что значит номинальная частота вращения двигателя
Номинальная частота вращения двигателя
Смотри также родственные термины:
3.4 номинальная частота вращения двигателя S (rated engine speed): Частота вращения коленчатого вала (число оборотов в минуту), при которой двигатель развивает максимальную полезную мощность, установленную производителем.
Полезное
Смотреть что такое «Номинальная частота вращения двигателя» в других словарях:
номинальная частота вращения двигателя S — 3.4 номинальная частота вращения двигателя S (rated engine speed): Частота вращения коленчатого вала (число оборотов в минуту), при которой двигатель развивает максимальную полезную мощность, установленную производителем. Источник: ГОСТ ИС … Словарь-справочник терминов нормативно-технической документации
номинальная частота вращения двигателя в минуту — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN rated engine speed … Справочник технического переводчика
номинальная частота вращения — 3.14 номинальная частота вращения: Установленная предприятием изготовителем частота вращения, при которой достигается номинальная мощность. Источник … Словарь-справочник терминов нормативно-технической документации
номинальная частота вращения коленчатого вала — номинальная частота вращения коленчатого вала: Расчетное значение частоты вращения коленчатого вала. Источник: ГОСТ 30419 96: Устройства воздухообеспечения тормозного оборудования. Компрессоры. Общие требования безопасности … Словарь-справочник терминов нормативно-технической документации
номинальная частота вращения вала — Частота вращения выходного вала газотурбинного двигателя, при которой определены его расчетные показатели. [ГОСТ Р 51852 2001] Тематики установки газотурбинные EN rated speed … Справочник технического переводчика
Номинальная частота вращения коленчатого вала (ротора) двигателя — По ГОСТ 14846 Источник: ГОСТ 20306 90: Автотранспортные средства. Топливная экономичность. Методы испытаний … Словарь-справочник терминов нормативно-технической документации
номинальная частота вращения вала — 39. номинальная частота вращения вала: Частота вращения выходного вала газотурбинного двигателя, при которой определены его расчетные показатели. Источник: ГОСТ Р 51852 2001: Установки газотурбинные. Термины и определения оригинал документа См … Словарь-справочник терминов нормативно-технической документации
номинальная частота вращения синхронного генератора — 3.1.5.1 номинальная частота вращения синхронного генератора (rated speed of synchronous generator rotation): Частота вращения nr, G, определяемая по формуле где fr номинальная частота, Гц; p число пар полюсов. Источник … Словарь-справочник терминов нормативно-технической документации
номинальная частота вращения асинхронного генератора — 3.1.5.2 номинальная частота вращения асинхронного генератора (rated speed of asynchronous generator rotation): Частота вращения nr,G, определяемая по формуле где sr,G расчетное значение скольжения асинхронного генератора (rated slip of… … Словарь-справочник терминов нормативно-технической документации
номинальная частота вращения генератора — 3.1.5 номинальная частота вращения генератора (rated speed of generator rotation); nr, G: Частота вращения, необходимая для генерирования напряжения номинальной частоты. Источник … Словарь-справочник терминов нормативно-технической документации
Механические и электрические характеристики асинхронных электродвигателей
В данной статье осветим тему механических и электрических характеристик электродвигателей. На примере асинхронного двигателя рассмотрим такие параметры как мощность, работа, КПД, косинус фи, вращающий момент, угловая скорость, линейная скорость и частота. Все эти характеристики оказываются важными при проектировании оборудования, в котором электродвигатели служат в качестве приводных.
Механические характеристики электродвигателя представляют собой зависимость угловой скорости ω от развиваемого им момента на валу, т.е. ω = f (M). Различают естественные и искусственные механические характеристики электродвигателя.
Естественная механическая характеристика соответствует работе электродвигателя с номинальными параметрами при нормальной схеме включения. Искусственная механическая характеристика соответствует работе электродвигателя с параметрами, отличающимися от номинальных, например, при введении сопротивления, изменении питающего напряжения, частоты и др.
Сегодня особенно широко распространены в промышленности именно асинхронные электродвигатели, поэтому на их характеристиках и остановимся.
Естественная механическая характеристика асинхронного двигателя
Для примера рассмотрим АИР80В2У3.
Номинальная механическая мощность асинхронного электродвигателя
На шильдике (на паспортной табличке) электродвигателя указывается всегда номинальная механическая мощность на валу данного двигателя. Это не та электрическая мощность, которую данный электродвигатель потребляет из сети.
Так, например, для двигателя АИР80В2У3, номинал в 2200 ватт соответствует именно механической мощности на валу. То есть в оптимальном рабочем режиме данный двигатель способен выполнять механическую работу 2200 джоулей каждую секунду. Обозначим эту мощность как P1 = 2200 Вт.
Номинальная активная электрическая мощность асинхронного электродвигателя
Чтобы определить номинальную активную электрическую мощность асинхронного электродвигателя, опираясь на данные с шильдика, необходимо принять в расчет КПД. Так, для данного электродвигателя КПД составляет 83%.
Что это значит? Это значит, что только часть активной мощности, подаваемой из сети на обмотки статора двигателя, и безвозвратно потребляемой двигателем, преобразуется в механическую мощность на валу. Активная мощность равна P = P1/КПД. Для нашего примера, по представленному шильдику видим, что P1 = 2200, КПД = 83%. Значит P = 2200/0,83 = 2650 Вт.
Номинальная полная электрическая мощность асинхронного электродвигателя
Полная электрическая мощность, подаваемая на статор электродвигателя от сети всегда больше механической мощности на валу и больше активной мощности, безвозвратно потребляемой электродвигателем.
Для нахождения полной мощности достаточно активную мощность разделить на косинус фи. Таким образом, полная мощность S = P/Cosφ. Для нашего примера P = 2650 Вт, Cosφ = 0,87. Следовательно полная мощность S = 2650/0,87 = 3046 ВА.
Номинальная реактивная электрическая мощность асинхронного электродвигателя
Часть полной мощности, подаваемой на обмотки статора асинхронного электродвигателя, возвращается в сеть. Это реактивная мощность Q.
Реактивная мощность связана с полной мощностью через sinφ, и связана с активной и с полной мощностью через квадратный корень. Для нашего примера:
Реактивная мощность Q измеряется в ВАР — в вольт-амперах реактивных.
Теперь давайте рассмотрим механические характеристики нашего асинхронного двигателя: номинальный рабочий момент на валу, угловую скорость, линейную скорость, частоту вращения ротора и ее связь с частотой питания электродвигателя.
Частота вращения ротора асинхронного электродвигателя
На шильдике мы видим, что при питании переменным током частотой в 50 Гц, ротор двигателя совершает при номинальной нагрузке 2870 оборотов в минуту, обозначим эту частоту как n1.
Что это значит? Поскольку магнитное поле в обмотках статора создается переменным током частотой 50 Гц, то для двигателя с одной парой полюсов (коим является АИР80В2У3) частота «вращения» магнитного поля, синхронная частота n, оказывается равной 3000 оборотов в минуту, что тождественно 50 оборотам в секунду.
Значение s можно определить, разделив разность синхронной и асинхронной частот на синхронную частоту, и выразив это значение в процентах:
Для нашего примера s = ( (3000 – 2870)/3000 ) *100% = 4,3%.
Угловая скорость асинхронного двигателя
Угловая скорость ω выражается в радианах в секунду. Для определения угловой скорости достаточно частоту вращения ротора n1 перевести в обороты в секунду (f), и умножить на 2 Пи, поскольку один полный оборот составляет 2 Пи или 2*3,14159 радиан. Для двигателя АИР80В2У3 асинхронная частота n1 составляет 2870 оборотов в минуту, что соответствует 2870/60 = 47,833 оборотам в секунду.
Умножая на 2 Пи, имеем: 47,833*2*3,14159 = 300,543 рад/с. Можно перевести в градусы, для этого вместо 2 Пи подставить 360 градусов, тогда для нашего примера получится 360*47,833 = 17220 градусов в секунду. Однако подобные расчеты обычно ведут именно в радианах в секунду. Поэтому угловая скорость ω = 2*Пи*f, где f = n1/60.
Линейная скорость асинхронного электродвигателя
Линейная скорость v относится к оборудованию, на котором асинхронный двигатель установлен в качестве привода. Так, если на вал двигателя установлен шкив или, скажем, наждачный диск, известного радиуса R, то линейная скорость точки на краю шкива или диска может быть найдена по формуле:
Номинальный вращающий момент асинхронного двигателя
Каждый асинхронный электродвигатель характеризуется номинальным вращающим моментом Мн. Вращающий момент М связан с механической мощностью P1 через угловую скорость следующим образом:
Вращающий момент или момент силы, действующей на определенном расстоянии от центра вращения, для двигателя сохраняется, причем с ростом радиуса уменьшается сила, а чем радиус меньше, тем больше сила, поскольку:
Так, чем больше радиус шкива, тем меньшая сила действует на его краю, а наибольшая сила действует непосредственно на валу электродвигателя.
Для приведенного в качестве примера двигателя АИР80В2У3 мощность P1 равна 2200 Вт, а частота n1 равна 2870 оборотов в минуту или f = 47,833 оборота в секунду. Следовательно угловая скорость составляет 2*Пи*f, то есть 300,543 рад/с, и номинальный вращающий момент Мн равен P1/(2*Пи*f). Мн = 2200/(2*3,14159*47,833) = 7,32 Н*м.
Таким образом, исходя из данных, указанных на шильдике асинхронного электродвигателя, можно найти все основные электрические и механические его параметры.
Надеемся, что данная статья помогла вам разобраться в том, как связаны между собой угловая скорость, частота, вращающий момент, активная, полезная и полная мощность, а также КПД электродвигателя.
Номинальная частота вращения — частота вращения, соответствующая работе машины при номинальных напряжении, мощности и частоте тока и номинальных условиях применения.
Что значит номинальная частота вращения двигателя
3.9 номинальная частота вращения n
3.8, 3.9 (Измененная редакция, title=»Изменение № 1 (ИУС 05-2014)»).
3.11 номинальная частота вращения n
(rated speed of asynchronous generator rotation): Частота вращения
nr,
G, определяемая по формуле
r,G — расчетное значение скольжения асинхронного генератора (rated slip of asynchronous generator).
3.2. В настоящем стандарте применены следующие термины с соответствующими определениями для характеристик напряжения:
39. номинальная частота вращения вала:
Частота вращения выходного вала газотурбинного двигателя, при которой определены его расчетные показатели.
3.13 номинальная частота вращения вала насоса; n
ном:
Частота вращения вала насоса, соответствующая номинальному режиму работы насоса.
3.1.5 номинальная частота вращения генератора
(rated speed of generator rotation);
n
r, G:
Частота вращения, необходимая для генерирования напряжения номинальной частоты.
3.5. Номинальная частота вращения двигателя
— частота вращения коленчатого вала (об/мин), при которой согласно документации изготовителя двигатель должен развивать номинальную мощность.
3.4 номинальная частота вращения двигателя S
(rated engine speed): Частота вращения коленчатого вала (число оборотов в минуту), при которой двигатель развивает максимальную полезную мощность, установленную производителем.
номинальная частота вращения коленчатого вала:
Расчетное значение частоты вращения коленчатого вала.
Номинальная частота вращения коленчатого вала (ротора) двигателя
3.11 номинальная частота вращения коленчатого вала двигателя:
Номинальная частота вращения пном
. — частота вращения рабочего колеса первой ступени насоса при номинальных значениях подачи насоса Qном., напора Нном. и геометрической высоты всасывания hг.ном..
3.1.5.1 номинальная частота вращения синхронного генератора
(rated speed of synchronous generator rotation): Частота вращения
n
r, G, определяемая по формуле
r — номинальная частота, Гц;
Смотреть что такое «номинальная частота вращения» в других словарях:
номинальная частота вращения — nr Частота вращения при номинальной мощности, соответствующая номинальному значению частоты вращения электроагрегата. [ГОСТ Р ИСО 8528 2 2007] Тематики электроагрегаты генераторные EN declared speed … Справочник технического переводчика
номинальная частота вращения коленчатого вала — номинальная частота вращения коленчатого вала: Расчетное значение частоты вращения коленчатого вала. Источник: ГОСТ 30419 96: Устройства воздухообеспечения тормозного оборудования. Компрессоры. Общие требования безопасности … Словарь-справочник терминов нормативно-технической документации
номинальная частота вращения вала — Частота вращения выходного вала газотурбинного двигателя, при которой определены его расчетные показатели. [ГОСТ Р 51852 2001] Тематики установки газотурбинные EN rated speed … Справочник технического переводчика
номинальная частота вращения рентгеновской трубки — Частота вращения анода, при достижении которой рентгеновская трубка работает с номинальной мощностью. [ГОСТ 20337 74] Тематики рентгеновские приборы DE Nenndrehfrequenz der Anode der Röntgenröhre … Справочник технического переводчика
Номинальная частота вращения пном — частота вращения рабочего колеса первой ступени насоса при номинальных значениях подачи насоса Qном., напора Нном. и геометрической высоты всасывания hг.ном.. Источник: НПБ 313 2002: Техника пожарная. Мотопомпы пожарные. Общие технические требов … Словарь-справочник терминов нормативно-технической документации
номинальная частота вращения агрегата — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN nominal set speed … Справочник технического переводчика
номинальная частота вращения двигателя в минуту — — [https://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN rated engine speed … Справочник технического переводчика
Номинальная частота вращения коленчатого вала (ротора) двигателя — По ГОСТ 14846 Источник: ГОСТ 20306 90: Автотранспортные средства. Топливная экономичность. Методы испытаний … Словарь-справочник терминов нормативно-технической документации
номинальная частота вращения вала — 39. номинальная частота вращения вала: Частота вращения выходного вала газотурбинного двигателя, при которой определены его расчетные показатели. Источник: ГОСТ Р 51852 2001: Установки газотурбинные. Термины и определения оригинал документа См … Словарь-справочник терминов нормативно-технической документации
Номинальная частота вращения двигателя — 3.5. Номинальная частота вращения двигателя частота вращения коленчатого вала (об/мин), при которой согласно документации изготовителя двигатель должен развивать номинальную мощность. Источник: ГОСТ 27247 87: Машины землеройные. Метод определения … Словарь-справочник терминов нормативно-технической документации
Номинальная скорость вращения
Прежде, чем дать определение этому понятию, необходимо определиться, что такое номинальный режим работы какого-либо устройства. Это такой порядок работы устройства, при котором достигаются наибольшая эффективность и надёжность процесса на продолжении длительного времени. Исходя из этого, номинальная скорость вращения – количество оборотов в минуту при работе в номинальном режиме. Время, необходимое для одного оборота, составляет 1/v секунд. Оно называется периодом вращения T. Значит, связь между периодом обращения и частотой имеет вид:
Будет полезно: Ковка или литье что лучше?
К сведению. Частота вращения вала асинхронного двигателя – 3000 об./мин., это номинальная скорость вращения выходного хвостовика вала при номинальном режиме работы электродвигателя.
Как найти или узнать частоты вращений различных механизмов? Для этого применяется прибор, который называется тахометр.
Номинальная механическая мощность
Этот параметр электродвигателя записывается в паспортную табличку и измеряется в киловаттах. На фото характеристик электродвигателей показан внешний вид паспортной таблички (шильдика).
Номинальная механическая мощность относится к валу электродвигателя, и это понятие отличается от электрической мощности, рассчитываемой в зависимости от количества потребляемой электроэнергии.
Например, если на шильдике указана мощность 2200 ватт, это означает, что при оптимальной скорости работы устройство в секунду производит механическую работу, равную 2200 джоулей.
Мощность двигателя или крутящий момент? Какая характеристика важнее?
Материал подготовлен автором проекта АвтобурУм. Графики можно увидеть здесь: https://autoburum.com/user/stas90/blog/609-moshhnost-dvigate. Большинство автолюбителей судят о ходовых характеристиках авто по мощности двигателя. Обычно ее измеряют в киловаттах или лошадиных силах. Чем она больше, тем солиднее. Максимальную мощность двигатель внутреннего сгорания развивает на определенных оборотах. Обычно для бензиновых автомобилей это около 6000 оборотов в минуту, для дизельных – около 4000 об./мин. Именно поэтому дизельные движки относятся к классу низкооборотных, бензиновые – высокооборотные. Однако и среди бензиновых двигателей есть низкооборотные, и наоборот – есть дизельные высокооборотные.
Часто водитель сталкивается с ситуацией, когда необходимо придать авто значительное ускорение для выполнения очередного маневра. Жмешь педалью акселератора в пол, а автомобиль практически не ускоряется. Вот тут-то и нужен мощный крутящий момент на тех оборотах, на которых работает в данный момент двигатель. Именно он характеризует приемистость автомобиля. Поэтому каждый автовладелец должен знать, на каких оборотах его авто имеет максимальный крутящий момент перед тем, как садить красивую девушку в свою машину и показывать чудеса пилотирования.
Крутящий момент двигателя, что это?
Из курса физики за 9 класс многие помнят, что крутящий момент М равен произведению силы F, прикладываемой к рычагу длиной плеча L. Формула:
Длина в системе СИ измеряется в метрах, сила – в ньютонах. Нетрудно определить, что момент измеряется в ньютон на метр.
Основная сила в двигателе внутреннего сгорания вырабатывается в камере сгорания в момент воспламенения смеси. Она приводит в действие кривошипно-шатунный механизм коленвала. Рычагом здесь является длина кривошипа, то есть, если эта длина будет больше, то и крутящий момент тоже увеличивается. Однако, увеличивать кривошипный рычаг бесконечно нельзя. Во-первых, тогда надо увеличивать рабочий ход поршня, то есть размеры движка. Во-вторых, при этом уменьшаются обороты двигателя. Двигатели с большим рычагом кривошипного механизма применяют в крупномерных плавательных средствах. В легковых авто с небольшими размерами коленвала не поэкспериментируешь.
В технических характеристиках, указанных на модель двигателя, параметр максимального крутящего момента указывается совместно с величиной оборотов (либо пределами величин оборотов), при которых такой крутящий момент может быть достигнут. Обычно считается: если максимальный крутящий момент может быть достигнут на оборотах до 4500 об./мин., то двигатель низкооборотный, более 4500 – высокооборотный.
От величины крутящего момента напрямую зависит характеристика мощности двигателя автомобиля. Почему считается, что бензиновые движки заведомо могут обеспечить большую, чем дизельные, мощность. Дело в том, что в силу конструктивных особенностей и управляемости системы зажигания бензиновые двигатели могут длительное время работать на оборотах 8000 об./мин и более. Дизельные движки достигают максимального крутящего момента на более низких оборотах. В городском ритме движения, когда нет необходимости развивать предельные обороты, дизельные авто нисколько не уступают бензиновым, наоборот, на малых и средних оборотах спокойно можно двигаться в ритме от 30 до 60 км/час, не переключая третью либо 4-ю передачу.
Пересчитать крутящий момент в мощность двигателя и наоборот можно, руководствуясь упрощенной физической формулой:
По этой формуле получится мощность Р в киловаттах. Вводить надо М – крутящий момент двигателя в ньютон на метр, n– величина оборотов двигателя. Здесь 9549 — число, которое получается после упрощения основной формулы в результате перемножения констант (ускорения свободного падения, числа Пи и т.п.).
Для перевода киловатт в лошадиные силы следует результат умножить на 1,36. В некоторых случаях в технических характеристиках указывается крутящий момент на холостых оборотах.
Зависимости мощности двигателя и крутящего момента от количества оборотов
Типовые характеристики зависимости мощности и крутящего момента от оборотов двигателя приведены на рис.1
Из графика видно, что крутящий момент стабильно увеличивается до 3000 оборотов, затем наступает относительно пологий участок. На оборотах около 4500 об/мин достигается максимум крутящего момента около 178 ньютон*метр. В то же время мощность двигателя продолжает расти до достижения оборотов около 5500 об/мин, и на этих оборотах достигает около 124 лошадиных сил. Это понятно, если обратиться к формуле, в которой видно, что мощность пропорциональна произведению крутящего момента на величину оборотов. После 5500 оборотов в минуту уменьшение крутящего момента превышает крутизну увеличения оборотов, и мощность начинает уменьшаться.
Как это объяснить физически, то есть, без формул. На малых оборотах в область сгорания поступает небольшое количество воздушно-топливной смеси в единицу времени, соответственно, крутящий момент и мощность небольшие. Увеличивая обороты, количество смеси (а вслед за ним и мощность, крутящий момент) возрастает. Достигая больших значений, мощность уменьшается по следующим причинам:
механические потери на трение механизмов;
Двигатели постоянного тока
Резонансная частота: формула
Кроме машин переменного напряжения есть электродвигатели, подключающиеся к сети постоянного тока. Число оборотов таких устройств рассчитывается по совершенно другим формулам.
Номинальная скорость вращения
Число оборотов аппарата постоянного тока рассчитывается по формуле на рисунке ниже, где:
Эти данные соответствуют номинальным значениям параметров электромашины, напряжению на обмотке возбуждения и якоре или вращательному моменту на валу двигателя. Их изменение позволяет регулировать частоту вращения. Определить магнитный поток в реальном двигателе очень сложно, поэтому для расчетов пользуются силой тока, протекающего через обмотку возбуждения или напряжения на якоре.
Формула расчёта числа оборотов двигателя постоянного тока
Число оборотов коллекторных электродвигателей переменного тока можно найти по той же формуле.
Регулировка скорости
Регулировка скорости электродвигателя, работающего от сети постоянного тока, возможна в широких пределах. Она возможна в двух диапазонах:
Знание того, по каким формулам вычисляется скорость вращения электродвигателя, необходимо при проектировании и наладке оборудования.
Ротор асинхронного двигателя
Давайте более подробно рассмотрим, из чего же состоит ротор асинхронного двигателя.
Самая главная часть – это вал. Иначе, как бы происходило вращение?
На вал ротора с двух сторон надеваются подшипники, которые крепятся к передней и задней крышкам и центруют ротор ровно посередине статора.
Далее идет сердечник, набранный из листов специальной электротехнической стали, которые изолированы друг от друга. Кстати, сетевые трансформаторы собираются из такой же стали.
Как вы можете далее заметить, в сердечнике ротора есть специальные пазы
В них вставляются медные или алюминиевые стержни,
которые замыкаются на кольцо с обеих сторон, образуя так называемую “беличью клетку”.
В общем виде полностью собранный ротор асинхронного двигателя выглядит вот так.
А вот так он выглядит в реальном двигателе.
Всегда помните, что в асинхронном двигателе вращается ротор, а не статор. Статор – это неподвижная часть, а ротор – подвижная часть электродвигателя. В рабочем состоянии двигателя между ротором и статором всегда имеется воздушный зазор. При работе двигателя ротор ни в коем случае не должен задевать статор двигателя.
Максимальная и номинальная мощность двигателей
В 2010 году европейские и американские производители двигателей прекратили указывать их мощность, ограничившись лишь показателями объема и крутящего момента, выраженного либо в Ньютонах на метр (Н/м) либо в американской системе – футов на фунт (Ft/Lbs). Во втором случае, чтобы получить более привычные для нас единицы, достаточно умножить значение на 1,356. Впрочем, полученные данные все равно не столь очевидны, чтобы сразу сориентироваться в мощности устройства.
Мощность измеряется по формуле P (Вт) = Момент (Н·м) *Частоту вращения (Об/мин) / 9.5492.
Нужно иметь в виду, что максимальная мощность и максимальный момент достигаются при разных оборотах двигателя. Так максимальный момент, как видно из графика, будет на оборотах примерно 2400-2600, а максимальная мощность – при 3600 об/мин. Поэтому, для того, чтобы все-таки узнать на какой мощности у вас работает двигатель, нужно знать, на какие рабочие обороты он настроен, что не все производители указывают. Серьезные компании двигателей указывают для этого график, аналогичный представленному внизу, или конкретные значения мощности, зависящие оборотов. Если у вас есть регулятор оборотов двигателя, значит, максимальная мощность будет на максимальных оборотах.
Этим различием и пользовались производители двигателей: указывая мощность, которую можно получить при завышенных оборотах (например, 5.0 л.с., которую можно достичь при 4500 об/мин), при этом сам двигатель при постоянной работе был настроен на обороты 3600, выдавая всего 3.5 л.с. Численно мощность от оборотов зависит гораздо больше, чем от момента. Надо также понимать, что при завышении оборотов мощность растет, а крутящий момент падает.
Поэтому с 2010 года чаще всего указывается мощность двигателя, работающего в конкретной технике с учетом ее использования и установленным рабочим числом оборотов. На двигателях же указывается только максимальный крутящий момент, на который и стоит ориентироваться, ведь чем он больше, тем лучше устройство будет справляться со своей задачей.
Также мы рекомендуем в первую очередь обращать внимание на крутящий момент и объем двигателя. Учитывая, что двигатели на садовой технике сконструированы достаточно просто (нет никакого турбо наддува, форсажа и т.д.), то с одного объема невозможно снять больше мощности на 30-50 %.
Мощность
Мощность это работа в единицу времени. Поэтому эта величина зависит от крутящего момента, а также от скорости вращения двигателя. Чем быстрее двигатель вращается, тем больше мощность. Правда это достигает конкретного предела, начинающегося от 4000 до 4500 оборотов в минуту для дизельных двигателей. Скорость автомобиля зависит от мощности двигателя.
Вы можете сравнить “мощность” двух спортсменов: первый поднял 120 кг за 1 минуту, второй – те же 120 кг за 30 секунд. Теоретически, за одну минуту второй отлет смог бы поднять 240 кг, поэтому он сильней.
МОЩНОСТЬ = КРУТЯЩИЙ МОМЕНТ / ВРЕМЯ
МОЩНОСТЬ = СИЛА x СКОРОСТЬ
Мощность выражается в ваттах(Вт) или лошадиных силах(л.с.)Power is expressed in Watts (W) or horsepower (DIN). Крутящий момент выражается частотой вращения, а скорость – радиан в секунду.
Угловая скорость
Когда тело движется по окружности, то не все его точки движутся с одинаковой скоростью относительно оси вращения. Если взять лопасти обычного бытового вентилятора, которые вращаются вокруг вала, то точка расположенная ближе к валу имеет скорость вращения больше, чем отмеченная точка на краю лопасти. Это значит, у них разная линейная скорость вращения. В то же время угловая скорость у всех точек одинаковая.
Угловая скорость представляет собой изменение угла в единицу времени, а не расстояния. Обозначается буквой греческого алфавита – ω и имеет единицу измерения радиан в секунду (рад/с). Иными словами, угловая скорость – это вектор, привязанный к оси обращения предмета.
Формула для вычисления отношения между углом поворота и временным интервалом выглядит так:
Обозначение угловой скорости употребляется при изучении законов вращения. Оно употребляется при описании движения всех вращающихся тел.
Формула угловой скорости
Угловая скорость в конкретных случаях
На практике редко работают с величинами угловой скорости. Она нужна при конструкторских разработках вращающихся механизмов: редукторов, коробок передач и прочего.
Вычислить её, применяя формулу, можно. Для этого используют связь угловой скорости и частоты вращения.
В качестве примера могут быть рассмотрены угловая скорость и частота вращения колёсного диска при движении мотоблока. Часто необходимо уменьшить или увеличить скорость механизма. Для этого применяют устройство в виде редуктора, при помощи которого понижают скорость вращения колёс. При максимальной скорости движения 10 км/ч колесо делает около 60 об./мин. После перевода минут в секунды это значение равно 1 об./с. После подстановки данных в формулу получится результат:
ω = 2*π*ν = 2*3,14*1 = 6,28 рад./с.
К сведению. Снижение угловой скорости часто требуется для того, чтобы увеличить крутящий момент или тяговое усилие механизмов.
Шестерёнчатый уменьшитель хода для мотокультиватора
Как определить угловую скорость
Принцип определения угловой скорости зависит от того, как происходит движение по окружности. Если равномерно, то употребляется формула:
Если нет, то придётся высчитывать значения мгновенной или средней угловой скорости.
Величина, о которой идёт разговор, векторная, и при определении её направления используют правило Максвелла. В просторечии – правило буравчика. Вектор скорости имеет одинаковое направление с поступательным перемещением винта, имеющего правую резьбу.
Правило Максвелла для угловой скорости
Рассмотрим на примере, как определить угловую скорость, зная, что угол поворота диска радиусом 0,5 м меняется по закону ϕ = 6*t:
ω = ϕ / t = 6 * t / t = 6 с-1
Вектор ω меняется из-за поворота в пространстве оси вращения и при изменении значения модуля угловой скорости.
Момент электродвигателя
Мощность [кВт или л.с.] связывает вращающий момент с частотой вращения, чтобы определить общий объём работы, который должен быть выполнен за определённый промежуток времени.
Рассмотрим взаимодействие между вращающим моментом, мощностью и частотой вращения, а также их связь с электрическим напряжением на примере электродвигателей Grundfos. Электродвигатели имеют одну и ту же номинальную мощность как при 50 Гц, так и при 60 Гц.
Это влечёт за собой резкое снижение вращающего момента при 60 Гц: частота 60 Гц вызывает 20%-ное увеличение числа оборотов, что приводит к 20%-ному уменьшению вращающего момента. Большинство производителей предпочитают указывать мощность электродвигателя при 60 Гц, таким образом, при снижении частоты тока в сети до 50 Гц электродвигатели будут обеспечивать меньшую мощность на валу и вращающий момент. Электродвигатели обеспечивают одинаковую мощность при 50 и 60 Гц.
Графическое представление вращающего момента электродвигателя изображено на рисунке.
Иллюстрация представляет типичную характеристику вращающий момент/частота вращения. Ниже приведены термины, используемые для характеристики вращающего момента электродвигателя переменного тока.
Пусковой момент (Мп): Механический вращающий момент, развиваемый электродвигателем на валу при пуске, т.е. когда через электродвигатель пропускается ток при полном напряжении, при этом вал застопорен.
Минимальный пусковой момент (Ммин): Этот термин используется для обозначения самой низкой точки на кривой вращающий момент/частота вращения электродвигателя, нагрузка которого увеличивается до полной скорости вращения. Для большинства электродвигателей Grundfos величина минимального пускового момента отдельно не указывается, так как самая низкая точка находится в точке заторможенного ротора. В результате для большинства электродвигателей Grundfos минимальный пусковой момент такой же, как пусковой момент.
Блокировочный момент (Мблок): Максимальный вращающий момент — момент, который создаёт электродвигатель переменного тока с номинальным напряжением, подаваемым при номинальной частоте, без резких скачков скорости вращения. Его называют предельным перегрузочным моментом или максимальным вращающим моментом.
Вращающий момент при полной нагрузке (Мп.н.): Вращающий момент, необходимый для создания номинальной мощности при полной нагрузке.
Классификация электродвигателей
Виды электродвигателей
Наибольшее распространение имеет трехфазный асинхронный электродвигатель. Электродвигатели постоянного тока и синхронные применяются редко.
Большинство электрифицированных машин нуждаются в приводе мощностью от 0,1 до 10 кВт, значительно меньшая часть — в приводе мощностью в несколько десятков кВт. Как правило, для привода рабочих машин используются короткозамкнутые трехфазные электродвигатели. По сравнению с фазным такой электродвигатель имеет более простую конструкцию, меньшую стоимость, большую надежность в эксплуатации и простоту в обслуживании, несколько более высокие эксплутационные показатели (коэффициент мощности и коэффициент полезного действия), а при автоматическом управлении требует простой аппаратуры. Недостаток короткозамкнутых электродвигателей — относительно большой пусковой ток. При соизмеримости мощностей трансформаторной подстанции и электродвигателя его пуск сопровождается заметным снижением напряжения сети, что усложняет как пуск самого двигателя, так и работу соседних токоприемников.
Области применения электродвигателей
Электродвигатели являются крупнейшими потребителями электроэнергии в мире, на них приходится около 45% от всей потребляемой электроэнергии.
Обороты двигателя: характеристики и особенности
Начинающие и профессиональные автовладельцы интересуются вопросом, на каких оборотах (высоких или низких) лучше ездить. Этот актуальный вопрос чаще всего провоцирует вызов ожесточенной полемики среди автолюбителей, которые предпочитают высказать свою точку зрения.
Данная статья позволит ознакомиться с основными оборотами двигателей и в устранении проблем, возникших в ходе нестабильности оборота. Поэтому предлагаем внимательно прислушаться к советам профессионалов, которые подскажут, какие обороты двигателя допустимы для вождения современного автомобиля.
Самой распространенной проблемой современных агрегатов считается нестабильночть оборотов холостого хода. Следовательно, отсутствие холостых ходов, может, вызывать серьезные хлопоты на дорогах. Управлять подобным авто становится практически невозможным. Чтобы избежать аварийных ситуаций, автовладелец обязан мочь учесть несколько важных правил.
В процессе движения автомобиль, всегда определяется частота вращения вала колес и двигателя. Когда увеличивается частота вращения вала двигателя, соответственно, увеличивается и скорость движения авто. Поэтому частота движения вала определяется делением передаточного числа текущей передачи.
Также, не стоит забывать, что на некоторых автомобилях установлен ограничитель оборотов двигателя, который снижает количество оборотов коленвала в зависимости от разных условий.
При запуске системы холостого хода происходит мощностный режим. В подобном случае необходимо огромное внимание уделяется инжекторному и карбюраторному мотору. Автомобильный карбюратор более раннего выпуска обладает зависимым холостым ходом. Благодаря новейшей разработанной конструкции, во время вождения авто, у водителей не должно возникать лишних хлопот.
Но так как стоимость на нефть увеличилась, мировые производители транспортных средств, выпустили автономный экономичный холостой ход, который уменьшает расходы топлива. В основном число оборотов не должно превышать 60.
По мнению специалистов, после внедрения карбюратора автономного холостого хода, обслуживание данного устройства заметно усложнилось. Так как система питания нуждается в вождении фильтров, которые предназначены для очищения горючего. Стоит отметить, что отсутствие фильтров положительно сказывается на стабильности функционировании двигателя. Поэтому обороты (по асфальту) нужно держать между 2000 до 3000.
Ранее, на карбюраторах устанавливали холостой ход с помощью специального винта, приоткрытый дроссельной заслонкой. Но на данном этапе, процесс установки значительно усложнился. Отдельная система с наличием собственных каналов и жиклеров, отвечают за процесс подачи воздуха и дозировки горючего. После установления системы холодного хода, намного снизилась надежность.
При попадании хотя бы одного волоса или соринки, могут возникнуть перебои. Работоспособность двигателя ухудшиться и возникнут серьезные проблемы. Если вовремя не обратить внимания, то можно полностью заглушить работу двигателя. Новейшие карбюраторы, которые имеют электроклапан холодного хода, отличаются:
Циклическая частота вращения (обращения)
Скалярная величина, измеряющая частоту вращательного движения, называется циклической частотой вращения. Это угловая частота, равная не самому вектору угловой скорости, а его модулю. Ещё её именуют радиальной или круговой частотой.
Циклическая частота вращения – это количество оборотов тела за 2*π секунды.
У электрических двигателей переменного тока это частота асинхронная. У них частота вращения ротора отстаёт от частоты вращения магнитного поля статора. Величина, определяющая это отставание, носит название скольжения – S. В процессе скольжения вал вращается, потому что в роторе возникает электроток. Скольжение допустимо до определённой величины, превышение которой приводит к перегреву асинхронной машины, и её обмотки могут сгореть.
Устройство этого типа двигателей отличается от устройства машин постоянного тока, где токопроводящая рамка вращается в поле постоянных магнитов. Большое количество рамок вместил в себя якорь, множество электромагнитов составили основу статора. В трёхфазных машинах переменного тока всё наоборот.
При работе асинхронного двигателя статор имеет вращающееся магнитное поле. Оно всегда зависит от параметров:
Скорость вращения ротора состоит в прямом соотношении со скоростью магнитного поля статора. Поле создаётся тремя обмотками, которые расположены под углом 120 градусов относительно друг друга.
Что такое крутящий момент и почему он важен (объяснение для неспециалиста)
Величина крутящего момента, создаваемая двигателем внутреннего сгорания, сильно варьируется в зависимости от текущей скорости вращения двигателя. Вот почему, как правило, технические характеристики транспортных средств дают (пиковый) крутящий момент коленчатого вала, а также обороты, при которых двигатель его достигает: 200Нм при 3000 оборотов/мин.
Фермер может использовать очень маленькую мотыгу (низкий крутящий момент) и быть очень быстрым (высокие обороты), или наносить несколько (низкие обороты) очень мощных ударов (высокий крутящий момент). Количество подготовленных полей может быть одинаковым даже при очень разных значениях «крутящего момента».
В случае двигателя величина крутящего момента сама по себе совершенно бессмысленна, поскольку крутящий момент может быть умножен на передачу, например, описанный выше двигатель может быть приспособлен с отношением 1: 2 для получения 400Нм при 1500 оборотов/ мин. Делая меньше оборотов, двигатель сможет производить больше работы (энергии) за оборот. Но обратите внимание, что вся энергия, произведенная за тот же промежуток времени, постоянна.
называется работа силы, совершаемая в единицу времени. Чтобы получить мощность двигателя при определенных оборотах, вы умножаете крутящий момент на число оборотов (рад/с):
200Нм * 3000 оборотов/ мин = 62.84
кВт
400Нм * 1500 оборотов/ мин = 62.84
кВт
Можете сами поэкспериментировать с расчетами тут
Вы видите, что мощность двигателей равна, поэтому оба могут выполнять одну и ту же работу за одно и то же время, даже если один из двигателей обладает в два раза большим крутящим моментом. Оба могут ускорять объект определенной массы в одно за одно и то же время. Вот почему обычно ЛС (лошадиные силы) / кВт являются более значимым способом описания производительности двигателя. кВт – это 1000 Дж/с.
КРУТЯЩИЙ МОМЕНТ = энергия на единицу вращения
МОЩНОСТЬ = энергия на единицу времени
Так почему крутящий момент важен? Он как раз и не важен:
Рассмотрим типичную машину (1500 кг), разгоняющуюся от 0 до 100 км/ч (28 м/с).
Рассчитаем количество кинетической энергии, необходимой для ускорения машины, по знаменитой формуле 1/2 ^2 (V квадрат).
0,5 ∗ 1500 кг ∗ (100 км/ч)^2 = 600000 Джоулей
Рассмотрим оба двигателя, которые мы упоминали выше. У них 62 кВт, но сильно отличающиеся значения крутящего момента.
Оба двигателя разгонят автомобиль с 0 до 100 км / ч за:
600 кДж / 62 кВт = 600000 Дж / 62000 Дж/сек. = 10 секунд Теоретически…
На практике это будет несколько иначе, потому что, когда вы ведете автомобиль, вы не можете поддерживать двигатель на желаемой скорости, вам постоянно нужно переключать передачи, и при ускорении обороты двигателя будут расти. Это означает, что для получения пикового ускорения вам нужно будет поддерживать двигатель около точки пиковой мощности, которая обычно отличается от точки пикового крутящего момента. Так крутящий момент имеет значение? Нет. В какой-то степени важна точка максимального крутящего момента (обороты / мин.) по сравнению с общим доступным диапазоном оборотов. Например, сравните эти двигатели: – Большой турбодизель с максимальным крутящим моментом при 1250 об. / мин и 200 л.с. при 4000 об. / мин – Мотоциклетный атмосферный газовый двигатель объемом 900 куб. см с максимальным крутящим моментом при 11000 об / мин и 200 л.с. при 13000 об. / мин
Второй двигатель будет иметь менее трети крутящего момента первого, но оба будут способны разгонять одну и ту же массу с одинаковой скоростью, тянуть одинаковый вес в гору, если он будет использоваться в точке максимальной мощности. Но первый двигатель будет иметь приличную мощность от 1500 об. / мин до 4000 об. / мин, то есть от 30% до 100% от доступного диапазона. Второй двигатель будет иметь приличную мощность только от 60% до 100% диапазона оборотов.
Первый двигатель тяжелый, но эффективный, он требует большой трансмиссии и тяжелого сцепления. Он идеально подходит для больших грузовиков или небольших судов, где важна эффективность и вес не имеет большого значения. Второй двигатель неэффективный, но легкий, он может быть полезен для мотоциклов, небольших гоночных автомобилей или даже для небольших городских автомобилей.
Но это не имеет ничего общего с крутящим моментом само по себе, просто двигатели с низким крутящим моментом, как правило, более эффективны, чем быстрые двигатели с низким крутящим моментом.
Важность трансмиссии и передаточных чисел:
При фиксированном передаточном числе и фиксированном соединении между коленчатым валом и шинами, крутящий момент колеса и, следовательно, ускорение будут пропорциональны крутящему моменту двигателя. В этом состоянии пиковое ускорение наступает, когда двигатель имеет пиковое значение крутящего момента.
Это может сбивать с толку, потому что то, что я сказал что максимальное ускорение наступает в точке максимальной мощности, а не в точке максимального крутящего момента.
Путаница возникает из-за того, что энергия, необходимая для ускорения транспортного средства на фиксированную величину, увеличивается со скоростью.
Запомните формулу: = 1 / 2 ^2 термин V ^ 2 означает, что с увеличением скорости вам нужно все больше и больше энергии для ускорения.
Так почему это важно?
Рассмотрим ситуацию с фиксированным передаточным числом 1: 1 и ускорением автомобиля во всем диапазоне оборотов.
В точке максимального крутящего момента (скажем, 1000 об. / мин.) транспортное средство будет подвергаться максимальному ускорению и будет двигаться с определенной скоростью V1.
В точке максимальной мощности (скажем, 3000 об. / мин. – 30 км. / ч.) автомобиль будет подвергаться меньшему ускорению, но его скорость V2 будет намного выше.
Поскольку V2 > V1, мощность, необходимая для ускорения транспортного средства на определенную величину в V2, будет выше. Даже если при V2 ускорение будет ниже, увеличение кинетической энергии будет выше из-за более высокой мощности при 3000 об. / мин.
Будет полезно: Выгоден ли трейд ин на машину?
Для получения фиксированной величины ускорения при V1 = 1000 об. / мин., вам нужна мощность, пропорциональная: (игнорируем здесь единицы измерения)
На V2 = 30 000 об. / мин. вам нужно: 30 ^ 2 = 900
Таким образом, чтобы получить такое же ускорение при 30 км. / ч., вам нужно в 9 раз больше энергии, чем при 10 км. / ч.!
Теперь представьте другой сценарий, в котором на V1 у вас будет более короткая передача, поэтому обороты двигателя будут 3000, даже если вы на скорости 1000 об. / мин.. В этом состоянии двигатель будет работать в точке максимальной мощности, крутящий момент на коленчатом валу будет ниже, но крутящий момент на колесе будет выше, поскольку теперь у вас есть отношение 3: 1, а крутящий момент двигателя умножается на 3. В этом состоянии вы имеете максимально возможное ускорение, потому что двигатель передает кинетическую энергию на транспортное средство с максимально возможной скоростью.
Уф, кажется закончил )) Много текста, я понимаю. Но, как говорится, не море топит, а лужа.
В данной статье осветим тему механических и электрических характеристик электродвигателей. На примере асинхронного двигателя рассмотрим такие параметры как мощность, работа, КПД, косинус фи, вращающий момент, угловая скорость, линейная скорость и частота. Все эти характеристики оказываются важными при проектировании оборудования, в котором электродвигатели служат в качестве приводных. Сегодня особенно широко распространены в промышленности именно асинхронные электродвигатели, поэтому на их характеристиках и остановимся. Для примера рассмотрим АИР80В2У3.
Номинальная механическая мощность асинхронного электродвигателя
На шильдике (на паспортной табличке) электродвигателя указывается всегда номинальная механическая мощность на валу данного двигателя. Это не та электрическая мощность, которую данный электродвигатель потребляет из сети.
Так, например, для двигателя АИР80В2У3, номинал в 2200 ватт соответствует именно механической мощности на валу. То есть в оптимальном рабочем режиме данный двигатель способен выполнять механическую работу 2200 джоулей каждую секунду. Обозначим эту мощность как P1 = 2200 Вт.
Номинальная активная электрическая мощность асинхронного электродвигателя
Чтобы определить номинальную активную электрическую мощность асинхронного электродвигателя, опираясь на данные с шильдика, необходимо принять в расчет КПД. Так, для данного электродвигателя КПД составляет 83%.
Что это значит? Это значит, что только часть активной мощности, подаваемой из сети на обмотки статора двигателя, и безвозвратно потребляемой двигателем, преобразуется в механическую мощность на валу. Активная мощность равна P = P1/КПД. Для нашего примера, по представленному шильдику видим, что P1 = 2200, КПД = 83%. Значит P = 2200/0,83 = 2650 Вт.
Номинальная полная электрическая мощность асинхронного электродвигателя
Полная электрическая мощность, подаваемая на статор электродвигателя от сети всегда больше механической мощности на валу и больше активной мощности, безвозвратно потребляемой электродвигателем.
Для нахождения полной мощности достаточно активную мощность разделить на косинус фи. Таким образом, полная мощность S = P/Cosφ. Для нашего примера P = 2650 Вт, Cosφ = 0,87. Следовательно полная мощность S = 2650/0,87 = 3046 ВА.
Номинальная реактивная электрическая мощность асинхронного электродвигателя
Часть полной мощности, подаваемой на обмотки статора асинхронного электродвигателя, возвращается в сеть. Это реактивная мощность Q.
Реактивная мощность связана с полной мощностью через sinφ, и связана с активной и с полной мощностью через квадратный корень. Для нашего примера:
Q = √( 3046 2 – 2650 2 ) = 1502 ВАР
Реактивная мощность Q измеряется в ВАР — в вольт-амперах реактивных.
Теперь давайте рассмотрим механические характеристики нашего асинхронного двигателя: номинальный рабочий момент на валу, угловую скорость, линейную скорость, частоту вращения ротора и ее связь с частотой питания электродвигателя.
Частота вращения ротора асинхронного электродвигателя
На шильдике мы видим, что при питании переменным током частотой в 50 Гц, ротор двигателя совершает при номинальной нагрузке 2870 оборотов в минуту, обозначим эту частоту как n1.
Что это значит? Поскольку магнитное поле в обмотках статора создается переменным током частотой 50 Гц, то для двигателя с одной парой полюсов (коим является АИР80В2У3) частота «вращения» магнитного поля, синхронная частота n, оказывается равной 3000 оборотов в минуту, что тождественно 50 оборотам в секунду. Но поскольку двигатель асинхронный, то ротор вращается с отставанием на величину скольжения s.
Значение s можно определить, разделив разность синхронной и асинхронной частот на синхронную частоту, и выразив это значение в процентах:
Для нашего примера s = ( (3000 – 2870)/3000 ) *100% = 4,3%.
Угловая скорость асинхронного двигателя
Угловая скорость ω выражается в радианах в секунду. Для определения угловой скорости достаточно частоту вращения ротора n1 перевести в обороты в секунду (f), и умножить на 2 Пи, поскольку один полный оборот составляет 2 Пи или 2*3,14159 радиан. Для двигателя АИР80В2У3 асинхронная частота n1 составляет 2870 оборотов в минуту, что соответствует 2870/60 = 47,833 оборотам в секунду.
Умножая на 2 Пи, имеем: 47,833*2*3,14159 = 300,543 рад/с. Можно перевести в градусы, для этого вместо 2 Пи подставить 360 градусов, тогда для нашего примера получится 360*47,833 = 17220 градусов в секунду. Однако подобные расчеты обычно ведут именно в радианах в секунду. Поэтому угловая скорость ω = 2*Пи*f, где f = n1/60.
Линейная скорость асинхронного электродвигателя
Линейная скорость v относится к оборудованию, на котором асинхронный двигатель установлен в качестве привода. Так, если на вал двигателя установлен шкив или, скажем, наждачный диск, известного радиуса R, то линейная скорость точки на краю шкива или диска может быть найдена по формуле:
Номинальный вращающий момент асинхронного двигателя
Каждый асинхронный электродвигатель характеризуется номинальным вращающим моментом Мн. Вращающий момент М связан с механической мощностью P1 через угловую скорость следующим образом:
Вращающий момент или момент силы, действующей на определенном расстоянии от центра вращения, для двигателя сохраняется, причем с ростом радиуса уменьшается сила, а чем радиус меньше, тем больше сила, поскольку:
Так, чем больше радиус шкива, тем меньшая сила действует на его краю, а наибольшая сила действует непосредственно на валу электродвигателя.
Для приведенного в качестве примера двигателя АИР80В2У3 мощность P1 равна 2200 Вт, а частота n1 равна 2870 оборотов в минуту или f = 47,833 оборота в секунду. Следовательно угловая скорость составляет 2*Пи*f, то есть 300,543 рад/с, и номинальный вращающий момент Мн равен P1/(2*Пи*f). Мн = 2200/(2*3,14159*47,833) = 7,32 Н*м.
Таким образом, исходя из данных, указанных на шильдике асинхронного электродвигателя, можно найти все основные электрические и механические его параметры.
Надеемся, что данная статья помогла вам разобраться в том, как связаны между собой угловая скорость, частота, вращающий момент, активная, полезная и полная мощность, а также КПД электродвигателя.
Направление вращения электродвигателя
Чтобы механизмы на производстве или в быту, будь-то дерево или металлообрабатывающие станки, консольный насос, конвейерная лента, кран-балка, заточной станок, электрическая газонокосилка, кормоизмельчитель или другое устройство работали без поломок, необходимо, в первую очередь, чтобы вал электродвигателя вращался в правильную сторону.
Во избежание ошибок и не допуска вращения вала механизма в противоположную сторону согласно пункту 2.5.3 «Правил технической эксплуатации электроустановок потребителей» на корпусе самого механизма и приводном двигателе должны быть нанесены стрелки направления вращения электродвигателя.
Направление вращения вала электродвигателя
Определение направления вращения электродвигателя выполняется со стороны единственного конца вала. В том случае если двигатель имеет два конца вала, то вращение определяют со стороны вала, который имеет больший диаметр. Согласно ГОСТ 26772-85 правому направлению соответствует движение вала по часовой стрелке. У наиболее распространенных трехфазных двигателей с короткозамкнутым ротором вращение вала в правую сторону будет осуществляться, если последовательность фаз, по которым подается напряжение на концы обмоток статора, будет соответствовать алфавитной последовательности их маркировки – U1, V1, W1.
Для однофазных двигателей с короткозамкнутым ротором вращение вала по часовой стрелке будет выполняться при условии, когда фаза будет подаваться на конец рабочей обмотки.
Изменение направления вращения вала в трехфазных электродвигателях
Эксплуатация некоторых механизмов требует левостороннего вращения вала. Зная, как изменить направление вращения электродвигателя, это можно сделать без какой-либо доработки или переделки самого приводного двигателя. Для смены направления движения нужно:
Левостороннее вращение
Если эксплуатация двигателя требует постоянного переключения двигателя с правостороннего вращения на левостороннее, его подключение осуществляют по специальной схеме,
которая подробно описана в статье «Схема подключения электродвигателя через контактор».
Реверс однофазного электродвигателя
Запустить вращение однофазного асинхронного электродвигателя можно переподключив фазу на начало рабочей обмотки.
Зная, как поменять направление вращения электродвигателя, можно подключить однофазный электродвигатель с возможностью переключения правостороннего вращения на левостороннее с помощью трехконтактного переключателя.
Переход от угловой к линейной скорости
Существует различие между линейной скоростью точки и угловой скоростью. При сравнении величин в выражениях, описывающих правила вращения, можно увидеть общее между этими двумя понятиями. Любая точка В, принадлежащая окружности с радиусом R, совершает путь, равный 2*π*R. При этом она делает один оборот. Учитывая, что время, необходимое для этого, есть период Т, модульное значение линейной скорости точки В находится следующим действием:
Так как ω = 2*π*ν, то получается:
Следовательно, линейная скорость точки В тем больше, чем дальше от центра вращения находится точка.
К сведению. Если рассматривать в качестве такой точки города на широте Санкт-Петербурга, их линейная скорость относительно земной оси равна 233 м/с. Для объектов на экваторе – 465 м/с.
Числовое значение вектора ускорения точки В, движущейся равномерно, выражается через R и угловую скорость, таким образом:
а = ν2/ R, подставляя сюда ν = ω* R, получим: а = ν2/ R = ω2* R.
Это значит, чем больше радиус окружности, по которой движется точка В, тем больше значение её ускорения по модулю. Чем дальше расположена точка твердого тела от оси вращения, тем большее ускорение она имеет.
Поэтому можно вычислять ускорения, модули скоростей необходимых точек тел и их положений в любой момент времени.
Понимание и умение пользоваться расчётами и не путаться в определениях помогут на практике вычислениям линейной и угловой скоростей, а также свободно переходить при расчётах от одной величины к другой.
Сравнение характеристик внешне коммутируемых электрических двигателей
Ниже представлены сравнительные характеристики внешне коммутируемых электродвигателей, в ракурсе применения в качестве тяговых электродвигателей в транспортных средствах.
Сравнение механических характеристик электродвигателей разных типов при ограниченном токе статора
Зависимость мощности от скорости вращения вала для двигателей разных типов при ограниченном токе статора
Оранжевый цвет – низкий показатель, желтый цвет – средний показатель, светло-желтый цвет – высокий показатель.
В соответствии с выше приведенными показателями гибридный синхронный электродвигатель, а именно синхронный реактивный электродвигатель со встроенными постоянными магнитами, является наиболее подходящим для применения в качестве тягового электродвигателя в автомобилестроении (выбор проводился для концепта автомобилей BMW i3 & BMW i8). Использование реактивного момента обеспечивает высокую мощность в верхнем диапазоне скоростей. Более того такой двигатель обеспечивает очень высокую эффективность (КПД) в широком рабочем диапазоне [7].
Номинальная характеристика двигателя
В идеале двигатель должен воплощать в себе баланс максимального крутящего момента и максимальной мощности. В противном случае, двигатель будет обладать низкой производительностью. Лучший диапазон работы двигателя – от 1500 до 4000 оборотов в минуту: при таких условиях двигатель потребляет меньше топлива.
Дизельный двигатель выдает максимальную мощность на 4200 об/мин, после чего эффективность падает, а крутящий момент не превышает показания 3500 об/мин.
Бензиновый двигатель выдает максимальное количество мощности при 5200- 5500 об/мин, на 1000 об/мин больше, чем дизельный. Ниже 2000 об/мин бензиновый двигатель не показывает большых результатов, в то время как у дизельного двигателя хорошая тяга при низких оборотах.
Для дизельного двигателя рекомендуемый режим работы от 1800 до 3000 об/мин: но современные двигатели, изготавливаются с точностью до сотых микрометра, они не нуждаются в строгих ограничениях. Эти меры предосторожности обеспечивают долгий срок службы подвижных деталей.
Производители электродвигателей
Российские производители электродвигателей
Регион | Производитель | Асинхронный двигатель | Синхронный двигатель | УД | КДПТ | ||
АДКР | АДФР | СДОВ | СДПМ, серво | СРД, СГД | Шаговый | КДПТ ОВ | КДПТ ПМ |
Краснодарский край | Армавирский электротехнический завод | ||||||
Свердловская область | Баранчинский электромеханический завод | ||||||
Владимир | Владимирский электромоторный завод | ||||||
Санкт-Петербург | ВНИТИ ЭМ | ||||||
Москва | ЗВИ Московский электромеханический завод имени Владимира Ильича | ||||||
Пермь | ИОЛЛА | ||||||
Республика Марий Эл | Красногорский завод “Электродвигатель” | ||||||
Воронеж | МЭЛ | ||||||
Новочеркасск | Новочеркасский электровозостроительный завод | ||||||
Санкт-Петербург | НПО “Электрические машины” | ||||||
Томская область | НПО Сибэлектромотор | ||||||
Новосибирск | НПО Элсиб | ||||||
Удмуртская республика | Сарапульский электрогенераторный завод | ||||||
Киров | Электромашиностроительный завод Лепсе | ||||||
Санкт-Петербург | Ленинградский электромашиностроительный завод | ||||||
Псков | Псковский электромашиностроительный завод | ||||||
Ярославль | Ярославский электромашиностроительный завод |
Производители электродвигателей ближнего зарубежья
Производители электродвигателей дальнего зарубежья
Страна | Производитель | Асинхронный двигатель | Синхронный двигатель | УД | КДПТ | ||
АДКР | АДФР | СДОВ | СДПМ, серво | СРД, СГД | Шаговый | КДПТ ОВ | КДПТ ПМ |
Швейцария | ABB Limited | ||||||
США | Allied Motion Technologies Inc. | ||||||
США | Ametek Inc. | ||||||
США | Anaheim automation | ||||||
США | Arc System Inc. | ||||||
Германия | Baumueller | ||||||
Словения | Domel | ||||||
США | Emerson Electric Corporation | ||||||
США | General Electric | ||||||
США | Johnson Electric Holdings Limited | ||||||
Германия | Liebherr | ||||||
Швейцария | Maxon motor | ||||||
Япония | Nidec Corporation | ||||||
Германия | Nord | ||||||
США | Regal Beloit Corporation | ||||||
Германия | Rexroth Bosch Group | ||||||
Германия | Siemens AG | ||||||
Бразилия | WEG |
Библиографический список
ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения. И.В.Савельев. Курс общей физики, том I. Механика, колебания и волны, молекулярная физика.-М.:Наука, 1970. ГОСТ 29322-92 (МЭК 38-83) Стандартные напряжения. ГОСТ 16264.0-85 Электродвигатели малой мощности А.И.Вольдек, В.В.Попов. Электрические машины. Машины переменного тока: Учебник для вузов.- СПб.: Питер, 2007. Paul Waide, Conrad U. Brunner. Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems. International Energy Agency Working Paper, Energy Efficiency Series.: Paris, 2011. Dr. J. Merwerth. The hybrid-synchronous machine of the new BMW i3 & i8 challenges with electric traction drives for vehicles. BMW Group, Workshop University Lund: Lund, 2014.
Различают номинальную и эксплуатационную мощность
Номинальная мощность — это эффективная приведенная мощность прошедшего обкатку двигателя, полученная при номинальной частоте вращения с установленными заводом регулировками, укомплек- тованного необходимыми агрегатами за исключением вентилятора, воз- духоочистителя, глушителя шума впуска и выпуска, выпускной трубы с отключенными генератором, гидронасосом и компрессором. Эксплуатационная мощность отличается от номинальной мощности тем, что при ее определении двигатель оборудуется теми аг- регатами, которые при определении номинальной мощности исключа- лись. Условия использования генератора, гидронасоса и компрессора одни и те же.
Виды и программы испытаний двигателей в зависимости от целей и назначения регламентированы ГОСТ. Так, автомобильные двигате- ли подвергаются приемным, контрольным, эксплуатационным, научно- исследовательским и технологическим испытаниям.
Приемным испытаниям подвергается двигатель для решения вопроса о постановке его на производство.
Контрольные испытания проходят двигатели серийного про- изводства для проверки соответствия их показателей утвержденной тех- нической документации, стандартам и санитарно-гигиеническим нормам.
Эксплуатационные испытания имеют целью проверку со- ответствия данного двигателя условиям и требованиям эксплуатации.
Научно-исследовательские испытания проводятся в процессе доводочных работ при создании нового или модернизации вы- пускаемого двигателя.
Технологические испытания проводят в процессе изготов- ления двигателя и его отдельных деталей.
§ 2. Скоростные характеристики
Скоростная характеристика представляет графическую зависимость мощностных и экономических показателей двигателя от частоты враще- ния коленчатого вала. Различают скоростные характеристики: внешние, с регуляторной ветвью, частичные и холостого хода.
Внешняя скоростная характеристика снимается при полностью открытой дроссельной заслонке или максимальной подаче топлива (положение рейки топливного насоса соответствует моменту включения корректора подачи топлива), при работе двигателя без регу- лятора. Характеристика позволяет определить наибольшую мощность, которую может развить двигатель при различных частотах вращения коленчатого вала, установленных расходах топлива, углах опережения зажигания или опережения впрыска топлива. Опыты проводят для кар- бюраторных двигателей, начиная с минимальной частоты вращения ко- ленчатого вала до 1,1 номинальной частоты вращения, и для дизе- лей в пределах от минимальной до максимальной частоты враще- ния вала.
Внешняя скоростная характеристика имеет следующие характер- ные точки (рис. 200, а, б):
Whom— номинальная мощность, то есть эффективная мощность, га- рантированная заводом-изготовителем при условиях, приведенных вы- ше (точки А),кВт;
Neмакс —максимальная эффективная мощность (точки А’),кВт.
Максимальная мощность может быть или равна номинальной (рис. 200, а), либо превышать ее (рис. 200, б);
MKn — крутящий момент на режиме максимальной мощности
(точки С’), Н-м;
•Мк.н — крутящий момент, соответствующий номинальной мощности (точки С), Н-м;
Мкмакс — максимальный крутящий момент (точки Б),Н-м;
Пном —номинальная частота вращения коленчатого вала, установ- ленная заводом-изготовителем для номинальной мощности, об/мин. При
А/ном = Nе макс Яном = п макс! 272
18 А. М. Гур«внч, Е. М. Сорокин
точки В, В’— расход топлива GT, г/с, и Е, Е’— удельный расход топ- лива ge,г/(кВт-ч) соответственно на номинальной и максимальной мощ- ности;
§е мин—минимальный удельный расход топлива (точки г), г/(кВт-ч).
На внешней скоростной характеристике дизеля на мощности Ne маКо штриховой линией обозначено начало работы дизеля с дымлением. При дальнейшем повышении частоты вращения возможно получение мощнос- ти более МеМакс, ио работа дизеля будет сопровождаться сильным дымлением, вибрацией и повышенной температурой отработавших газов, что недопустимо из-за большого нагарообразования и теплового пере- напряжения деталей цилиндро-поршневой группы. По этим соображе- ниям для дизеля принимаются A/щш^А/еманс- У дизеля более пологое протекание кривой MK—f(n)объясняется конструктивными особеннос- тями топливных насосов. Этот недостаток снижает приспособленность дизеля к преодолению перегрузок, и для его устранения регуляторы топ- ливных насосов снабжаются корректорами, увеличивающими подачу топлива за цикл на режимах перегрузок.
Расчетная мощность (определение)
Одним из основных этапов проектирования систем электроснабжения объекта является правильное определение ожидаемых (расчетных) электрических нагрузок как отдельных ЭП, так и узлов нагрузки на всех уровнях системы электроснабжения.
Расчетные значения нагрузок – это нагрузки, соответствующие такой неизменной токовой нагрузке (
), которая эквивалентна фактической изменяющейся во времени нагрузке по наибольшему тепловому воздействию (не превышая допустимых значений) на элемент системы электроснабжения.
Существуют различные методы определения расчетных электрических нагрузок, которые в свою очередь делятся на основные; и вспомогательные.
К расчётным электрическим нагрузкам относятся расчётные значения активной мощности (
), полной мощности ( ) и тока (
).