Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ·
Записки Π»Π΅ΠΊΡ†ΠΈΠΉ

Илья Π©ΡƒΡ€ΠΎΠ² (НИУ Π’Π¨Π­)

24 ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»

24.1 Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π» Π ΠΈΠΌΠ°Π½Π°

24.1.1 Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π» ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°Ρ‡Π°Ρ‚ΡŒ ΠΎΡ‚Π²Π΅Ρ‡Π°Ρ‚ΡŒ Π½Π° этот вопрос, Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡƒΠΌΠ°Ρ‚ΡŒ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π²ΠΎΠΎΠ±Ρ‰Π΅ Ρ‚Π°ΠΊΠΎΠ΅ Β«ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒΒ». ΠœΡ‹ Π·Π½Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° β€” это ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΅Π³ΠΎ Π΄Π»ΠΈΠ½Ρ‹ ΠΈ ΡˆΠΈΡ€ΠΈΠ½Ρ‹. ΠœΡ‹ Ρ‚Π°ΠΊΠΆΠ΅ Π·Π½Π°Π΅ΠΌ (считаСм это аксиомой ΠΈΠ»ΠΈ Ρ‡Π°ΡΡ‚ΡŒΡŽ опрСдСлСния), Ρ‡Ρ‚ΠΎ Ссли Ρƒ нас Π΅ΡΡ‚ΡŒ Π΄Π²Π΅ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, ΠΈ ΠΌΡ‹ складываСм ΠΈΠ· Π½ΠΈΡ… Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ Β«Π±Π΅Π· нахлёста», Ρ‚ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Π½ΠΎΠ²ΠΎΠΉ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ Ρ€Π°Π²Π½Π° суммС ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ исходных Ρ„ΠΈΠ³ΡƒΡ€. И Π΅Ρ‰Ρ‘, Ρ‡Ρ‚ΠΎ Ссли Ρƒ нас Π΅ΡΡ‚ΡŒ Π΄Π²Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ Π΄Ρ€ΡƒΠ³ Π½Π° Π΄Ρ€ΡƒΠ³Π° Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ½ΠΈ совпали), Ρ‚ΠΎ ΠΈΡ… ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ€Π°Π²Π½Ρ‹. Из этих Ρ‚Ρ€Ρ‘Ρ… ΠΏΡ€Π°Π²ΠΈΠ» ΠΌΠΎΠΆΠ½ΠΎ вывСсти ΠΌΠ½ΠΎΠ³ΠΎ Π΄Ρ€ΡƒΠ³ΠΈΡ…. НапримСр, ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ разбиваСтся своСй диагональю Π½Π° Π΄Π²Π° Ρ€Π°Π²Π½Ρ‹Ρ… ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, ΠΈ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· Π½ΠΈΡ… Π²Π΄Π²ΠΎΠ΅ мСньшС ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, ΠΈ Ρ€Π°Π²Π½Π° ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ произвСдСния ΠΊΠ°Ρ‚Π΅Ρ‚ΠΎΠ². ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ разбиваСтся высотой Π½Π° Π΄Π²Π° ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ…, ΠΎΡ‚ΠΊΡƒΠ΄Π° Π»Π΅Π³ΠΊΠΎ вывСсти, Ρ‡Ρ‚ΠΎ Π΅Π³ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ€Π°Π²Π½Π° ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ произвСдСния высоты Π½Π° основания. Π‘ΠΎΠ»Π΅Π΅ слоТныС ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π±ΠΈΠ²Π°Ρ‚ΡŒ Π½Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ΠΈ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΈΡ… ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ. Π’Π°ΠΊ ΠΌΡ‹ опрСдСляСм ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ довольно ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ класса Ρ„ΠΈΠ³ΡƒΡ€ β€” Π½ΠΎ Π΄Π°Π»Π΅ΠΊΠΎ Π½Π΅ всСх. Π§Ρ‚ΠΎ Π΄Π΅Π»Π°Ρ‚ΡŒ, Ссли ΠΌΡ‹ ΠΈΠΌΠ΅Π΅ΠΌ Π΄Π΅Π»ΠΎ Π½Π΅ с ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ, Π° Ρ„ΠΈΠ³ΡƒΡ€ΠΎΠΉ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠΉ ΠΊΠ°ΠΊΠΎΠΉ-Ρ‚ΠΎ Β«ΠΊΡ€ΠΈΠ²ΠΎΠΉΒ» Π»ΠΈΠ½ΠΈΠ΅ΠΉ, Π½Π΅ состоящСй ΠΈΠ· прямолинСйных ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ²? Π’Π°ΠΊΡƒΡŽ Ρ„ΠΈΠ³ΡƒΡ€Ρƒ нСльзя Ρ€Π°Π·Π±ΠΈΡ‚ΡŒ Π½Π° ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ΠΈΠ»ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ. Однако, Π΅Ρ‘ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ простыми Ρ„ΠΈΠ³ΡƒΡ€Π°ΠΌΠΈ с извСстными ΠΏΠ»ΠΎΡ‰Π°Π΄Π°ΠΌΠΈ, Π΄ΠΎΠ±ΠΈΡ‚ΡŒΡΡ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ эти приблиТСния ΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ»ΠΈΡΡŒ всё Π»ΡƒΡ‡ΡˆΠ΅ ΠΈ Π»ΡƒΡ‡ΡˆΠ΅, ΠΈ ΠΏΠ΅Ρ€Π΅ΠΉΡ‚ΠΈ ΠΊ ΠΏΡ€Π΅Π΄Π΅Π»Ρƒ. ИмСнно Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ опрСдСляСтся ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» Π ΠΈΠΌΠ°Π½Π°.

24.1.2 РазбиСния ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ суммы

Π§Ρ‚ΠΎΠ±Ρ‹ это ΡΡ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π°ΠΊΠΊΡƒΡ€Π°Ρ‚Π½ΠΎ, придётся ввСсти нСсколько Π½ΠΎΠ²Ρ‹Ρ… понятий.

24.1.3 ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΊΠ°ΠΊ ΠΏΡ€Π΅Π΄Π΅Π»

МоТно Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ

ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ΡΡ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

24.2 Бвойства ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°

24.2.1 Π˜Π½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ ΠΈ Π½Π΅ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

НС всС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΡ‹. НапримСр, функция Π”ΠΈΡ€ΠΈΡ…Π»Π΅

Π’Ρ€ΡƒΠ΄Π½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ мноТСство всСх ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΎΠ΄Π½Π°ΠΊΠΎ для Π½Π°ΡˆΠΈΡ… Ρ†Π΅Π»Π΅ΠΉ Π²Π°ΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠ· Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π²Π°ΠΆΠ½Ρ‹Ρ… для нас классов Ρ‚Π°ΠΊΠΈΠΌ свойством ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚.

ΠΠ΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΡΡ‚ΡŒ являСтся достаточным условиСм интСгрируСмости, Π½ΠΎ Π½Π΅ являСтся Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΌ β€” Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, кусочно-Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‡ΡŒΠΈ Ρ€Π°Π·Ρ€Ρ‹Π²Ρ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ скачками, Ρ‚ΠΎΠΆΠ΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΡ‹. Π§ΡƒΡ‚ΡŒ ΠΏΠΎΠ·ΠΆΠ΅ ΠΌΡ‹ обсудим это ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅.

24.2.2 Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π» ΠΊΠ°ΠΊ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ с ΡƒΡ‡Ρ‘Ρ‚ΠΎΠΌ Π·Π½Π°ΠΊΠ°

24.2.3 Π›ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡ‚ΡŒ ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ нСравСнств

24.2.4 Π˜Π½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠΎΡΡ‚ΡŒ ΠΈ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΡΡ‚ΡŒ

Π‘ΠΎΠ»Π΅Π΅ Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ выглядит ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ. ΠŸΡƒΡΡ‚ΡŒ

24.2.5 ΠΠ΄Π΄ΠΈΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°

Π’Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ, Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ссли ΠΌΡ‹ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π½ΠΈΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ суммы Ρ€Π°Π·Ρ€Π΅ΡˆΠΈΠΌ разбиСния, ΠΈΠ΄ΡƒΡ‰ΠΈΠ΅ «справа Π½Π°Π»Π΅Π²ΠΎΒ», ΠΈ ΠΏΠ΅Ρ€Π΅Π½ΡƒΠΌΠ΅Ρ€ΡƒΠ΅ΠΌ элСмСнты ΠΊΠ°ΠΊΠΎΠ³ΠΎ-Ρ‚ΠΎ разбиСния с ΠΊΠΎΠ½Ρ†Π°

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ВычислСниС ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹Ρ… ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠ²: Π±Π°Π·ΠΎΠ²Ρ‹Π΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅
Π’ этой ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ описаны ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ вычислСния ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΎΡ‚ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅, Ρ‚Π°ΠΊΠΆΠ΅ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΌΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌΠΈ. ΠžΠ±Ρ‹Ρ‡Π½ΠΎ эти ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ Π² стандартных матСматичСских Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠ°Ρ…, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ GNU Scientific Library для C, SciPy для Python ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ…. ΠŸΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΡ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ†Π΅Π»ΡŒΡŽ ΠΏΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ, ΠΊΠ°ΠΊ эти ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ «ΠΏΠΎΠ΄ ΠΊΠ°ΠΏΠΎΡ‚ΠΎΠΌ», ΠΈ ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚ΡŒ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ вопросы точности ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ². Π’Π°ΠΊΠΆΠ΅ Ρ…ΠΎΡ‚Π΅Π»ΠΎΡΡŒ Π±Ρ‹ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ связь ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² числСнного интСгрирования ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ, ΠΎ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρ…ΠΎΡ‡Ρƒ Π½Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ ΠΎΠ΄Π½Ρƒ ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΡŽ.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°

Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠΌ (ΠΏΠΎ Π ΠΈΠΌΠ°Π½Ρƒ) ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° отрСзкСназываСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ ΠΏΡ€Π΅Π΄Π΅Π»:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Π³Π΄Π΅ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅β€” ΠΌΠ΅Π»ΠΊΠΎΡΡ‚ΡŒ разбиСния, Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅, Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅, Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅β€” ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ΅ число Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅.

Если ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ сущСствуСт, Ρ‚ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€Π΅Π΄Π΅Π»Π° ΠΎΠ΄Π½ΠΎ ΠΈ Ρ‚ΠΎ ΠΆΠ΅ Π²Π½Π΅ зависимости ΠΎΡ‚ разбиСния, лишь Π±Ρ‹ ΠΎΠ½ΠΎ Π±Ρ‹Π»ΠΎ достаточно ΠΌΠ΅Π»ΠΊΠΈΠΌ.
Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅
Π‘ΠΎΠ»Π΅Π΅ наглядно гСомСтричСскоС ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ β€” ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» Ρ€Π°Π²Π΅Π½ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠΉ осью 0x, Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ прямыми x = a ΠΈ x = b (Π·Π°ΠΊΡ€Π°ΡˆΠ΅Π½Π½Π°Ρ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π½Π° рисункС).

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° (1) ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ΅Ρ€Π΅ΠΏΠΈΡΠ°Ρ‚ΡŒ Π² Π²ΠΈΠ΄Π΅

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Π³Π΄Π΅ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅β€” вСсовыС коэффициСнты, сумма ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π΄ΠΎΠ»ΠΆΠ½Π° Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π²Π½Π° 1, Π° сами коэффициСнты β€” ΡΡ‚Ρ€Π΅ΠΌΠΈΡ‚ΡŒΡΡ ΠΊ Π½ΡƒΠ»ΡŽ ΠΏΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ числа Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅Ρ‚ΠΎΡ‡Π΅ΠΊ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… вычисляСтся функция.

Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ (2) β€” основа всСх ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» (Ρ‚.Π΅. Ρ„ΠΎΡ€ΠΌΡƒΠ» для ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ вычислСния ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°). Π—Π°Π΄Π°Ρ‡Π° состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ΠΈ вСса Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ сумма Π² ΠΏΡ€Π°Π²ΠΎΠΉ части ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ°Π»Π° Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΊΠ°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ Ρ‚ΠΎΡ‡Π½Π΅Π΅.

Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π·Π°Π΄Π°Ρ‡Π°

Π—Π°Π΄Π°Π½Π° функция Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅, для ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π΅ΡΡ‚ΡŒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ вычислСния Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π² любой Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅(ΠΈΠΌΠ΅ΡŽΡ‚ΡΡ Π² Π²ΠΈΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠΈ, прСдставимыС числом с ΠΏΠ»Π°Π²Π°ΡŽΡ‰Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ β€” Π½ΠΈΠΊΠ°ΠΊΠΈΡ… Ρ‚Π°ΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π”ΠΈΡ€ΠΈΡ…Π»Π΅!).

ВрСбуСтся Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΡ‘Π½Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅.
РСшСния Π±ΡƒΠ΄ΡƒΡ‚ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ Π½Π° языкС Python 3.6.

Для ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅.

ΠšΡƒΡΠΎΡ‡Π½ΠΎ-постоянная аппроксимация

ИдСйно ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ ΠΈΠ· примСнСния выраТСния (1) «Π² Π»ΠΎΠ±»:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Π’.ΠΊ. ΠΎΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° разбиСния ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ΠΈ Π²Ρ‹Π±ΠΎΡ€Π° Ρ‚ΠΎΡ‡Π΅ΠΊ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€Π΅Π΄Π΅Π»Π° Π½Π΅ зависит, Ρ‚ΠΎ Π²Ρ‹Π±Π΅Ρ€Π΅ΠΌ ΠΈΡ… Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ½ΠΈ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΠ»ΠΈΡΡŒ β€” Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Ρ€Π°Π·Π±ΠΈΠ΅Π½ΠΈΠ΅ Π²ΠΎΠ·ΡŒΠΌΡ‘ΠΌ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌ, Π° для Ρ‚ΠΎΡ‡Π΅ΠΊ вычислСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ рассмотрим Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹: 1) Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅; 2) Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅; 3) Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅.

ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π»Π΅Π²Ρ‹Ρ… ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ², ΠΏΡ€Π°Π²Ρ‹Ρ… ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ΠΈ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² со срСднСй Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ, соотвСтствСнно.

Для Π°Π½Π°Π»ΠΈΠ·Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» построим Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ… «Ρ‡ΠΈΡΠ»ΠΎ Ρ‚ΠΎΡ‡Π΅ΠΊ β€” ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ числСнного Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π° ΠΎΡ‚ Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ».

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Π§Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ:

ΠšΡƒΡΠΎΡ‡Π½ΠΎ-линСйная аппроксимация

Π‘Π»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ логичСский шаг β€” Π°ΠΏΠΏΡ€ΠΎΠΊΡΠΈΠΌΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· ΠΏΠΎΠ΄ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ, Ρ‡Ρ‚ΠΎ Π΄Π°Ρ‘Ρ‚ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΡƒΡ€Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅
Π˜Π»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΡ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ для n=1 ΠΈ n=2.

Π’ случаС Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ сСтки Π΄Π»ΠΈΠ½Ρ‹ всСх ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ² разбиСния Ρ€Π°Π²Π½Ρ‹, ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠ² Π³Ρ€Π°Ρ„ΠΈΠΊ ошибки ΠΎΡ‚ числа Ρ‚ΠΎΡ‡Π΅ΠΊ разбиСния, убСТдаСмся, Ρ‡Ρ‚ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ Ρ‚ΠΎΠΆΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π²Ρ‚ΠΎΡ€ΠΎΠΉ порядок аппроксимации ΠΈ Π²ΠΎΠΎΠ±Ρ‰Π΅ Π΄Π°Ρ‘Ρ‚ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, слабо ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠ΅ΡΡ ΠΎΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² со срСднСй Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ (Π² дальнСйшСм β€” просто ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ²).
Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ точности вычислСния

Π—Π°Π΄Π°Π½ΠΈΠ΅ Π² качСствС Π²Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° числа Ρ‚ΠΎΡ‡Π΅ΠΊ разбиСния Π½Π΅ слишком ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½ΠΎ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ трСбуСтся Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» Π½Π΅ с Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ разбиСния, Π° с Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒΡŽ. Если ΠΏΠΎΠ΄Ρ‹Π½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Π°Ρ функция извСстна Π½Π°ΠΏΠ΅Ρ€Ρ‘Π΄, Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ Π·Π°Ρ€Π°Π½Π΅Π΅ ΠΈ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊΠΎΠΉ шаг интСгрирования, Ρ‡Ρ‚ΠΎΠ±Ρ‹ заданная Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ Π·Π°Π²Π΅Π΄ΠΎΠΌΠΎ Π΄ΠΎΡΡ‚ΠΈΠ³Π°Π»Π°ΡΡŒ. Но Ρ‚Π°ΠΊ Ρ€Π΅Π΄ΠΊΠΎ Π±Ρ‹Π²Π°Π΅Ρ‚ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ (ΠΈ Π²ΠΎΠΎΠ±Ρ‰Π΅, Π½Π΅ ΠΏΡ€ΠΎΡ‰Π΅ Π»ΠΈ ΠΏΡ€ΠΈ извСстной Π½Π°ΠΏΠ΅Ρ€Ρ‘Π΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ сам ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΏΡ€ΠΎΡ‚Π°Π±ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½Π°ΠΏΠ΅Ρ€Ρ‘Π΄?), поэтому Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠ° ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° автоматичСской подстройки шага ΠΏΠΎΠ΄ Π·Π°Π΄Π°Π½Π½ΡƒΡŽ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ.

Как это Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ? Один ΠΈΠ· простых ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ β€” ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ Π ΡƒΠ½Π³Π΅ β€” Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠ², рассчитанных ΠΏΠΎ n ΠΈ 2n Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ, Π΄Π°Ρ‘Ρ‚ ΠΎΡ†Π΅Π½ΠΊΡƒ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ: Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠœΠ΅Ρ‚ΠΎΠ΄ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ ΡƒΠ΄ΠΎΠ±Π½Π΅Π΅ для удвоСния мСлкости разбиСния, Ρ‡Π΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² с Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ. ΠŸΡ€ΠΈ расчётС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ для удвоСния числа Ρ‚ΠΎΡ‡Π΅ΠΊ Π½ΡƒΠΆΠ½Ρ‹ Π½ΠΎΠ²Ρ‹Π΅ значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² сСрСдинах ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ² ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅Π³ΠΎ разбиСния, Ρ‚.Π΅. ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅Π΅ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для вычислСния ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ.

ΠžΡ‚ΡΡŽΠ΄Π° ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ ΠΊΠΎΠ΄ для ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ с ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ точности:

Π‘ Ρ‚Π°ΠΊΠΈΠΌ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠ΄Ρ‹Π½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Π°Ρ функция Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒΡΡ ΠΏΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρ€Π°Π· Π² ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅, ΠΈ всС вычислСнныС значСния ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ для ΠΎΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°.

Но нСльзя Π»ΠΈ ΠΏΡ€ΠΈ Ρ‚ΠΎΠΌ ΠΆΠ΅ количСствС вычислСний Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π΄ΠΎΠ±ΠΈΡ‚ΡŒΡΡ Π±ΠΎΠ»Π΅Π΅ высокой точности? ΠžΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ, Π΅ΡΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰ΠΈΠ΅ Ρ‚ΠΎΡ‡Π½Π΅Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ Π½Π° Ρ‚ΠΎΠΉ ΠΆΠ΅ самой сСткС.

ΠšΡƒΡΠΎΡ‡Π½ΠΎ-параболичСская аппроксимация

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅
Π˜Π»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΡ кусочно-параболичСского приблиТСния Π½Π° 3 ΠΈ 5 Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… (n=2 ΠΈ n=3).

ΠŸΡ€ΠΈΠ±Π»ΠΈΠΆΠ°Ρ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ² [xk;xk+2] ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠΌ ΠΎΡ‚ параболичСской аппроксимации Π½Π° этом ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ ΠΈ считая Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ распрСдСлСнными (xk+1=xk+h), ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Бимпсона:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Из Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ (4) Π½Π°ΠΏΡ€ΡΠΌΡƒΡŽ получаСтся «Π½Π°ΠΈΠ²Π½Π°Ρ» рСализация ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Бимпсона:

Для ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊ ΠΆΠ΅ вычислСниС ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° с шагами h ΠΈ h/2 β€” Π½ΠΎ Π²ΠΎΡ‚ Π½Π΅Π·Π°Π΄Π°Ρ‡Π°, ΠΏΡ€ΠΈ вычислСнии ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° с Π±ΠΎΠ»Π΅Π΅ ΠΌΠ΅Π»ΠΊΠΈΠΌ шагом Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅Π³ΠΎ вычислСния придётся ΠΎΡ‚Π±Ρ€ΠΎΡΠΈΡ‚ΡŒ, хотя ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π° Π½ΠΎΠ²Ρ‹Ρ… вычислСний Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π±ΡƒΠ΄Π΅Ρ‚ Π² Ρ‚Π΅Ρ… ΠΆΠ΅ Ρ‚ΠΎΡ‡ΠΊΠ°Ρ…, Ρ‡Ρ‚ΠΎ ΠΈ Ρ€Π°Π½ΡŒΡˆΠ΅.

БСсполСзной Ρ‚Ρ€Π°Ρ‚Ρ‹ машинного Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, ΠΊ ΡΡ‡Π°ΡΡ‚ΡŒΡŽ, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·Π±Π΅ΠΆΠ°Ρ‚ΡŒ, Ссли Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ Бимпсона Π±ΠΎΠ»Π΅Π΅ Ρ…ΠΈΡ‚Ρ€ΠΎΡƒΠΌΠ½Ρ‹ΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ. ΠŸΡ€ΠΈΡΠΌΠΎΡ‚Ρ€Π΅Π²ΡˆΠΈΡΡŒ ΠΏΠΎΠ²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½Π΅Π΅, Π·Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Бимпсона ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСн Ρ‡Π΅Ρ€Π΅Π· Π΄Π²Π° ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ с Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ шагами. ЯснСС всСго это Π²ΠΈΠ΄Π½ΠΎ Π½Π° Π±Π°Π·ΠΎΠ²ΠΎΠΌ случаС аппроксимации ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° ΠΏΠΎ Ρ‚Ρ€Ρ‘ΠΌ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ссли Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρƒ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ шага Π²Π΄Π²ΠΎΠ΅ ΠΈ Ρ…Ρ€Π°Π½ΠΈΡ‚ΡŒ Π΄Π²Π° послСдних вычислСния ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ, ΠΌΠ΅Ρ‚ΠΎΠ΄ Бимпсона с ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ точности рСализуСтся Π±ΠΎΠ»Π΅Π΅ эффСктивно.

Π‘Ρ€Π°Π²Π½ΠΈΠΌ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»:

Как Π²ΠΈΠ΄ΠΈΠΌ, ΠΎΠ±ΠΎΠΈΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΎΡ‚Π²Π΅Ρ‚ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Ρ‚ΡŒ с достаточно высокой Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ, Π½ΠΎ количСство Π²Ρ‹Π·ΠΎΠ²ΠΎΠ² ΠΏΠΎΠ΄Ρ‹Π½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ отличаСтся β€” ΠΌΠ΅Ρ‚ΠΎΠ΄ Π±ΠΎΠ»Π΅Π΅ высокого порядка эффСктивнСС Π² 32 Ρ€Π°Π·Π°!

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠ² Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ интСгрирования ΠΎΡ‚ числа шагов, ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠ±Π΅Π΄ΠΈΡ‚ΡŒΡΡ, Ρ‡Ρ‚ΠΎ порядок аппроксимации Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Бимпсона Ρ€Π°Π²Π΅Π½ Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘ΠΌ, Ρ‚.Π΅. ошибка числСнного интСгрирования Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅(Π° ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹ ΠΎΡ‚ кубичСских ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½ΠΎΠ² с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ этой Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡŽΡ‚ΡΡ с Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ Π΄ΠΎ ошибок округлСния ΠΏΡ€ΠΈ любом Ρ‡Ρ‘Ρ‚Π½ΠΎΠΌ n>0!).
Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅
ΠžΡ‚ΡΡŽΠ΄Π° ΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ Ρ‚Π°ΠΊΠΎΠΉ рост эффСктивности ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с простой Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ.

Π§Ρ‚ΠΎ дальшС?

Π”Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ°Ρ Π»ΠΎΠ³ΠΈΠΊΠ° ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ точности ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ», Π² Ρ†Π΅Π»ΠΎΠΌ, понятна β€” Ссли Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Ρ‚ΡŒ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ°Ρ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½Π°ΠΌΠΈ всё Π±ΠΎΠ»Π΅Π΅ высокой стСпСни, Ρ‚ΠΎ ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΎΡ‚ этих ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½ΠΎΠ² Π±ΡƒΠ΄Π΅Ρ‚ всё Ρ‚ΠΎΡ‡Π½Π΅Π΅ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ°Ρ‚ΡŒ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΎΡ‚ исходной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π­Ρ‚ΠΎΡ‚ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ называСтся построСниСм ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» ΠΡŒΡŽΡ‚ΠΎΠ½Π°-ΠšΠΎΡ‚Π΅ΡΠ°. Π˜Π·Π²Π΅ΡΡ‚Π½Ρ‹ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π²ΠΏΠ»ΠΎΡ‚ΡŒ Π΄ΠΎ 8 порядка аппроксимации, Π½ΠΎ Π²Ρ‹ΡˆΠ΅ срСди вСсовых коэффициСнтов wi Π² (2) ΠΏΠΎΡΠ²Π»ΡΡŽΡ‚ΡΡ Π·Π½Π°ΠΊΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ Ρ‡Π»Π΅Π½Ρ‹, ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΡ€ΠΈ вычислСниях Ρ‚Π΅Ρ€ΡΡŽΡ‚ ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ.

ΠŸΠΎΠΏΡ€ΠΎΠ±ΡƒΠ΅ΠΌ ΠΏΠΎΠΉΡ‚ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌ ΠΏΡƒΡ‚Ρ‘ΠΌ. Ошибка ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ прСдставляСтся Π² Π²ΠΈΠ΄Π΅ ряда ΠΏΠΎ стСпСням шага интСгрирования h. Π—Π°ΠΌΠ΅Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ свойство ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ (ΠΈ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² со срСднСй Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ!) Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ для Π½Π΅Ρ‘ этот ряд состоит Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΈΠ· Ρ‡Ρ‘Ρ‚Π½Ρ‹Ρ… стСпСнСй:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

На Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΊ этому Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡŽ основана экстраполяция Ричардсона: вмСсто Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ°Ρ‚ΡŒ ΠΏΠΎΠ΄Ρ‹Π½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½ΠΎΠΌ, ΠΏΠΎ рассчитанным приблиТСниям ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° отрСзкСстроится полиномиальная аппроксимация, которая ΠΏΡ€ΠΈ h=0 Π΄ΠΎΠ»ΠΆΠ½Π° Π΄Π°Π²Π°Ρ‚ΡŒ Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠ΅Π΅ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊ истинному Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°.

Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ошибки интСгрирования ΠΏΠΎ Ρ‡Ρ‘Ρ‚Π½Ρ‹ΠΌ стСпСням шага разбиСния Ρ€Π΅Π·ΠΊΠΎ ускоряСт ΡΡ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ экстраполяции, Ρ‚.ΠΊ. для аппроксимации порядка 2n Π½ΡƒΠΆΠ½ΠΎ всСго n Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ.

Если ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ слагаСмоС мСньшС ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅Π³ΠΎ, Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΡΠΊΠ»ΡŽΡ‡Π°Ρ‚ΡŒ стСпСни h, имСя приблиТСния ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°, рассчитанныС с Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ шагами. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ привСдённая рСализация Π»Π΅Π³ΠΊΠΎ позволяСт Π΄Ρ€ΠΎΠ±ΠΈΡ‚ΡŒ Ρ€Π°Π·Π±ΠΈΠ΅Π½ΠΈΠ΅ Π²Π΄Π²ΠΎΠ΅, ΡƒΠ΄ΠΎΠ±Π½ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для шагов h ΠΈ h/2.

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Π›Π΅Π³ΠΊΠΎ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ ΡΡ‚Π°Ρ€ΡˆΠ΅Π³ΠΎ Ρ‡Π»Π΅Π½Π° ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ Π² точности даст Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Бимпсона:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

ΠŸΠΎΠ²Ρ‚ΠΎΡ€ΡΡ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΡƒΡŽ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρƒ для Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Бимпсона, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Если ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚ΡŒ, вырисовываСтся такая Ρ‚Π°Π±Π»ΠΈΡ†Π°:

2 порядок4 порядок6 порядок.
I0,0
I1,0I1,1
I2,0I2,1I2,2
...

Π’ ΠΏΠ΅Ρ€Π²ΠΎΠΌ столбцС стоят ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹, вычислСнныС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ. ΠŸΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ ΠΎΡ‚ Π²Π΅Ρ€Ρ…Π½Π΅ΠΉ строки Π²Π½ΠΈΠ· Ρ€Π°Π·Π±ΠΈΠ΅Π½ΠΈΠ΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° становится Π²Π΄Π²ΠΎΠ΅ ΠΌΠ΅Π»ΡŒΡ‡Π΅, Π° ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ ΠΎΡ‚ Π»Π΅Π²ΠΎΠ³ΠΎ столбца Π²ΠΏΡ€Π°Π²ΠΎ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ΡΡ порядок аппроксимации ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° (Ρ‚.Π΅. Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌ столбцС находятся ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹ ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Бимпсона ΠΈ Ρ‚.Π΄.).

Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ‹ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹, ΠΊΠ°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ вывСсти ΠΈΠ· разлоТСния (5), связаны Ρ€Π΅ΠΊΡƒΡ€Ρ€Π΅Π½Ρ‚Π½Ρ‹ΠΌ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

ΠŸΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ приблиТСния ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΏΠΎ разности Ρ„ΠΎΡ€ΠΌΡƒΠ» Ρ€Π°Π·Π½Ρ‹Ρ… порядков Π² ΠΎΠ΄Π½ΠΎΠΉ строкС, Ρ‚.Π΅.

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ экстраполяции Ричардсона вмСстС с ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ называСтся ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π ΠΎΠΌΠ±Π΅Ρ€Π³Π°. Если ΠΌΠ΅Ρ‚ΠΎΠ΄ Бимпсона ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Π΅Ρ‚ Π΄Π²Π° ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰ΠΈΡ… значСния ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ, Ρ‚ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π ΠΎΠΌΠ±Π΅Ρ€Π³Π° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ всС Ρ€Π°Π½Π΅Π΅ вычислСнныС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ значСния для получСния Π±ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°.

Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ добавляСтся Π² класс Quadrature

ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΠΌ, ΠΊΠ°ΠΊ Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ аппроксимация высокого порядка:

УбСТдаСмся, Ρ‡Ρ‚ΠΎ, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠ°Ρ€Π°Π±ΠΎΠ», число Π²Ρ‹Π·ΠΎΠ²ΠΎΠ² ΠΏΠΎΠ΄Ρ‹Π½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ снизилось Π΅Ρ‰Ρ‘ Π² 8 Ρ€Π°Π·. ΠŸΡ€ΠΈ дальнСйшСм ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠΉ точности прСимущСства ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π ΠΎΠΌΠ±Π΅Ρ€Π³Π° ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ΡΡ Π΅Ρ‰Ρ‘ Π·Π°ΠΌΠ΅Ρ‚Π½Π΅Π΅:
Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

НСкоторыС замСчания

Π—Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ 2. Если ΠΌΠ΅Ρ‚ΠΎΠ΄ сходится ΠΏΡ€ΠΈ Π·Π°Π΄Π°Π½ΠΈΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ точности, это Π½Π΅ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ вычислСнноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚Ρƒ ΠΆΠ΅ ΡΠ°ΠΌΡƒΡŽ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ. Π’ ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, это относится ΠΊ случаям, ΠΊΠΎΠ³Π΄Π° задаваСмая ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ Π±Π»ΠΈΠ·ΠΊΠ° ΠΊ машинной точности.

Π—Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ 3. Π₯отя ΠΌΠ΅Ρ‚ΠΎΠ΄ Π ΠΎΠΌΠ±Π΅Ρ€Π³Π° для ряда Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ ΠΏΠΎΡ‡Ρ‚ΠΈ магичСским ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΎΠ½ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Ρƒ ΠΏΠΎΠ΄Ρ‹Π½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… высоких порядков. Π­Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‚ΠΎ для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ с ΠΈΠ·Π»ΠΎΠΌΠ°ΠΌΠΈ ΠΈΠ»ΠΈ Ρ€Π°Π·Ρ€Ρ‹Π²Π°ΠΌΠΈ ΠΎΠ½ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒΡΡ Ρ…ΡƒΠΆΠ΅ простых ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ². НапримСр, ΠΏΡ€ΠΎΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌ f(x)=|x|:

7 Π²Ρ‚ΠΎΡ€ΠΎΠ΅ слагаСмоС Π² (6) тСряСт Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ послС привСдСния порядков ΠΏΡ€ΠΈ слоТСнии чисСл с ΠΏΠ»Π°Π²Π°ΡŽΡ‰Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ, ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ порядка аппроксимации ΠΌΠΎΠΆΠ΅Ρ‚ вСсти ΠΊ накоплСнию ошибки округлСния.

Π—Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ 5. Π–Π΅Π»Π°ΡŽΡ‰ΠΈΠ΅ ΠΌΠΎΠ³ΡƒΡ‚ Ρ€Π°Π΄ΠΈ интСрСса ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ описанныС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ для нахоТдСния ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ΠΈ эквивалСнтного Π΅ΠΌΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Как говорится, почувствуйтС Ρ€Π°Π·Π½ΠΈΡ†Ρƒ.

Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅

ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΎ описаниС ΠΈ рСализация Π±Π°Π·ΠΎΠ²Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² числСнного интСгрирования Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π° Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ сСткС. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ, ΠΊΠ°ΠΊ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ нСслоТной ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π½Π° Π±Π°Π·Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ класс ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Π ΠΎΠΌΠ±Π΅Ρ€Π³Π°, Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ускоряСт ΡΡ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ числСнного интСгрирования. ΠœΠ΅Ρ‚ΠΎΠ΄ Ρ…ΠΎΡ€ΠΎΡˆΠΎ Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ для интСгрирования «ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ…» Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Ρ‚.Π΅. слабо ΠΌΠ΅Π½ΡΡŽΡ‰ΠΈΡ…ΡΡ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ интСгрирования, Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… особСнностСй Π½Π° краях ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° (см. Π—Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ 5), быстрых осцилляций ΠΈ Ρ‚.Π΄.

ΠŸΡ€ΠΎΠ΄Π²ΠΈΠ½ΡƒΡ‚Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ числСнного интСгрирования для Π±ΠΎΠ»Π΅Π΅ слоТных случаСв ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Π² ΠΊΠ½ΠΈΠ³Π°Ρ… ΠΈΠ· списка Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ (Π² [3] β€” с ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π½Π° C++).

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹ для Ρ‡Π°ΠΉΠ½ΠΈΠΊΠΎΠ²: ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ, ΠΏΡ€Π°Π²ΠΈΠ»Π° вычислСния, объяснСниС

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

РСшСниС ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠ² – Π·Π°Π΄Π°Ρ‡Π° лСгкая, Π½ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для ΠΈΠ·Π±Ρ€Π°Π½Π½Ρ‹Ρ…. Π­Ρ‚Π° ΡΡ‚Π°Ρ‚ΡŒΡ для Ρ‚Π΅Ρ…, ΠΊΡ‚ΠΎ Ρ…ΠΎΡ‡Π΅Ρ‚ Π½Π°ΡƒΡ‡ΠΈΡ‚ΡŒΡΡ ΠΏΠΎΠ½ΠΈΠΌΠ°Ρ‚ΡŒ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹, Π½ΠΎ Π½Π΅ Π·Π½Π°Π΅Ρ‚ ΠΎ Π½ΠΈΡ… Π½ΠΈΡ‡Π΅Π³ΠΎ ΠΈΠ»ΠΈ ΠΏΠΎΡ‡Ρ‚ΠΈ Π½ΠΈΡ‡Π΅Π³ΠΎ. Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π». Π—Π°Ρ‡Π΅ΠΌ ΠΎΠ½ Π½ΡƒΠΆΠ΅Π½? Как Π΅Π³ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ? Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ ΠΈ Π½Π΅ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹?

Если СдинствСнноС извСстноС Π²Π°ΠΌ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° – Π΄ΠΎΡΡ‚Π°Π²Π°Ρ‚ΡŒ ΠΊΡ€ΡŽΡ‡ΠΊΠΎΠΌ Π² Ρ„ΠΎΡ€ΠΌΠ΅ Π·Π½Π°Ρ‡ΠΊΠ° ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° Ρ‡Ρ‚ΠΎ-Ρ‚ΠΎ ΠΏΠΎΠ»Π΅Π·Π½ΠΎΠ΅ ΠΈΠ· труднодоступных мСст, Ρ‚ΠΎΠ³Π΄Π° Π΄ΠΎΠ±Ρ€ΠΎ ΠΏΠΎΠΆΠ°Π»ΠΎΠ²Π°Ρ‚ΡŒ! Π£Π·Π½Π°ΠΉΡ‚Π΅, ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠ΅ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹ ΠΈ ΠΏΠΎΡ‡Π΅ΠΌΡƒ Π±Π΅Π· этого Π½ΠΈΠΊΠ°ΠΊ нСльзя ΠΎΠ±ΠΎΠΉΡ‚ΠΈΡΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅.

ЕТСднСвная рассылка с ΠΏΠΎΠ»Π΅Π·Π½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠ΅ΠΉ для студСнтов всСх Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ – Π½Π° нашСм Ρ‚Π΅Π»Π΅Π³Ρ€Π°ΠΌ-ΠΊΠ°Π½Π°Π»Π΅.

Π˜Π·ΡƒΡ‡Π°Π΅ΠΌ понятиС Β« ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» Β»

Π˜Π½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π±Ρ‹Π»ΠΎ извСстно Π΅Ρ‰Π΅ Π² Π”Ρ€Π΅Π²Π½Π΅ΠΌ Π•Π³ΠΈΠΏΡ‚Π΅. ΠšΠΎΠ½Π΅Ρ‡Π½ΠΎ, Π½Π΅ Π² соврСмСнном Π²ΠΈΠ΄Π΅, Π½ΠΎ всС ΠΆΠ΅. Π‘ Ρ‚Π΅Ρ… ΠΏΠΎΡ€ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ написали ΠΎΡ‡Π΅Π½ΡŒ ΠΌΠ½ΠΎΠ³ΠΎ ΠΊΠ½ΠΈΠ³ ΠΏΠΎ этой Ρ‚Π΅ΠΌΠ΅. ОсобСнно ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ»ΠΈΡΡŒ ΠΡŒΡŽΡ‚ΠΎΠ½ ΠΈ Π›Π΅ΠΉΠ±Π½ΠΈΡ†, Π½ΠΎ ΡΡƒΡ‚ΡŒ Π²Π΅Ρ‰Π΅ΠΉ Π½Π΅ измСнилась.

Как ΠΏΠΎΠ½ΡΡ‚ΡŒ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹ с нуля? Никак! Для понимания этой Ρ‚Π΅ΠΌΡ‹ всС Ρ€Π°Π²Π½ΠΎ понадобятся Π±Π°Π·ΠΎΠ²Ρ‹Π΅ знания основ матСматичСского Π°Π½Π°Π»ΠΈΠ·Π°. БвСдСния ΠΎ ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ ΠΈ для понимания ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠ², ΡƒΠΆΠ΅ Π΅ΡΡ‚ΡŒ Ρƒ нас Π² Π±Π»ΠΎΠ³Π΅.

НСопрСдСлСнный ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»

ΠŸΡƒΡΡ‚ΡŒ Ρƒ нас Π΅ΡΡ‚ΡŒ какая-Ρ‚ΠΎ функция f(x).

НСопрСдСлСнным ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x) называСтся такая функция F(x), производная ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ€Π°Π²Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x).

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» – это производная Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚ ΠΈΠ»ΠΈ пСрвообразная. ΠšΡΡ‚Π°Ρ‚ΠΈ, ΠΎ Ρ‚ΠΎΠΌ, ΠΊΠ°ΠΊ Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅, Ρ‡ΠΈΡ‚Π°ΠΉΡ‚Π΅ Π² нашСй ΡΡ‚Π°Ρ‚ΡŒΠ΅.

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

ΠŸΠ΅Ρ€Π²ΠΎΠΎΠ±Ρ€Π°Π·Π½Π°Ρ сущСствуСт для всСх Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Π’Π°ΠΊΠΆΠ΅ ΠΊ ΠΏΠ΅Ρ€Π²ΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΠΉ часто ΠΏΡ€ΠΈΠ±Π°Π²Π»ΡΡŽΡ‚ Π·Π½Π°ΠΊ константы, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ Π½Π° константу, ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚. ΠŸΡ€ΠΎΡ†Π΅ΡΡ нахоТдСния ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° называСтся ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ.

ΠŸΡ€ΠΎΡΡ‚ΠΎΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Π§Ρ‚ΠΎΠ±Ρ‹ постоянно Π½Π΅ Π²Ρ‹ΡΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€Π²ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Π΅ элСмСнтарных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΈΡ… ΡƒΠ΄ΠΎΠ±Π½ΠΎ свСсти Π² Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ ΠΈ ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΡƒΠΆΠ΅ Π³ΠΎΡ‚ΠΎΠ²Ρ‹ΠΌΠΈ значСниями.

Полная Ρ‚Π°Π±Π»ΠΈΡ†Π° ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠ² для студСнтов

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»

ИмСя Π΄Π΅Π»ΠΎ с понятиСм ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°, ΠΌΡ‹ ΠΈΠΌΠ΅Π΅ΠΌ Π΄Π΅Π»ΠΎ с бСсконСчно ΠΌΠ°Π»Ρ‹ΠΌΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ. Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π» ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, массу Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π°, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΏΡ€ΠΈ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΡƒΡ‚ΡŒ ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ΅ Π΄Ρ€ΡƒΠ³ΠΎΠ΅. Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» – это сумма бСсконСчно большого количСства бСсконСчно ΠΌΠ°Π»Ρ‹Ρ… слагаСмых.

Π’ качСствС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° прСдставим сСбС Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ°ΠΊΠΎΠΉ-Π½ΠΈΠ±ΡƒΠ΄ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Как Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ? Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°! РазобьСм ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΡƒΡŽ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΡƒΡŽ осями ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π½Π° бСсконСчно ΠΌΠ°Π»Ρ‹Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ Ρ„ΠΈΠ³ΡƒΡ€Π° окаТСтся Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Π° Π½Π° Ρ‚ΠΎΠ½ΠΊΠΈΠ΅ столбики. Π‘ΡƒΠΌΠΌΠ° ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ столбиков ΠΈ Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΎΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ. Но ΠΏΠΎΠΌΠ½ΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ вычислСниС даст ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚. Однако Ρ‡Π΅ΠΌ мСньшС ΠΈ ΡƒΠΆΠ΅ Π±ΡƒΠ΄ΡƒΡ‚ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ, Ρ‚Π΅ΠΌ Ρ‚ΠΎΡ‡Π½Π΅Π΅ Π±ΡƒΠ΄Π΅Ρ‚ вычислСниС. Если ΠΌΡ‹ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΠΌ ΠΈΡ… Π΄ΠΎ Ρ‚Π°ΠΊΠΎΠΉ стСпСни, Ρ‡Ρ‚ΠΎ Π΄Π»ΠΈΠ½Π° Π±ΡƒΠ΄Π΅Ρ‚ ΡΡ‚Ρ€Π΅ΠΌΠΈΡ‚ΡŒΡΡ ΠΊ Π½ΡƒΠ»ΡŽ, Ρ‚ΠΎ сумма ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ² Π±ΡƒΠ΄Π΅Ρ‚ ΡΡ‚Ρ€Π΅ΠΌΠΈΡ‚ΡŒΡΡ ΠΊ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹. Π­Ρ‚ΠΎ ΠΈ Π΅ΡΡ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π», ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ записываСтся Ρ‚Π°ΠΊ:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Π’ΠΎΡ‡ΠΊΠΈ Π° ΠΈ b Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΡ€Π΅Π΄Π΅Π»Π°ΠΌΠΈ интСгрирования.

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Π‘Π°Ρ€ΠΈ Алибасов ΠΈ Π³Ρ€ΡƒΠΏΠΏΠ°

ΠšΡΡ‚Π°Ρ‚ΠΈ! Для Π½Π°ΡˆΠΈΡ… Ρ‡ΠΈΡ‚Π°Ρ‚Π΅Π»Π΅ΠΉ сСйчас дСйствуСт скидка 10% Π½Π° любой Π²ΠΈΠ΄ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠŸΡ€Π°Π²ΠΈΠ»Π° вычислСния ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠ² для Ρ‡Π°ΠΉΠ½ΠΈΠΊΠΎΠ²

Бвойства Π½Π΅ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°

Как Ρ€Π΅ΡˆΠΈΡ‚ΡŒ Π½Π΅ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»? Π—Π΄Π΅ΡΡŒ ΠΌΡ‹ рассмотрим свойства Π½Π΅ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ пригодятся ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ².

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Бвойства ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Как ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»? Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΡŒΡŽΡ‚ΠΎΠ½Π°-Π›Π΅ΠΉΠ±Π½ΠΈΡ†Π°.

ΠœΡ‹ ΡƒΠΆΠ΅ выяснили, Ρ‡Ρ‚ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» – это ΠΏΡ€Π΅Π΄Π΅Π» суммы. Но ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°? Для этого сущСствуСт Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΡŒΡŽΡ‚ΠΎΠ½Π°-Π›Π΅ΠΉΠ±Π½ΠΈΡ†Π°:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠ²

НиТС рассмотрим Π½Π΅ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ с Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒΡΡ Π² тонкостях Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, Π° Ссли Ρ‡Ρ‚ΠΎ-Ρ‚ΠΎ нСпонятно, Π·Π°Π΄Π°Π²Π°ΠΉΡ‚Π΅ вопросы Π² коммСнтариях.

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Для закрСплСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° посмотритС Π²ΠΈΠ΄Π΅ΠΎ ΠΎ Ρ‚ΠΎΠΌ, ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°ΡŽΡ‚ΡΡ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅. НС ΠΎΡ‚Ρ‡Π°ΠΈΠ²Π°Π΅Ρ‚Π΅ΡΡŒ, Ссли ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» Π½Π΅ даСтся сразу. ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ΡΡŒ Π² ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ сСрвис для студСнтов, ΠΈ любой Ρ‚Ρ€ΠΎΠΉΠ½ΠΎΠΉ ΠΈΠ»ΠΈ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΏΠΎ Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΉ повСрхности станСт Π²Π°ΠΌ ΠΏΠΎ силам.

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Иван Колобков, извСстный Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠ°ΠΊ Π”ΠΆΠΎΠ½ΠΈ. ΠœΠ°Ρ€ΠΊΠ΅Ρ‚ΠΎΠ»ΠΎΠ³, Π°Π½Π°Π»ΠΈΡ‚ΠΈΠΊ ΠΈ ΠΊΠΎΠΏΠΈΡ€Π°ΠΉΡ‚Π΅Ρ€ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΈ Zaochnik. ΠŸΠΎΠ΄Π°ΡŽΡ‰ΠΈΠΉ Π½Π°Π΄Π΅ΠΆΠ΄Ρ‹ ΠΌΠΎΠ»ΠΎΠ΄ΠΎΠΉ ΠΏΠΈΡΠ°Ρ‚Π΅Π»ΡŒ. ΠŸΠΈΡ‚Π°Π΅Ρ‚ любовь ΠΊ Ρ„ΠΈΠ·ΠΈΠΊΠ΅, Ρ€Π°Ρ€ΠΈΡ‚Π΅Ρ‚Π½Ρ‹ΠΌ Π²Π΅Ρ‰Π°ΠΌ ΠΈ творчСству Π§. Буковски.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *