что значит найти нули функции
Нули функции
Прежде чем перейти к изучению темы «Нули функции» внимательно изучите уроки
«Что такое функция в математике» и «Как решать задачи на функцию».
Нули функции — это
значения « x » (аргумента функции),
при которых « y = 0 ».
В заданиях «Найдите нули функции» чаще всего сама функция задана через формулу (аналитически). Разберем алгоритм решения подобных задач.
Как найти нули функции, заданной формулой
По традиции разберемся на примере.
№ 260 (1) Мерзляк 9 класс
Найдите нули функции:
Подставим вместо значения функции « f(x) » ноль.
Решаем полученное линейное уравнение и записываем полученный ответ
для « x ».
Перенесем неизвестное « 0,2x » из правой части уравнения в левую с противоположным знаком.
Переведем десятичную дробь « 0,2 » в обыкновненную для упрощения дальнейших расчетов.
2 |
10 |
· x = −3 | · 10
2 |
10 |
· x · 10 = −3 · 10
2 · 10 |
10 |
· x = −30
Ответ: x = −15 является нулем
функции f(x) = 0,2x + 3
№ 260 (5) Мерзляк 9 класс
Найдите нули функции:
Вместо « f(x) » подставим ноль.
В левой части полученного уравнения у нас два множителя:
« x » и « (x 2 − 4) ». Результат их умножения равен нулю.
Это возможно, когда любой из множителей равен нулю. Поэтому рассмотрим оба варианта: когда множитель « x » равен нулю и когда множитель « (x 2 − 4) » равен нулю.
Решаем квадратное уравнение
« x 2 − 4 = 0 ». Используем формулу для решения квадратного уравнения с дискриминантом.
a · x 2 + b · x + c = 0
x1;2 =
−b ± √ b 2 − 4ac |
2a |
x1;2 =
0 ± √ 0 2 − 4 · 1 · (−4) |
2 · 1 |
x1 =
| x2 =
| ||||
x1 = 2 | x2 = −2 |
Запишем все полученные корни уравнений в ответ в порядке возрастания. Они будут являться нулями функции.
Ответ: x = −2; x = 0; x = 2 являются нулями функции f(x) = x 3 − 4x
№ 260 (4) Мерзляк 9 класс
Найдите нули функции:
h(x) =
x 2 − x − 6 |
x + 3 |
Подставим вместо « h(x) » ноль.
0 =
x 2 − x − 6 |
x + 3 |
Перенесем правую часть
x 2 − x − 6 |
x + 3 |
в левую, изменив ее знак на минус.
− (
x 2 − x − 6 |
x + 3 |
) = 0 | · (−1)
x 2 − x − 6 |
x + 3 |
= 0
Единственный вариант, когда дробь будет равна нулю, только если
ее числитель « x 2 − x − 6 » будет равен нулю. Знаменатель « x + 3 » не может быть равен нулю, так как на ноль делить нельзя.
Решим полученное квадратное уравнение через формулу с дискриминантом.
a · x 2 + b · x + c = 0
x1;2 =
−b ± √ b 2 − 4ac |
2a |
x1;2 =
−(−1) ± √ (−1) 2 − 4 · 1 · (−6) |
2 · 1 |
x1;2 =
1 ± √ 1 + 24 |
2 |
x1 =
| x2 =
| ||||
x1 =
| x2 =
| ||||
x1 = 3 | x2 = −2 |
№ 261 (3) Мерзляк 9 класс
Найдите нули функции:
Заменим « f(x) » на ноль.
Единственное число, квадратный корень которого равен нулю — это сам ноль. Поэтому, квадратный корень
« √ x 2 − 4 = 0 » будет равен нулю, когда его подкоренное выражение « x 2 − 4 » будет равно нулю.
Осталось решить полученное квадратное уравнение, чтобы найти нули функции
« f(x) = √ x 2 − 4 ».
x1;2 =
−b ± √ b 2 − 4ac |
2a |
x1;2 =
−(−0) ± √ (−0) 2 − 4 · 1 · (−4) |
2 · 1 |
x1 =
| x2 =
| ||||
x1 = 2 | x2 = −2 |
Ответ: x = −2; x = 2 являются нулями функции f(x) = √ x 2 − 4
Как найти нули функции на графике функции
Графически нули функции — это точки пересечения графика функции
с осью « Ox » (осью абсцисс).
По определению нули функции — это значения « x »,
при которых « y = 0 ». Другими словами, у точек графика функции, которые являются нулями функции,
координата « x » равна нулю.
Чтобы найти нули функции на графике нам остается, только найти, какая у них координата по оси « Ox ».
Рассмотрим на примере.
№ 255 (1) Мерзляк 9 класс
На рисунке ниже изображен график функции « y = f(x) », определенной на множестве действительных чисел. Используя график, найдите нули функции.
Отметим на графике функции его точки пересечения с осью « Ox ».
Точки « (·)А » и « (·)B » — нули функции. Теперь определим, чему равны их координаты по оси « Ox ».
На графике видно, что у точки « (·)А » координата « x » равна « 0 », а у точки « (·)B » координата « x » равна « 2 ».
Запишем полученные значения координат « x » в ответ.
Ответ: x = 0 ; x = 2 являются нулями функции.
Как найти нули функции, заданной таблицей
В некоторых заданиях, где требуется найти нули функции, сама функция задана не вполне привычно с помощью формулы, а с помощью таблицы. Поиск нулей в таких примерах является легкой задачей.
№ 1.83 (2) Кузнецова 9 класс
Найдите нули функции, заданной таблицей.
x | −2 | −1 | 0 | 1 | 2 | 3 |
y | −3 | −1,5 | 0 | 2 | 1 | 0 |
Вспомним определение нулей функции.
Нули функции — это
значения « x » в функции, при которых « y = 0 ».
Согласно определению нулей функции нам достаточно найти значения « x » в таблице,
где « y = 0 ». Выделим их цветом.
x | −2 | −1 | 0 | 1 | 2 | 3 |
y | −3 | −1,5 | 0 | 2 | 1 | 0 |
Остаётся только записать в ответ значения « x » из таблицы.
Ответ: x = 0; x = 3 являются нулями функции, заданной таблицей.
Свойства функции. Возрастание и убывание, наибольшее и наименьшее значения, нули, промежутки знакопостоянства.
теория по математике 📈 функции
Каждый из нас встречался с разными графиками, как на уроках, так и в жизни. Например, рассматривали, как изменяется температура воздуха в определенный период времени.
На рисунке видно, что температура воздуха была отрицательной с 0 часов до 6 часов, а также с 20 до 24 часов. Еще можем сказать, что температура повышалась до 14 часов, а затем понижалась. То есть по данному графику мы смогли определить некоторые свойства зависимости температуры воздуха от времени суток.
Остановимся подробнее на свойствах функций.
Нули функции
Нули функции – это значение аргумента, при которых функция обращается в нуль. Если смотреть нули функции на графике, то берем точки, где график пересекает ось х.
На рисунке он пересекает ось х при х=-1; х=4; х=6. Эти точки пересечения выделены красным цветом. Внимание!
Существует функция, которая не будет иметь нули функции. Это гипербола. Вспомним, что функция имеет вид у=k/x, где х не равное 0 число.
а) Для нахождения нулей функции необходимо в данную формулу вместо у подставить число 0, так как координаты точки пересечения графика с осью х (х;0). Нам нужно найти значение х. Получаем 0 = –11х +12. Решаем уравнение. Переносим слагаемое, содержащее переменную, в левую часть, меняя знак на противоположный: 11х=22
Находим х, разделив 22 на 11: х=22:11
Таким образом, мы нашли нуль функции: х=2
Пример №2. Найти нули функции у=f(x) по заданному графику.
Находим точки пересечения графика с осью х и выписываем значения х в этих точках. Это (-4,9); (-1,2); 2,2 и 5,7. У нас на рисунке точки пересечения выделены красным цветом.
Промежутки знакопостоянства
Промежутки, где функция сохраняет знак (то есть значение y либо положительное на этом промежутке, либо отрицательное), называется промежутками знакопостоянства.
Пример №3. Найдем промежутки знакопостоянства по заданному на промежутке [-2; 10] графику функции у=f(x).
Функция принимает отрицательные значения в промежутках (-1; 3) и (8; 10]. Обратите внимание на линии синего цвета.
Возрастание и убывание функции
Значения функции могут уменьшаться или увеличиваться. Это зависит от того, как изменяются значения х. Рассмотрим это свойство по рисунку.
Посмотрим на значения х, которые увеличиваются от 2 до 5. В этом случае значения у уменьшаются. На графике эта часть выделена зеленым цветом. Слева направо эта часть графика идет вниз. То есть в промежутке [2;5] функция у=f(x) является убывающей.
Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции; функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.
Построение графиков функций
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Понятие функции
Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.
Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:
Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.
Например, для функции вида область определения выглядит так
Область значений — множество у, то есть это значения, которые может принимать функция.
Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.
Понятие графика функции
Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.
График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.
Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.
Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.
В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.
Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:
Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.
Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.
Исследование функции
Важные точки графика функции y = f(x):
Стационарные точки — точки, в которых производная функции f(x) равна нулю.
Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.
Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.
Нули функции — это значения аргумента, при которых функция равна нулю.
Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.
Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке:
Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.
Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.
Схема построения графика функции:
У нас есть отличные курсы по математике для учеников с 1 по 11 классы!
Построение графика функции
Чтобы понять, как строить графики функций, потренируемся на примерах.
Задача 1. Построим график функции
Упростим формулу функции:
Задача 2. Построим график функции
Выделим в формуле функции целую часть:
График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции
Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.
Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.
Вспомним, как параметры a, b и c определяют положение параболы.
Ветви вниз, следовательно, a 0.
Точка пересечения с осью Oy — c = 0.
Координата вершины , т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.
Ветви вниз, следовательно, a 0.
Координата вершины , т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b
x | y |
0 | -1 |
1 | 2 |
x | y |
0 | 2 |
1 | 1 |
x | y |
0 | 0 |
1 | 2 |
k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.
Задача 5. Построить график функции
Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.
Нули функции: 3, 2, 6.
Промежутки знакопостоянства функции определим с помощью метода интервалов.
Вертикальные асимптоты: x = 0, x = 4.
Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.
Вот так выглядит график:
Задача 6. Построить графики функций:
б)
г)
д)
Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.
а)
Преобразование в одно действие типа f(x) + a.
Сдвигаем график вверх на 1:
б)
Сдвигаем график вправо на 1:
Сдвигаем график вправо на 1:
Сдвигаем график вверх на 2:
г)
Преобразование в одно действие типа
Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:
д)
Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.
Сжимаем график в два раза вдоль оси абсцисс:
Сдвигаем график влево на 1/2 вдоль оси абсцисс:
Отражаем график симметрично относительно оси абсцисс:
Нули функции
Что такое нули функции? Как определить нули функции аналитически и по графику?
Нули функции — это значения аргумента, при которых функция равна нулю.
Чтобы найти нули функции, заданной формулой y=f(x), надо решить уравнение f(x)=0.
Если уравнение не имеет корней, нулей у функции нет.
1) Найти нули линейной функции y=3x+15.
Чтобы найти нули функции, решим уравнение 3x+15 =0.
2) Найти нули квадратичной функции f(x)=x²-7x+12.
Для нахождения нулей функции решим квадратное уравнение
Его корни x1=3 и x2=4 являются нулями данной функции.
3)Найти нули функции
Дробь имеет смысл, если знаменатель отличен от нуля. Следовательно, x²-1≠0, x² ≠ 1,x ≠±1. То есть область определения данной функции (ОДЗ)
Из корней уравнения x²+5x+4=0 x1=-1 x2=-4 в область определения входит только x=-4.
Чтобы найти нули функции, заданной графически, надо найти точки пересечения графика функции с осью абсцисс.
Если график не пересекает ось Ox, функция не имеет нулей.
функция, график которой изображен на рисунке,имеет четыре нуля —
В алгебре задача нахождения нулей функции встречается как в виде самостоятельного задания, так и при решения других задач, например, при исследовании функции, решении неравенств и т.д.