒΠ±Π΅Π΄ΠΈΡ‚ΡŒΡΡ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ Π½Π΅ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Волько послС этого вычисляСм значСния ΠΊΠΎΡ€Π½Π΅ΠΉ. Если дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, Π·Π½Π°Ρ‡ΠΈΡ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ.

Алгоритм Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ax 2 + bx + c = 0:

А Π²ΠΎΡ‚ ΠΈ Π΅Ρ‰Π΅ ΠΎΠ΄Π½Π° Ρ‚Π°Π±Π»ΠΈΡ‡ΠΊΠ°: Π² Π½Π΅ΠΉ Π²Ρ‹ Π½Π°ΠΉΠ΄Π΅Ρ‚Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для поиска ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ дискриминанта:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ

Π§Ρ‚ΠΎΠ±Ρ‹ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ с Π»Π΅Π³ΠΊΠΎΡΡ‚ΡŒΡŽ Π΅Π³ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ, Π²Π°ΠΆΠ½ΠΎ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΎΠ²Π°Ρ‚ΡŒΡΡ. Π’ΠΏΠ΅Ρ€Π΅Π΄!

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ дискриминанта

ΠžΡ‚Π²Π΅Ρ‚: ΠΊΠΎΡ€Π΅Π½ΡŒ уравнСния 3.

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ

Π Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒΡΡ Π² Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ с классным ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»Π΅ΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π½Π° курсах ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ Π² Skysmart.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Дискриминант
ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния

ΠœΡ‹ ΡƒΠΆΠ΅ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π»ΠΈ, ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния. Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π΄Π°Π²Π°ΠΉΡ‚Π΅ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ рассмотрим, Ρ‡Ρ‚ΠΎ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ дискриминантом ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния.

ВСрнСмся ΠΊ нашСй Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ для нахоТдСня ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния.

Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Β« b 2 βˆ’ 4ac Β», ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ находится ΠΏΠΎΠ΄ ΠΊΠΎΡ€Π½Π΅ΠΌ, принято Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒ дискриминантом ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ Π±ΡƒΠΊΠ²ΠΎΠΉ Β« D Β».

По-Π΄Ρ€ΡƒΠ³ΠΎΠΌΡƒ, Ρ‡Π΅Ρ€Π΅Π· дискриминант Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ нахоТдСния ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Ρ‚Π°ΠΊ:

По ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· вСрсий Ρ‚Π΅Ρ€ΠΌΠΈΠ½ «Дискриминант» ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ΅Π» ΠΎΡ‚ латинского discriminantis, Ρ‡Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ Β«ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠΉΒ» ΠΈΠ»ΠΈ Β«Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠΉΒ».

Π’ зависимости ΠΎΡ‚ Π·Π½Π°ΠΊΠ° Β« D Β» (дискриминанта) ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Π΄Π²Π°, ΠΎΠ΄ΠΈΠ½ ΠΈΠ»ΠΈ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ корня. Рассмотрим всС Ρ‚Ρ€ΠΈ случая.

I случай
D > 0
(дискриминант большС нуля)

x1;2 =

βˆ’b Β± √ D
2a

x1;2 =

βˆ’5 Β± √ 81
2 Β· 2

x1;2 =

βˆ’5 Β± 9
4

x1 =

βˆ’5 + 9
4
x2 =

βˆ’5 βˆ’ 9
4
x1 =

4
4
x2 =

βˆ’14
4
x1 = 1x2 = βˆ’3

2
4
x1 = 1x2 = βˆ’3

1
2

ΠžΡ‚Π²Π΅Ρ‚: x1 = 1; x2 = βˆ’3

1
2

II случай
D = 0
(дискриминант Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ)

D = b 2 βˆ’ 4ac
D = (βˆ’8) 2 βˆ’ 4 Β· 16 Β· 1
D = 64 βˆ’ 64
D = 0

x1;2 =

βˆ’b Β± √ D
2a

x1;2 =

βˆ’ (βˆ’8) Β± √ 0
32

x1;2 =

8 Β± 0
32

x =

8
32

x =

1
4

ΠžΡ‚Π²Π΅Ρ‚: x =

1
4

III случай
D
(дискриминант мСньшС нуля)

D = b 2 βˆ’ 4ac
D = (βˆ’6) 2 βˆ’ 4 Β· 9 Β· 2
D = 36 βˆ’ 72
D = βˆ’36
D

x1;2 =

βˆ’b Β± √ D
2a

x1;2 =

βˆ’ (βˆ’6) Β± √ βˆ’36
32

ΠžΡ‚Π²Π΅Ρ‚: Π½Π΅Ρ‚ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

НахоТдСниС дискриминанта, Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°, сравнСниС с Π½ΡƒΠ»Ρ‘ΠΌ

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½, ΠΊΠ°ΠΊ ΠΈΡΠΊΠ°Ρ‚ΡŒ Π΅Π³ΠΎ ΠΊΠΎΡ€Π½ΠΈ

Как это Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ вСщСствСнных ΠΊΠΎΡ€Π½Π΅ΠΉ:

Π’Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ расчётов для закрСплСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ

ИспользованиС дискриминанта Π² вычислСнии ΠΊΠΎΡ€Π½Π΅ΠΉ

Π­Ρ‚Π° Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ конструкция Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ количСство вСщСствСнных Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ, Π½ΠΎ ΠΈ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ ΠΈΡ… Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ. ΠžΠ±Ρ‰Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° расчёта для уравнСния Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни Ρ‚Π°ΠΊΠΎΠ²Π°:

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ приравнивания ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ выраТСния ΠΊ Π½ΡƒΠ»ΡŽ вычисляСтся согласно Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡƒ:

НСкоторыС частныС случаи

Π’ зависимости ΠΎΡ‚ коэффициСнтов Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ нСсколько ΡƒΠΏΡ€ΠΎΡ‰Π°Ρ‚ΡŒΡΡ. ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ссли коэффициСнт ΠΏΠ΅Ρ€Π΅Π΄ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ, Ρ‚ΠΎ получаСтся Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ равСнство. Когда коэффициСнт ΠΏΠ΅Ρ€Π΅Π΄ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² ΠΏΠ΅Ρ€Π²ΠΎΠΉ стСпСни Π½ΡƒΠ»Π΅Π²ΠΎΠΉ, Ρ‚ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ Π΄Π²Π° Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π°:

Если свободный Ρ‡Π»Π΅Π½ Π½ΡƒΠ»Π΅Π²ΠΎΠΉ, Ρ‚ΠΎ ΠΊΠΎΡ€Π½ΠΈ Π±ΡƒΠ΄ΡƒΡ‚

Но Π΅ΡΡ‚ΡŒ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ частныС случаи, ΡƒΠΏΡ€ΠΎΡ‰Π°ΡŽΡ‰ΠΈΠ΅ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ.

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ

Π’Π°ΠΆΠ½ΠΎ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ i * w ^ 2 + j * w + k = 0 удастся привСсти ΠΏΡƒΡ‚Ρ‘ΠΌ дСлСния Π½Π° «i». Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π±ΡƒΠ΄Π΅Ρ‚: w ^ 2 + j1 * w + k1 = 0, Π³Π΄Π΅ j1 Ρ€Π°Π²Π½ΠΎ j / i ΠΈ k1 Ρ€Π°Π²Π½ΠΎ k / i.

Π§Ρ‘Ρ‚Π½Ρ‹ΠΉ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ

Π‘ΠΎΠ»Π΅Π΅ высокий порядок дискриминанта

Рассмотрим i * w ^ 3 + j * w ^ 2 + k * w + m = 0.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅. Дискриминант. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π’ΠΈΠ΅Ρ‚Π°.

тСория ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ 📈 уравнСния

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° ax 2 +bx+c=0, Π³Π΄Π΅ a,b,c – Π»ΡŽΠ±Ρ‹Π΅ числа, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ aβ‰ 0, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ. Числа a,b,c принято Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒ коэффициСнтами, ΠΏΡ€ΠΈ этом a – ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ коэффициСнт, b – Π²Ρ‚ΠΎΡ€ΠΎΠΉ коэффициСнт, c – свободный Ρ‡Π»Π΅Π½.

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ Π΄Π²ΡƒΡ… ΠΊΠΎΡ€Π½Π΅ΠΉ. Π Π΅ΡˆΠΈΡ‚ΡŒ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ – это Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ всС Π΅Π³ΠΎ ΠΊΠΎΡ€Π½ΠΈ ΠΈΠ»ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΈΡ… Π½Π΅Ρ‚.

Дискриминант

ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния зависит ΠΎΡ‚ Ρ‚Π°ΠΊΠΎΠ³ΠΎ элСмСнта, ΠΊΠ°ΠΊ дискриминант (ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ Π΅Π³ΠΎ Π±ΡƒΠΊΠ²ΠΎΠΉ D).

НахоТдСниС ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния

Дискриминант – это Ρ‚Π°ΠΊΠΎΠΉ матСматичСский инструмСнт, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ позволяСт Π½Π°ΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ количСство ΠΊΠΎΡ€Π½Π΅ΠΉ. Он выраТаСтся ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

D=b 2 –4ac

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–1. Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ… 2 –2х–3=0. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΡΠ΅ΠΌ коэффициСнты: Π°=1, b=–2, c=–3. Находим дискриминант: D=b 2 –4ac=(–2) 2 –41(–3)=4+12=16. Π’ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ дискриминант ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, Π·Π½Π°Ρ‡ΠΈΡ‚, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… корня, Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ ΠΈΡ…:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–2. Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ 5Ρ… 2 +2Ρ…+1=0. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΡΠ΅ΠΌ коэффициСнты: Π°=5, b=2, c=1. D=b 2 –4ac=2 2 –4=4–20=–16, D 2 –6Ρ…+9=0. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΡΠ΅ΠΌ коэффициСнты: Π°=1, b=–6, c=9.

D=b 2 –4ac=(–6) 2 –4=36–36=0, D=0, 1 ΠΊΠΎΡ€Π΅Π½ΡŒ

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Ссли дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π’ΠΈΠ΅Ρ‚Π°

Π‘Ρ€Π΅Π΄ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ Ρ‚Π°ΠΊΠΈΠ΅, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ коэффициСнт Ρ€Π°Π²Π΅Π½ 1 (ΠΎΠ±Ρ€Π°Ρ‚ΠΈΠΌ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€ 1 ΠΈ 3), Ρ‚Π°ΠΊΠΈΠ΅ уравнСния Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌΠΈ.

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ дискриминанта, Π½ΠΎ ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ Π’ΠΈΠ΅Ρ‚Π°.

Π‘ΡƒΠΌΠΌΠ° ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния Ρ€Π°Π²Π½Π° Π²Ρ‚ΠΎΡ€ΠΎΠΌΡƒ коэффициСнту, взятому с ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΌ Π·Π½Π°ΠΊΠΎΠΌ; ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ€Π½Π΅ΠΉ Ρ€Π°Π²Π½ΠΎ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΌΡƒ коэффициСнту.

ΠšΠΎΡ€Π½ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄Π°Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ находятся устно способом ΠΏΠΎΠ΄Π±ΠΎΡ€Π°. Рассмотрим это Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ….

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–4. Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ… 2 –10Ρ…+21=0. Π’Ρ‹ΠΏΠΈΡˆΠ΅ΠΌ коэффициСнты: Π°=1, b=–10, c=21. ΠŸΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ Π’ΠΈΠ΅Ρ‚Π°:

НачинаСм с произвСдСния ΠΊΠΎΡ€Π½Π΅ΠΉ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ являСтся ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ числом, Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΎΠ±Π° корня Π»ΠΈΠ±ΠΎ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅, Π»ΠΈΠ±ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ это ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π»ΠΈΠ±ΠΎ 3 ΠΈ 7, Π»ΠΈΠ±ΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Π΅ ΠΈΠΌ числа. Π’Π΅ΠΏΠ΅Ρ€ΡŒ смотрим Π½Π° сумму, ΠΎΠ½Π° являСтся ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ числом, поэтому Π½Π°ΠΌ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ ΠΏΠ°Ρ€Π° чисСл 3 ΠΈ 7. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΡΠ΅ΠΌ: 3+7=10, 37=21. Π—Π½Π°Ρ‡ΠΈΡ‚, корнями Π΄Π°Π½Π½ΠΎΠ³ΠΎ уравнСния ΡΠ²Π»ΡΡŽΡ‚ΡΡ числа 3 ΠΈ 7.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–5. Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅: Ρ… 2 +5Ρ…+4=0. Π’Ρ‹ΠΏΠΈΡˆΠ΅ΠΌ коэффициСнты: Π°=1, b=5, c=4. По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ Π’ΠΈΠ΅Ρ‚Π°:

Π’ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ€Π½Π΅ΠΉ Ρ€Π°Π²Π½ΠΎ 4, Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΎΠ±Π° корня Π»ΠΈΠ±ΠΎ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅, Π»ΠΈΠ±ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅. Π’ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ сумма ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ, Π·Π½Π°Ρ‡ΠΈΡ‚, Π±ΡƒΠ΄Π΅ΠΌ Π±Ρ€Π°Ρ‚ΡŒ Π΄Π²Π° ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… числа, Π½Π°ΠΌ подходят –1 ΠΈ –4. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΠΌ:

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *