что значит полирезистентные к антибиотикам
Резистентность бактерий: опасность, которая рядом
Врачи и ученые бьют тревогу
Насколько вопрос, о котором пойдет ниже речь, имеет важнейшее значение, можно судить по тому факту, что к нему четыре года назад привлек внимание научного сообщества первооткрыватель структуры ДНК нобелевский лауреат Джеймс Уотсон. В 2011 году он и еще 30 ученых-биологов из Канады, Франции, Финляндии, Бельгии, Германии, Великобритании и США собрались в Нью-Йорке на конференцию, посвященную проблеме устойчивости бактерий к антибиотикам. По ее итогам участники опубликовали совместное заявление, в котором с нескрываемой тревогой говорилось: «Развитие и распространение устойчивости к антибиотикам у бактерий представляет всеобщую угрозу для человека и животных, которую, как правило, сложно предотвратить, но, тем не менее, можно держать под контролем, и эту задачу нужно решать наиболее эффективными способами. До широкой общественности должны быть доведены факты, касающиеся важнейшей роли бактерий в жизни и благополучии людей, природе антибиотиков и важности их разумного использования».
Следующее громкое заявление прозвучало в 2012 году. Генеральный директор ВОЗ Маргарет Чен выступила в Копенгагене на конференции «Борьба с устойчивостью к противомикробным препаратам — время действовать». Отбросив всякую дипломатичность, М. Чен прямо и откровенно заявила, что наступает новый, непредсказуемый этап развития и нас может ожидать «конец современной медицины в том виде, как мы ее знаем». Гендиректор ВОЗ предрекла наступление постантибиотической эпохи, когда «даже стрептококковое воспаление горла или царапина на коленке ребенка могут снова приводить к смерти».
Конечно, для того чтобы услышать из уст руководителя ВОЗ о скором конце современной медицины, должны были сложиться исключительные обстоятельства. К сожалению, об этих обстоятельствах большинство людей не имеет ни малейшего представления. Ныне процесс возникновения и распространения устойчивых клинических штаммов бактерий происходит слишком стремительно, буквально на глазах врачей и исследователей. За последние 10–15 лет в результате продолжающегося интенсивного применения антибактериальных средств (АБ) бактериальные «монстры», устойчивые к различным антибиотикам, практически полностью вытеснили штаммы, устойчивые только к одному виду АБ. Отмечено появление так называемых панрезистентных супербактерий, устойчивых абсолютно ко всем используемым ныне АБ.
Такая ситуация не только усложняет борьбу с типичными инфекционными заболеваниями, но и ставит под угрозу применение многих жизненно важных медицинских процедур вроде трансплантации органов, имплантации протезов, передовой хирургии и химиотерапии раковых заболеваний. При всех этих процедурах повышается риск развития инфекционных заболеваний.
Как возникает и распространяется устойчивость к антибиотикам?
Почему же сложилась такая ситуация, что когда-то всемогущие АБ вдруг перестали эффективно действовать на бактерии? Чтобы ответить на этот вопрос, необходимо разобраться с основными способами возникновения устойчивости и путями ее распространения.
Устойчивость бактерий к АБ может быть врожденной и приобретенной. Врожденная устойчивость обусловлена особенностями строения структур клетки, на которые направлено действие антибиотика. Такая устойчивость может быть связана, например, с отсутствием у микроорганизмов мишени действия АБ или недоступностью мишени вследствие низкой проницаемости оболочки клетки. Приобретенная устойчивость возникает в результате контакта микроорганизма с антимикробным средством за счет возникновения мутаций либо благодаря горизонтальному переносу генов (ГПГ) устойчивости. В настоящее время именно горизонтальный перенос различных генов резистентности является главной причиной быстрого возникновения множественной лекарственной устойчивости у бактерий.
ГПГ — процесс, в котором организм передает генетический материал другому организму, не являющемуся его потомком. Такая переданная ДНК встраивается в геном и затем стабильно наследуется. Центральную роль в этом процессе играют различные мобильные генетические элементы — плазмиды, транспозоны, IS-элементы, интегроны. За последние годы сформировано четкое понимание того, что ГПГ является одним из ведущих механизмов эволюции бактерий.
Эволюционные корни проблемы устойчивости
Гипотеза о том, что актиномицеты-продуценты антибиотиков, живущие в почвах, становятся источником генов устойчивости к антибиотикам, была сформулирована еще в 1973 году американскими учеными Бенвенистом и Дэвисом (Benveniste, Davies). Однако впоследствии выяснилось, что гены продуцентов АБ имеют очень низкое сходство с генами патогенных бактерий. Поэтому было сделано предположение о том, что любые природные бактерии, а не только сами продуценты, являются источником генов устойчивости к АБ. Первые свидетельства в пользу этого предположения были получены французскими учеными при изучении происхождения генов бета-лактамазы и генов устойчивости к хинолонам. В обоих случаях удалось обнаружить природные бактерии, несущие гены, почти идентичные клиническим. Однако это были лишь единичные примеры; к тому же нельзя было исключить возможность переноса генов в обратном направлении, от клинических штаммов бактерий к бактериям природным.
Для убедительного подтверждения данной гипотезы было необходимо выделить гены, идентичные или практически идентичные клиническим из природных экосистем, не подвергавшихся антропогенному воздействию. Впервые такие гены устойчивости к АБ из абсолютно нетронутых экосистем удалось обнаружить в 2008 году российским генетикам из Института молекулярной генетики РАН. Для этих исследований были использованы образцы «вечной» мерзлоты возрастом от 20 тыс. до 3 млн лет. В 2011 году канадские исследователи также обнаружили гены устойчивости в ДНК, выделенной из образца мерзлоты с Клондайка возрастом 30 тыс. лет. В настоящее время в лабораториях ряда стран активно ведутся геномные исследования в этом направлении. Благодаря всем этим исследованиям уже никто не сомневается в том, что резистентность к АБ имеет глубокие эволюционные корни и существовала задолго до начала применения АБ во врачебной практике.
Хозяйственная деятельность и устойчивость к АБ
Хотя гены устойчивости к АБ у бактерий возникли еще в древности, широкое распространение таких генов среди микроорганизмов началось после начала использования антибактериальных средств в медицине. Активное и повсеместное применение антибактериальных средств послужило мощнейшим эволюционным инструментом, способствуя селекции и распространению бактерий с измененным геномом. Более 100 тыс. тонн АБ, производимых ежегодно, заставляют микроорганизмы проявлять чудеса приспособляемости.
По сути, начав активно использовать антибиотики, человек неожиданно для себя поставил широкомасштабный и планомерный эксперимент по отбору устойчивых бактерий. Следует особо подчеркнуть, что в результате этого в клинике произошел отбор не только генов устойчивости, но и особых систем, значительно ускоряющих приобретение новых генов устойчивости за счет ГПГ. Это привело к тому, что АБ, которые еще недавно успешно использовались для борьбы с самыми различными возбудителями инфекций, теперь в подавляющем большинстве случаев оказываются неэффективными. Ведь в процессе эволюции у бактерий выработаны многочисленные приспособительные механизмы, позволяющие быстро меняться и выживать в условиях самого жесткого отбора, будь он естественным или искусственным.
Нынешняя опасная ситуация, сложившаяся в борьбе с инфекциями, напрямую связана с огромным количеством производимых АБ. Большинство из них плохо усваивается человеком и животными, в результате чего от 25% до 75% потребляемых антибактериальных средств без изменений выводится из организма с калом и мочой, попадая затем вместе с водой в естественные водоемы. По всему миру ученые регулярно находят в городских сточных водах высокую концентрацию АБ после их использования в медицине и животноводстве. И никакие очистные сооружения не в силах этому противостоять. Такая ситуация прямо способствует распространению резистентности к АБ: бактерии, живущие в естественной среде, после контакта с малыми дозами АБ из очистных сооружений приобретают к ним устойчивость. Подтверждением этому служит тот факт, что в местах слива сточных вод постоянно обнаруживаются бактерии с генами устойчивости к АБ, а также бактериофаги, передающие эти гены бактериям. Кроме того, использование для удобрения полей навоза животных, получавших антибиотики, также приводит к заметному увеличению в почве бактерий, содержащих гены устойчивости. Эти гены потом могут передаваться бактериям, живущим на растениях, а затем с растительной пищей попадать в кишечник человека и захватываться кишечной микрофлорой.
В немалой степени способствует распространению устойчивости к АБ заведенная в животноводстве практика создания крупных комплексов с многотысячными поголовьями. Плазмиды с генами устойчивости, R-плазмиды, очень быстро распространяются на ограниченном пространстве с большим количеством животных. И здесь уже можно увидеть социальные причины увеличения резистентности к АБ. Постепенная миграция сельских жителей в города приводит к исчезновению небольших животноводческих хозяйств и замене их гигантскими комплексами, которые являются прекрасным резервуаром для накопления факторов резистентности. В таких комплексах гены устойчивости к АБ приобретают не только животные, но и люди из обслуживающего персонала.
Еще одним важным фактором распространения устойчивости к АБ оказывается принятое сегодня за правило применение субтерапевтических доз АБ в животноводстве в качестве факторов роста. Директор ВОЗ М. Чен привела поразительные данные о том, что более половины всех производимых сегодня антибиотиков скармливают животным для их быстрого роста: «Количество антибиотиков, используемых среди здоровых животных, превышает количество антибиотиков, используемых среди нездоровых людей».
Еще одной ключевой причиной распространения устойчивости к АБ стало необоснованное назначение их врачами (наряду с самолечением). Вообще, как это ни парадоксально, любые контакты со сферой здравоохранения несут в себе повышенный риск заразиться бактериями, устойчивыми к целому спектру АБ. Нужна по-настоящему стерильная чистота, аккуратность и ответственность, чтобы противостоять распространению устойчивых штаммов в таких медицинских учреждениях.
Выход есть!
Но даже из такой сложной ситуации есть выход. И здесь будет уместно привести два примера. Дания в конце 1990-х первой в Европе ввела запрет на использование антибиотиков в качестве стимуляторов роста животных. Результаты такого шага не заставили себя ждать. Международная группа экспертов показала, что отказ Дании от АБ в животноводстве не только не нанес большого ущерба доходам фермеров, но и способствовал значительному снижению факторов устойчивости к АБ на фермах и в мясе животных. В выигрыше оказались все, кроме производителей АБ. Германия, запретив использование АБ авопарцина на птицефермах, тоже добилась внушительных результатов: количество энтерококков, устойчивых к ванкомицину (аналогу авопарцина), за четыре года после запрета снизилось в три раза.
Налицо непростая ситуация. Человечество стоит перед очень сложной многогранной проблемой. Научные исследования показали, насколько сложно устроены биологические процессы у живых организмов и как осторожно нужно вмешиваться в их естественный ход. Появление в последние десятилетия устойчивых к лекарствам супербактерий и множества новых инфекций — лучшее тому подтверждение. Бездумное применение антибиотиков создало реальную угрозу для человечества. И для того, чтобы устранить или хотя бы уменьшить эту угрозу, потребуются большие усилия, и в первую очередь правительств и научно-медицинского сообщества.
Что значит полирезистентные к антибиотикам
ГБОУ ВПО «Казанский государственный медицинский университет» Минздрава России, Бутлерова ул., 49, Казань, Российская Федерация, 420012; ГАУЗ «Детская республиканская клиническая больница» Минздрава Республики Татарстан, Оренбургский тракт, 140, Казань, Российская Федерация, 420138
ГБОУ ВПО «Казанский государственный медицинский университет» Минздрава России
ГАУЗ «Детская республиканская клиническая больница» Минздрава Республики Татарстан, Оренбургский тракт, 140, Казань, Российская Федерация, 420138
О значении полирезистентных штаммов патогенных микроорганизмов в офтальмологической практике
Журнал: Вестник офтальмологии. 2015;131(2): 110-114
Галеева Г. З., Самойлов А. Н., Расческов А. Ю. О значении полирезистентных штаммов патогенных микроорганизмов в офтальмологической практике. Вестник офтальмологии. 2015;131(2):110-114.
Galeeva G Z, Samoĭlov A N, Rascheskov A Yu. On the importance of multidrug-resistant strains of pathogenic microorganisms in ophthalmic practice. Vestnik Oftalmologii. 2015;131(2):110-114.
https://doi.org/10.17116/oftalma20151312110-114
ГБОУ ВПО «Казанский государственный медицинский университет» Минздрава России, Бутлерова ул., 49, Казань, Российская Федерация, 420012; ГАУЗ «Детская республиканская клиническая больница» Минздрава Республики Татарстан, Оренбургский тракт, 140, Казань, Российская Федерация, 420138
Данная статья представляет обзор литературы из эпидемиологических, микробиологических и офтальмологических источников о полирезистентных штаммах бактерий в медицине и офтальмологии. Современное состояние фармацевтического рынка и наличие большого количества «дженериков» дезориентирует врача в плане выбора оптимального антибиотика для лечения гнойно-воспалительных заболеваний, в том числе в офтальмологии. В результате бессистемного применения антибактериальных препаратов происходит селекция полирезистентных штаммов бактерий. Мир возвращается к ситуации, существовавшей до эры антибиотиков, когда не было средств для лечения тяжелых инфекционно-воспалительных заболеваний. В статье описаны наиболее опасные полирезистентные штаммы бактерий, известные в медицине, определена их роль в этиологии воспалительных заболеваний глаз. Охарактеризована этиологическая структура конъюнктивитов новорожденных и послеоперационных эндофтальмитов как наиболее частых воспалительных заболеваний в офтальмологии, вызванных госпитальными штаммами полирезистентных бактерий. Изложены механизмы формирования лекарственной устойчивости бактерий к наиболее распространенным в офтальмологии антибактериальным препаратам, обозначены пути профилактики селекции полирезистентных штаммов.
ГБОУ ВПО «Казанский государственный медицинский университет» Минздрава России, Бутлерова ул., 49, Казань, Российская Федерация, 420012; ГАУЗ «Детская республиканская клиническая больница» Минздрава Республики Татарстан, Оренбургский тракт, 140, Казань, Российская Федерация, 420138
ГБОУ ВПО «Казанский государственный медицинский университет» Минздрава России
ГАУЗ «Детская республиканская клиническая больница» Минздрава Республики Татарстан, Оренбургский тракт, 140, Казань, Российская Федерация, 420138
В последние годы отмечается устойчивая тенденция к смене микробного пейзажа возбудителей гнойно-воспалительных заболеваний с возрастанием роли грамотрицательных и условно-патогенных микроорганизмов [1, 2]. Выяснилась их важная роль в общей патологии человека и хронизации инфекционного процесса.
Другой важной проблемой современной медицины является массовое распространение лекарственной устойчивости возбудителей гнойно-воспалительных и нозокомиальных инфекций, в том числе условно-патогенных микроорганизмов [3—5]. Современное состояние фармацевтического рынка в связи с большим количеством дженериков часто дезориентирует врача в плане выбора оптимального антибиотика, а высокая стоимость наиболее эффективных из них сужает спектр используемых антибактериальных средств. Часто происходит возврат к уже апробированным, ставшим «традиционными» препаратам, применение которых уже не дает желаемых результатов [6]. Бессистемное использование антибиотиков ведет к быстрой селекции и распространению в рамках стационара устойчивых штаммов микроорганизмов [7]. Формирование стойкой полирезистентности штаммов возбудителей возвращает мир к ситуации, которая существовала до эры антибиотиков, когда не было средств для лечения тяжелых бактериальных инфекций [6].
Понятие «полирезистентные штаммы» неразрывно связано с понятием «внутрибольничные инфекции» (ВБИ), так как большинство последних вызвано бактериями с множественной лекарственной устойчивостью [8—10].
Практическое значение для клинициста имеют следующие виды резистентных штаммов, распространенных в стационарах нашей страны:
— стафилококки, резистентные к метициллину (оксациллину). Метициллинрезистентные стафилококки проявляют устойчивость ко всем β-лактамовым антибиотикам (пенициллинам, цефалоспоринам, карбапенемам), включая ингибиторзащищенные, а также ассоциированную устойчивость ко многим другим группам препаратов, включая аминогликозиды, макролиды, линкозамиды, фторхинолоны;
— энтерококки, устойчивые к ванкомицину (VRE). С высокой частотой встречаются в отделениях реанимации и интенсивной терапии (ОРИТ) США, данные по нашей стране отсутствуют, однако сообщения о выделении VRE имеются. VRE сохраняют чувствительность к линезолиду, в некоторых случаях — к ампициллину [6, 7, 11, 12];
— микроорганизмы семейства Enterobacteriaceae (прежде всего Klebsiella spp. и E. coli), продуцирующие β-лактамазы расширенного спектра и устойчивые к цефалоспоринам I, II, III поколений;
— P. aeruginosa, устойчивая ко многим антибиотикам, вплоть до панрезистентных штаммов. Предсказать фенотип устойчивости P. aeruginosa в каждом конкретном случае сложно, поэтому особое значение имеют локальные данные по антибиотикорезистентности [7, 11].
Согласно нашим данным, в этиологической структуре дакриоцистита новорожденных стафилококки составляют 51,6%, бактерии семейства Enterobacteriacea — 7,3%, E. faecalis — 5,5%, P. aeruginosae — 2,9% [13, 14].
Наиболее часто офтальмолог встречается с полирезистентными штаммами при работе с новорожденными детьми. Практически все авторы единодушно относят конъюнктивит новорожденных к одному из наиболее частых проявлений внутрибольничного инфицирования в акушерских стационарах [15—20]. Гнойно-септические инфекции новорожденных занимают третье ранговое место в структуре ВБИ и составляют 10% (на первом месте послеоперационные инфекции (47,8%), на втором — постинъекционные инфекции (42,0%)).
При этом в этиологической структуре инфекций новорожденных в целом большинство исследователей ведущую роль отдают грамположительным микроорганизмам — от 40 до 57% с преобладанием S. aureus и S. epidermidis. При анализе ведущих возбудителей гнойно-септических заболеваний новорожденных за последние 25 лет авторы отмечают, что на смену S. aureus, полирезистентному к антибиотикам и дезинфектантам, пришли S. epidermidis и Staphylococcus spp. с гемолитическими свойствами. Преобладание именно условно-патогенных микроорганизмов в этиологии воспалительных заболеваний новорожденных отмечают многие исследователи [2, 18, 21, 22]. Данные об энтеробактериях неоднозначны, доля их в этиологии конъюнктивита новорожденных составляет от 7,9 до 40%, неферментирующих грамотрицательных бактерий — 4,4%, грибов (в основном семейства Candida) — от 4,4 до 9,9%, P. aeruginosa — 4,9% [16—18, 23]. В этиологии гнойных конъюнктивитов новорожденных в последние годы на первый план вышли S. epidermidis и грамотрицательные бактерии [18].
В 93% случаев гнойно-септические заболевания у новорожденных выявлялись на дому, уже после выписки из родильного дома [18].
Также в офтальмологии полирезистентные штаммы бактерий являются возбудителями послеоперационных воспалительных осложнениях, наиболее распространенным из которых является эндофтальмит после внутриглазных операций [24—27]. В литературе описаны эндофтальмиты после хирургии катаракты, глаукомы, сквозной кератопластики и витрэктомии [28—34]. Следует отметить, что частота развития послеоперационных эндофтальмитов отражена только в зарубежной литературе. Смена интракапсулярной экстракции катаракты на экстракапсулярную, улучшение методов асептики и антисептики снизили частоту данных осложнений с 10 (в начале 20 века) до 0,12% в Европе [35] до 0,72% в США [36]. При внедрении факоэмульсификации катаракты через роговичный разрез частота послеоперационных эндофтальмитов несколько возросла и составляет в настоящее время от 0, 015 до 0,3—0,5% [28].
Ранние послеоперационные эндофтальмиты после хирургического лечения глаукомы встречаются примерно в 0,1% случаев. Большинство эндофтальмитов после хирургического вмешательства по поводу глаукомы развиваются спустя месяцы и даже годы после операций и встречаются в 0,2—0,7% случаев [32].
Частота развития эндофтальмитов после операций сквозной кератопластики, по данным литературы, составляет от 0,8 до 0,2% [30, 33].
После проведения витрэктомии через плоскую часть стекловидного тела эндофтальмиты развиваются в 0,05—0,14% случаев [35].
В международной классификации болезней 10-го пересмотра (МКБ-10) в число ВБИ, подлежащих учету и регистрации в хирургических стационарах, кроме гнойно-септических инфекций, присутствовавших в старой классификации, включены инфекции и воспалительные реакции, связанные с имплантатами. В офтальмологии к имплантатам относится ИОЛ, при имплантации которой риск развития послеоперационного эндофтальмита несколько выше.
Согласно МКБ-10, выделяют следующие случаи инфекции в области хирургического вмешательства:
1. Поверхностная инфекция разреза.
2. Глубокая инфекция в области хирургического вмешательства.
3. Инфекция в области хирургического вмешательства органа/полости.
Последняя инфекция возникает не позднее 30 дней после операции при отсутствии имплантата (в офтальмологии ИОЛ) или не позднее одного года при наличии имплантата в месте операции. При этом, согласно МКБ-10, у пациента имеется хотя бы один из перечисленных признаков:
— выделение микроорганизмов из жидкости или ткани, полученной асептически из органа/полости;
— при непосредственном осмотре, во время повторной операции, при гистологическом или рентгенологическом исследовании обнаружен абсцесс или иные признаки инфекции, вовлекающей орган/полость [41].
Биохимические механизмы развития лекарственной устойчивости возбудителей универсальны. Всего существует 5 биохимических механизмов устойчивости бактерий к антибиотикам:
1. Модификация мишени действия.
2. Инактивация антибиотика.
3. Активное выведение антибиотика из микробной клетки (эффлюкс).
4. Нарушение проницаемости внешних структур микробной клетки.
5. Формирование метаболического «шунта» [42].
Остановимся на рассмотрении механизмов развития устойчивости бактерий к антибиотикам, применяющимся в офтальмологии.
Основным механизмом устойчивости к аминогликозидам является их ферментативная инактивация путем модификации. Модифицированные молекулы аминогликозидов теряют способность связываться с рибосомами и подавлять биосинтез белка. Гены ферментов локализуются, как правило, на плазмидах, что приводит к быстрому внутри- и межвидовому распространению устойчивости. Для России характерна высокая частота распространения устойчивости среди грамотрицательных бактерий к гентамицину и тобрамицину, что, вероятно, связано с необоснованно широким применением гентамицина. Частота устойчивости к нетилмицину, как правило, несколько ниже. Устойчивость к амикацину встречается достаточно редко [42, 43].
Также при взаимодействии бактерий с аминогликозидами может формироваться снижение проницаемости внешних структур. Природная устойчивость к аминогликозидам анаэробов объясняется тем, что транспорт этих антибиотиков через цитоплазматическую мембрану связан с системами переноса электронов, которые у анаэробов отсутствуют. По этой же причине факультативные анаэробы в условиях анаэробиоза становятся значительно более устойчивыми к аминогликозидам, чем в аэробных условиях.
Практически важным фактом является природная устойчивость к аминогликозидам стрептококков и энтерококков, связанная с преимущественно анаэробным метаболизмом этих бактерий и, следовательно, невозможностью транспорта антибиотиков к чувствительным мишеням. При совместном воздействии на микробную клетку аминогликозидов и β-лактамов последние нарушают структуру цитоплазматической мембраны бактерий и облегчают транспорт аминогликозидов. В результате этого между β-лактамами и аминогликозидами проявляется выраженный синергизм.
Ведущим механизмом устойчивости к хинолонам/фторхинолонам является модификация мишени действия. При этом развитие лекарственной устойчивости к фторхинолонам происходит значительно медленнее, чем к другим антибактериальным препаратам, так как для резистентности бактериальных клеток требуется модификация двух мишеней, которые представлены бактериальными ферментами: ДНК-гиразой и топоизомеразой IV, опосредующими конформационные изменения в молекуле бактериальной ДНК, необходимые для ее нормальной репликации. Поскольку топоизомеразы выполняют несколько различные функции, то для подавления жизнедеятельности микробной клетки достаточно ингибировать активность только одного фермента, активность второго может сохраняться. Эта особенность объясняет тот факт, что для всех хинолонов можно выделить первичную и вторичную мишень действия. Первичной мишенью является тот фермент, к которому данный хинолон проявляет наибольшее сродство. Хинолонов, которые бы проявляли абсолютно одинаковое сродство к обеим топоизомеразам, не существует.
У грамотрицательных бактерий наибольшее сродство хинолоны проявляют к ДНК-гиразе, благодаря чему именно этот фермент является первичной мишенью их действия. У грамположительных бактерий для большинства хинолонов первичной мишенью действия является топоизомераза IV, но для спарфлоксацина и гатифлоксацина — ДНК-гираза. Моксифлоксацин и гемифлоксацин, вероятно, обладают приблизительно одинаковым сродством к обоим ферментам.
Основным механизмом устойчивости к хинолонам является изменение структуры топоизомераз в результате мутаций в соответствующих генах и аминокислотных замен в молекулах ферментов. Аминокислотные замены в свою очередь приводят к снижению сродства хинолонов к ферментам и повышению минимальной подавляющей концентрации препаратов. Считается, что фторхинолоны, обладающие приблизительно одинаковым сродством к обеим топоизомеразам (моксифлоксацин), в наименьшей степени способствуют селекции устойчивости. Это связано с тем, что для формирования устойчивого штамма мутации должны произойти одновременно в генах обоих ферментов, вероятность же двойных мутаций существенно ниже, чем одиночных [42].
Развитие лекарственной устойчивости к тетрациклину формируется по механизму активного выведения. Детерминанты резистентности обычно локализованы на плазмидах, что обеспечивает их быстрое внутри- и межвидовое распространение [42, 43].
Ферментативная инактивация (ацетилирование) является основным механизмом устойчивости к хлорамфениколу. Гены ферментов — хлорамфениколацетилтрансфераз, как правило, локализуются на плазмидах и входят в состав транспозонов в ассоциации с генами устойчивости к другим антимикробным препаратам [42].
Для профилактики формирования множественной лекарственной устойчивости возбудителей в офтальмологии необходимо:
— иметь четко разработанную тактику применения антибиотиков, проводить непрерывные образовательные мероприятия [27];
— антибактериальную терапию следует начинать неотложно при регистрации инфекции, до получения результатов бактериологического исследования, с учетом вероятного спектра возбудителей, тенденций их антибиотикорезистентности, риска селекции полирезистентных штаммов. Дозу антибактериальных препаратов выбирать ближе к максимальной [7, 44];
— проводить локальный мониторинг антибиотикорезистентности;
— для профилактики селекции полирезистентных штаммов при лечении инфекционных заболеваний необходимо проводить бактериологические исследования с переходом в дальнейшем на этиотропную антибактериальную терапию [7];
— изменить соотношение добольничной и больничной помощи в сторону добольничной, переходить от широкомасштабной госпитализации к прогрессивным ресурсосберегающим формам и методам работы, расширять сети дневных стационаров при офтальмологических отделениях, сокращать время пребывания пациента в стационаре [41, 45].
Концепция и дизайн исследования: Г.З., А.Н.