Dev linux что это

Dev linux что это

Ядро Linux реализует поддержку двух типов устройств – символьных и блочных. Основное их отличие в том, что для блочных устройств операции ввода вывода осуществляются не отдельными байтами (символами), а блоками фиксированного размера.

Как видно, в листинге присутствует описание семи устройств, четырех блочных и трех символьных. Для каждого файла можно увидеть его тип (первая буква в списке прав доступа), пользователя-владельца, группу-владельца, major number, minor number, дату модификации и имя файла.

Для поддержки работы с устройствами в ядре хранятся две таблицы, одна для списка символьных устройств, другая для списка блочных устройств. Каждая строка таблицы сопоставлена какой-то разновидности устройств соответствующего типа – например, для типа “символьные устройства” можно выделить следующие разновидности: COM-порты, LPT-порты, PS/2-мыши, USB-мыши и т.д., для типа “блочные устройства” можно выделить SCSI-диски, IDE-диски, SCSI-CD-приводы, виртуальные диски которыми представляются RAID-контролеры и т.п.

Каждая ячейка в этих системных таблицах сопоставляется конкретному экземпляру устройства. Таким образом, с точки зрения ядра каждое устройство оказывается однозначно проидентифицировано тремя параметрами – типом устройства (блочное или символьное) и двумя числами – номерами строки и номером столбца таблицы, в которой хранится ссылка на драйвер этого устройства.

Пример таблицы символьных и устройств

Диспетчер томов LVM

Микшер первой зв. карты

Первая видеокарта NVidia

Пример таблицы блочных устройств

IDE Primary Master

Раздел 1 на IDE Primary Master

Раздел 2 на IDE Primary Master

Раздел 16 на IDE Primary Master

Раздел 1 на IDE Primary Slave

Раздел 1 на SCSI-диске 1

Раздел 2 на SCSI-диске 1

Раздел 1 на SCSI-диске 4

13.1. Статическая организация каталога /dev

В настоящее время существует два подхода к организации /dev – статическая организация и динамическая организация. В первом случае в каталоге /dev заранее создаются специальные файлы для всех возможных устройств вне зависимости от того, загружен драйвер соответствующего устройства или нет. Во втором случае специальные файлы в /dev создаются по мере инициализации устройств и загрузки драйверов, и удаляются при выгрузке соответствующего драйвера или удалении устройства.

Сообщение No such device or address как раз и означает, что записи для данного устройства в таблице блочных устройств не существует.

Ядро Linux совместно с некоторыми системными утилитами поддерживает такую интересную возможность, как загрузка драйверов “по требованию”. Реализуется это следующим образом – в момент, когда какая-либо программа пытается открыть специальный файл, не связанный ни с каким драйвером, ядро делает попытку подобрать соответствующий драйвер самостоятельно. Необходимый драйвер для каждого специального файла определяется в файле /etc/modules.conf путем задания специального алиаса (alias) для модуля. Для активизации автоматической загрузки драйвера какого-либо символьного устройства в большинстве случаев достаточно просто записать в /etc/modules.conf строку следующего вида:

Для блочных устройств соответствующая запись слегка меняет свою форму:

X и Y – это major и minor специального файла, попытка открыть который должна активизировать автоматическую загрузку драйвера. Владельцы видеокарт на чипе nVidia могут увидеть этот подход в действии – программа инсталляции драйвера nVidia автоматически прописывает в modules.conf запись для загрузки «по требованию» той части драйвера, которая работает в режиме ядра.

Тогда при обращении к любому символьному устройству с major number равным 81 и которое не ассоциировано ни с каким драйвером, система попытается загрузить драйвер bttv (драйвер TV-тюнера на основе чипа bt848).

13.2. Что такое DevFS

Для того, чтобы избавить администратора от ручного создания специальных файлов и для уменьшения количества файлов в /dev был реализован второй способ организации /dev – динамическое создание специальных файлов процессе загрузки драйверов. Реализовано это было следующим образом:

Ядро монтирует к каталогу /dev специальную файловую систему, называемую devfs – эта файловая система хранится целиком в оперативной памяти и не занимает никакого места на диске. Когда какой-либо драйвер в процессе загрузки или работы обнаруживает обслуживаемое им устройство, он регистрирует это устройство и сообщает о нем драйверу devfs. Драйвер devfs создает специальный файл, который виден прикладным программам и может быть корректно открыт. При выгрузке же драйвер устройства сообщает devfs о том, что соответствующее устройство уже не активно, и драйвер devfs удаляет запись о соответствующем специальном файле из файловой системы devfs.

Эта особенность является весьма важным плюсом devfs, поскольку она позволяет адресовать дисковые устройства путем указания логического пути их подключения и избежать смены имен SCSI-дисков в некоторых случаях (об этих случаях будет рассказано позднее).

С помощью devfsd файловая система devfs также реализует автоматическую загрузку модулей, но в этом случае выбор модуля идет не через комбинацию type/major/minor, а путем указания имени запрошенного файла – когда приложение пытается открыть несуществующий файл устройства, devfs передает имя запрошенного файла демону devfsd, и последний загружает необходимые модули, например такой код в файле modules.devfs :

13.3. Немного о UDEV

В современных дистрибутивах и ядрах поддержка devfs/devfsd отключена, и на смену этой паре пришел специальный демон, называемый udev. В отличие от devsfd, который требовал поддержки со стороны ядра, udev такой поддержки не требует. При инициализации устройства ядро подает сигнал через файловую систему sysfs, и демон udevd, получив сигнал об этом событии, самостоятельно создает соответствующий специальный файл устройства в каталоге /dev в соответствии с правилами, описанными в его конфигурационных файлах. При необходимости в этих файлах можно указать например вызов некоторой внешней программы, создание символьной ссылки и так далее.

Например, если некоторое устройство после подключения перед началом работы требует дополнительной настройки с использованием внешних программ, можно создать соответствующее правило для udev, в котором будет указано какую программу вызвать и какие параметры ей необходимо передать – в частности, это может потребоваться для data-кабелей к некоторым мобильным телефонам Nokia, для устройств которым для корректной работы требуется firmware, или для сохранения или восстановления текущих настроек устройства.

Источник

Dev linux что это

/dev: Файловая система устройств.

/dev/hda
/dev/hda1
/dev/hda2
/dev/hda3
/dev/hda4
/dev/hdb
/dev/hdb1
/dev/hdb2
/dev/hdb3

Жесткие диски SCSI используют /dev/sd вместо /dev/hd, но их правила наименования ничем не отличаются.

Устройство /dev/null физически не существует, но данные, помещенные туда, просто исчезают и их уже невозможно вернуть обратно. Во многих случаях программы выводят много лишней информации. В shell-скриптах /dev/null часто используется, чтобы не беспокоить пользователя различными ненужными вещами. В примере, приведенном ниже, в ядро помещается модуль и вывод перенаправляется в /dev/null.

$ modprobe cipher-twofish > /dev/null

/dev/zero выполняет почти те же функции, что и /dev/null. Это устройство так же используется, чтобы убрать ненужные данные, но чтение из /dev/zero постоянно дает символы \0. (Чтение из /dev/null дает символы End of file). Поэтому /dev/zero часто используется для создания пустых файлов:

dd if=/dev/zero of=/my-file bs=1k count=100

Эта команда создает файл размером 100 Kb, состоящий только из нулевых символов.

/dev/full изображает полное устройство. Запись в /dev/full возвращает ошибку. Это устройство полезно при тестировании, как программа поведет себя при доступе к устройству, не имеющему свободного места.

Устройства /dev/random и /dev/urandom генерируют «случайную» информацию. Хотя вывод из обоих этих устройств может показаться совершенно случайным, но /dev/random на самом деле более случайно, чем /dev/urandom. /dev/random генерирует случайные символы на основе «шума окружающей среды», который имеет ограниченное количество, поэтому /dev/random работает медленно, и может иногда останавливаться и ждать поступления новых данных. /dev/urandom использует те же данные, что и /dev/random, но если случайные данные заканчиваются, начинается генерация псевдослучайных чисел. Это делает /dev/urandom более быстрым, но менее безопасным.

Старая файловая система /dev: В прошлом /dev была частью нормальной файловой системы и состояла из специальных файлов, созданных при установке системы и хранящихся на жестком диске.

Если файл для устройства не присутствовал, есго нужно было создавать специальной программой mknod или MAKEDEV. Хотя старая модель работала, но она была сложной и неудобной.

/proc: Файловая система для процессов.

Чтобы управлять системой, ядро должно следить за каждым запущенным процессом, включая себя. Так же информация о запущенных процессах должна быть доступна и для многих пользовательских приложений, таких, как «ps» и «top». В файловой системе /proc ядро хранит информацию о процессах.

Как DevFS, /proc хранится в памяти, а не на диске. Если посмотреть на файл /proc/mounts (который перечисляет все смонтированные файловые системы), то вы увидите строку:

proc /proc proc rw 0 0

/proc контролируется ядром и не имеет соответствующего устройства.

mbutcher 1219 1207 0 12:23 pty/s2 00:00:00 /bin/bash

Этот процесс запускает bash, и имеет PID 1219. Директория /proc/1219 содержит информацию об этом процессе.

$ ls /proc/1219
cmdline cpu cwd environ exe fd maps mem root stat statm status

Файл «cmdline» содержит команду, данную для запуска этого процесса. Файл «environ» содержит переменные для процесса. «status» имеет статусную информацию, включая номер пользователя (UID) и номер группы (GID) пользователя, запустившего процесс, номер родительского процесса PPID (parent process ID), который запустил PID, и текущее состояние процесса, такое, как «Sleeping» или «Running».

$ cat status
Name: bash
State: S (sleeping)
Tgid: 1219
Pid: 1219
PPid: 1207
TracerPid: 0
Uid: 501 501 501 501
Gid: 501 501 501 501
FDSize: 256
Groups: 501 10 18
VmSize: 2400 kB
VmLck: 0 kB
VmRSS: 1272 kB
VmData: 124 kB
VmStk: 20 kB
VmExe: 544 kB
VmLib: 1604 kB
SigPnd: 0000000000000000
SigBlk: 0000000080010000
SigIgn: 8000000000384004
SigCgt: 000000004b813efb
CapInh: 0000000000000000
CapPrm: 0000000000000000
CapEff: 0000000000000000

Так же в директории есть и другие файлы, предоставляющие информацию обо всем, начиная от использования процессора и памяти до количества времени, в течении которого этот процесс работал. Они описаны в исходниках ядра под «Documentation/file systems/proc.txt» и в man-странице «man proc».

Информация ядра: Кроме информации о процессах, /proc содержит много информации, генерируемой ядром для описания состояния системы.

Ядро и его модули могут генерировать файлы в /proc для предоставления информации об их состоянии. Например, /proc/fb предоставляет информацию о доступных устройствах frame buffer (чаще всего используются для демонстрации логотипа при загрузке).

Много информации об устройствах хранится в /proc. Файл /proc/pci содержит информацию о почти каждом PCI-устройстве, обнаруженном в системе. Запуск команды «lspci» выводит похожий список, потому что в качестве источника информации используется именно /proc/pci. /proc/bus содержит директории для различных шинных архитектур (PCI, PCCard, USB), которые в свою очередь содержат информацию об устройствах, подключенных к этим шинам. Сетевая информация и статистика хранится в /proc/net. Информация о жестких дисках хранится в /proc/ide и /proc/scsi, в зависимости от типа жесткого диска. /proc/devices перечисляет все устройства, разделенные на категории «block» и «characters».

$ cat /proc/devices
Character devices:
1 mem
2 pty/m%d
3 pty/s%d
4 tts/%d
5 cua/%d
7 vcs
10 misc
14 sound
29 fb
116 alsa
162 raw
180 usb
226 drm
254 pcmcia

Block devices:
1 ramdisk
2 fd
3 ide0
22 ide1

Например, в последние версии ядра можно встроить высокопроизводительный Web-сервер, работающий на уровне ядра системы (khttp). Запуск Web-сервера по умолчанию может быть небезопасен, и поэтому khttp можно запустить через сообщение, посылаемое в /proc.

echo 1 > /proc/sys/net/khttpd/start

Источник

ИТ База знаний

Полезно

— Онлайн генератор устойчивых паролей

— Онлайн калькулятор подсетей

— Руководство администратора FreePBX на русском языке

— Руководство администратора Cisco UCM/CME на русском языке

— Руководство администратора по Linux/Unix

Навигация

Серверные решения

Телефония

FreePBX и Asterisk

Настройка программных телефонов

Корпоративные сети

Протоколы и стандарты

Объяснение структуры каталогов Linux

Руководство по каталогам

Если вы работаете с Windows, структура файловой системы Linux может показаться особенно чуждой. Диск C:\ и буквы диска исчезли, их заменили каталоги / и загадочно звучащие каталоги, большинство из которых имеют трехбуквенные имена.

Онлайн курс по Linux

Мы собрали концентрат самых востребованных знаний, которые позволят тебе начать карьеру администратора Linux, расширить текущие знания и сделать уверенный шаг к DevOps

Dev linux что это. Смотреть фото Dev linux что это. Смотреть картинку Dev linux что это. Картинка про Dev linux что это. Фото Dev linux что это

Обратите внимание, что мы не говорим здесь о файловой системе, которая является техническим шаблоном, используемым для хранения данных на диске. Структура каталогов, которую мы рассмотрим, применима к большинству дистрибутивов Linux независимо от того, какую файловую систему они используют.

Типы содержимого

Это основные типы контента, хранящегося в файловой системе Linux.

Каталог /bin содержит основные пользовательские двоичные файлы (программы), которые должны присутствовать при монтировании системы в однопользовательском режиме.

Каталог /media содержит подкаталоги, в которых монтируются съемные носители, вставленные в компьютер. Например, когда вы вставляете компакт-диск в свою систему Linux, внутри каталога /media автоматически создается каталог. Вы можете получить доступ к содержимому компакт-диска внутри этого каталога.

Например, /media/cdrom для CD-ROM (если он не расположен в корне), /media/floppy для дисководов гибких дисков, /media/cdrecorder для рекордера компакт-дисков

/var это место, где программы хранят информацию о времени выполнения, такую как системный журнал, отслеживание пользователей, кэши и другие файлы, которые системные программы создают и управляют.

Источник

Cтруктура файловой системы Linux

Понимание файловой системы Linux, структуры каталогов, размещения конфигурационных, исполняемых и временных файлов поможет вам лучше разбираться в своей системе и стать успешным системным администратором. Файловая система Linux будет непривычна именно для новичка, только что перешедшего с Windows, ведь здесь все совсем по-другому.

В отличие от Windows, программа не находится в одной папке, а, как правило, распределена по корневой файловой системе. Это распределение поддается определенным правилам. Вы когда-нибудь задавались вопросом, почему некоторые программы находятся в папке /bin, или /sbin, /usr/sbin, /usr/local/bin, в чем разница между этими каталогами?

Например, программа less, находится в каталоге /usr/bin, но почему не в /sbin или /usr/sbin. А такие программы, как ifconfig или fdisk находятся в каталоге /sbin и нигде иначе. В этой статье будет полностью рассмотрена структура файловой системы Linux, после ее прочтения вы сможете понять смысл использования большинства папок в корневом каталоге Linux.

Это главный каталог в системе Linux. По сути, это и есть файловая система Linux. Здесь нет дисков или чего-то подобного, как в Windows. Вместо этого, адреса всех файлов начинаются с корня, а дополнительные разделы, флешки или оптические диски подключаются в папки корневого каталога.

Только пользователь root имеет право читать и изменять файлы в этом каталоге. Обратите внимание, что у пользователя root домашний каталог /root, но не сам /.

Этот каталог содержит исполняемые файлы. Здесь расположены программы, которые можно использовать в однопользовательском режиме или режиме восстановления. Одним словом, те утилиты, которые могут использоваться пока еще не подключен каталог /usr/. Это такие общие команды, как cat, ls, tail, ps и т д.

Так же как и /bin, содержит двоичные исполняемые файлы, которые доступны на ранних этапах загрузки, когда не примонтирован каталог /usr. Но здесь находятся программы, которые можно выполнять только с правами суперпользователя. Это разные утилиты для обслуживания системы. Например, iptables, reboot, fdisk, ifconfig,swapon и т д.

Это тоже необычная файловая система, а подсистема, динамически создаваемая ядром. Здесь содержится вся информация о запущенных процессах в реальном времени. По сути, это псевдофайловая система, содержащая подробную информацию о каждом процессе, его Pid, имя исполняемого файла, параметры запуска, доступ к оперативной памяти и так далее. Также здесь можно найти информацию об использовании системных ресурсов, например, /proc/cpuinfo, /proc/meminfo или /proc/uptime. Кроме файлов в этом каталоге есть большая структура папок linux, из которых можно узнать достаточно много информации о системе.

Название каталога /var говорит само за себя, он должен содержать файлы, которые часто изменяются. Размер этих файлов постоянно увеличивается. Здесь содержатся файлы системных журналов, различные кеши, базы данных и так далее. Дальше рассмотрим назначение каталогов Linux в папке /var/.

В эту папку почтовый сервер складывает все полученные или отправленные электронные письма, здесь же могут находиться его логи и файлы конфигурации.

Изначально, эта папка отвечала за очереди печати на принтере и работу набора программ cups.

Здесь находятся файлы блокировок. Эти файлы означают, что определенный ресурс, файл или устройство занят и не может быть использован другим процессом. Apt-get, например, блокирует свою базу данных, чтобы другие программы не могли ее использовать, пока программа с ней работает.

Содержит файлы с PID процессов, которые могут быть использованы, для взаимодействия между программами. В отличие от каталога /run данные сохраняются после перезагрузки.

В этом каталоге содержатся временные файлы, созданные системой, любыми программами или пользователями. Все пользователи имеют право записи в эту директорию.

Файлы удаляются при каждой перезагрузке. Аналогом Windows является папка Windows\Temp, здесь тоже хранятся все временные файлы.

Это самый большой каталог с большим количеством функций. Тут наиболее большая структура каталогов Linux. Здесь находятся исполняемые файлы, исходники программ, различные ресурсы приложений, картинки, музыку и документацию.

Содержит исполняемые файлы различных программ, которые не нужны на первых этапах загрузки системы, например, музыкальные плееры, графические редакторы, браузеры и так далее.

/usr/sbin/

Содержит двоичные файлы программ для системного администрирования, которые нужно выполнять с правами суперпользователя. Например, таких как Gparted, sshd, useradd, userdel и т д.

Содержит библиотеки для программ из /usr/bin или /usr/sbin.

Содержит файлы программ, библиотек, и настроек созданные пользователем. Например, здесь могут храниться программы собранные и установленные из исходников и скрипты, написанные вручную.

В этой папке хранятся домашние каталоги всех пользователей. В них они могут хранить свои личные файлы, настройки программ и т д. Например, /home/sergiy и т д. Если сравнивать с Windows, то это ваша папка пользователя на диске C, но в отличии от WIndows, home как правило размещается на отдельном разделе, поэтому при переустановке системы все ваши данные и настройки программ сохранятся.

Содержит все файлы, связанные с загрузчиком системы. Это ядро vmlinuz, образ initrd, а также файлы загрузчика, находящие в каталоге /boot/grub.

Содержит файлы системных библиотек, которые используются исполняемыми файлами в каталогах /bin и /sbin.

Библиотеки имеют имена файлов с расширением *.so и начинаются с префикса lib*. Например, libncurses.so.5.7. Папка /lib64 в 64 битных системах содержит 64 битные версии библиотек из /lib. Эту папку можно сравнить с WIndows\system32, там тоже сгружены все библиотеки системы, только там они лежат смешанные с исполняемыми файлами, а здесь все отдельно.

В эту папку устанавливаются проприетарные программы, игры или драйвера. Это программы созданные в виде отдельных исполняемых файлов самими производителями. Такие программы устанавливаются в под-каталоги /opt/, они очень похожи на программы Windows, все исполняемые файлы, библиотеки и файлы конфигурации находятся в одной папке.

В этот каталог системные администраторы могут монтировать внешние или дополнительные файловые системы.

В этом каталоге содержатся файлы серверов и сервисов. Например, могут содержаться файлы веб-сервера apache.

Еще один каталог, содержащий PID файлы процессов, похожий на /var/run, но в отличие от него, он размещен в TMPFS, а поэтому после перезагрузки все файлы теряются.

Выводы

Источник

Файловые системы /dev и /proc в Linux 2.4 0

Новичкам

Статья была опубликована 1 февраля 2010 года в 00:00, а последний раз правилась 4 февраля 2010 года в 00:05.

В Linux есть две файловые системы, которые абсолютно непоняты новым пользователям. У этих двух каталогов, /proc и /dev, нет аналогов в Windows. Тем не менее, они очень важны для понимания и использования Linux.

В Linux есть две файловые системы, которые абсолютно непоняты новым пользователям. У этих двух каталогов, /proc и /dev, нет аналогов в Windows. Тем не менее, они очень важны для понимания и использования Linux.

Данная статья представляет собой краткий обзор файловых систем для устройств (/dev) и для процессов (/proc). В ней рассказывается о том, что они из себя представляют, как работают и как используются.

/dev: файловая система для устройств

Устройства: В Linux’е устройство является специальным «оборудованием» (или кодом, эмулирующим его), которое представляет методы для ввода или вывода информации (IO — Input/Output). Например, клавиатура — устройство для ввода. Жесткий диск — устройства для ввода (запись) и вывода (чтение). Большинство устройств в Linux’е представлено как файлы в особой файловой системе (за исключением сетевых карт). Эти файлы хранятся в каталоге /dev, куда к ним обращается система для выполнения задач, связанных с вводом/выводом.

Грубо говоря, устройства можно разделить на две категории: символьные и блочные. Символьные устройства вводят/выводят по символам. Наиболее показательным примером служит клавиатура, у которой нажатие каждой клавиши формирует символ, передаваемый компьютеру. Мышь работает немного по-другому. Каждое движение или нажатие на кнопку отправляет символ на /dev/mouse.

Блочные устройства считывают данные большими объемами. Примерами служат устройства для хранения данных, такие как IDE жесткие диски (/dev/hd), SCSI жесткие диски (/dev/sd) и CD-ROM’ы (например, /dev/cdrom0 — символическая ссылка на первый CD-ROM). Операции ввода/вывода блочные устройства проводят с определенными блоками данных, что позволяет работать с большими объемами информации более эффективно.

Названия устройств: Устройства часто называются путем сокращения имен представляемого ими оборудования. Устройства с именами /dev/fb представляют буферы фреймов (frame buffers) для графики. Устройства /dev/hd представляют IDE жесткие диски (hard disks). В некоторых случаях для пояснения того, чем является устройство, используются символические ссылки: например, /dev/mouse, устройство, представляющее мышь, может быть прилинковано к последовательному, USB или PS2 устройству, в зависимости от железа. Символическая ссылка помогает и человеку, и машине разобраться, какое из устройств — мышь.

Иногда бывает несколько устройств одного типа. Например, у машины два ATAPI CD-ROM’а. Каждому CD-приводу нужен файл в /dev. В таком случае, возможен вариант, что /dev/cdrom0 будет первым CD-ROM’ом, а /dev/cdrom1 — вторым.

С именами жестких дисков немного сложнее. Название устройства жесткого диска зависит от типа диска, его позиции и раздела (partition’а). Первый жесткий диск может быть назван /dev/hda, где часть «hd» означает, что это IDE жесткий диск, а «a» показывает, что это первый жесткий диск. Тогда /dev/hdb будет ссылаться на второй жесткий диск. Каждый жесткий диск разбит на разделы. Первый раздел первого жесткого диска получит название /dev/hda1, где единица в конце обозначает номер раздела. Обратите внимание на то, что, если индексы некоторых устройств (например, /dev/cdrom0) могут начинаться с нуля, то индекс устройств с разделами обычно начинается с единицы. Вот примерный список файлов в /dev для двух IDE жестких дисков:

SCSI жесткие диски используют /dev/sd вместо /dev/hd, но все остальное выглядит также. /dev/sda1 ссылается на первый раздел первого SCSI жесткого диска.

Специальные устройства: Существует несколько специальных устройств, которые порой бывают очень полезны: /dev/null, /dev/zero, /dev/full и /dev/random.

Нулевое устройство, /dev/null представляет собой что-то типа «мусорной корзины». Часто некоторые программы выводят множество ненужной информации. Shell-скрипты обычно используют /dev/null для того, чтобы пользователь не видел ненужных ему сообщений от вызываемых утилит. Вот пример вызова модуля ядра с выводом всех сообщений в /dev/null.

/dev/zero близок к /dev/null. Как и /dev/null, устройство может быть использовано для блокирования вывода ненужной информации, но чтение /dev/zero возвращает \0 символы (чтение /dev/null возвращает символы end-of-file — конец файла). Поэтому /dev/zero обычно используется для создания пустых файлов.

Такая команда (см. выше) создаст файл размером в 100 кб, наполненный null-символами.

/dev/full служит для имитации «полного» устройства. Запись в /dev/full сопровождается ошибкой. «Полное» устройство полезно для того, чтобы посмотреть, как тестируемое приложение будет себя вести при попытки доступа к заполненному устройству (т.е. например, к жесткому диску, на котором не осталось места).

Устройства /dev/random и /dev/urandom создают «случайные» данные. Хотя вывод обоих может показаться абсолютно случайным, /dev/random более случаен чем /dev/urandom. /dev/random создает случайные символы, основываясь на «окружающем шуме». Так как количество этого случайного шума ограничено, /dev/random работает медленно и может временно останавливаться для дальнейшего сбора данных. /dev/urandom использует тот же шум, что и /dev/random, но если случайных данных больше нет, оно создает псевдо-случайные данные. Таким образом увеличивается его скорость, но уменьшается безопасность.

Старая файловая система /dev: Раньше файловая система /dev была частью обычной файловой системы. Она состояла из специальных файлов, созданных однажды (обычно при установке системы) и сохраненных на жестком диске.

Если указанного файла устройства не было, приходилось его создавать с помощью mknod или другой программы (типа MAKEDEV). Хотя «старый способ» работал, он был сложен и неудобен.

DevFS: В ядрах 2.4.x была представлена альтернативная дисковая файловая система /dev. Эта альтернатива, DevFS, подключала код нового устройства в ядро. В DevFS файловая система /dev создается во время каждого запуска компьютера и сохраняется в оперативной памяти, а не на жестком диске. При использовании этой модели пропадает нужда в поддержке списка всех возможных устройств, а когда появляется новое устройство, ядро просто делает для него запись в /dev. Если же устройствам нужна особая настройка в DevFS, существует конфигурационный файл (обычно /etc/devfsd.conf).

/proc: Файловая система для процессов

Многие из задач в выводе ps являются процессами, работающими в фоновом режиме. Те, что взяты в квадратные скобочки — процессы ядра. Только некоторые, вроде процессов kde и записей в конце списка, являются процессами, с которыми я взаимодействую напрямую.

Для управления системой ядро должно хранить информацию о каждом запущенном процессе, включая само себя. Также должна быть возможность просмотра сведений о запущенных приложениях пользовательского уровня (хорошим примером служит «ps», а также «top»). В файловой системе /proc ядро и хранит информацию о процессах.

Как и DevFS, /proc хранится в памяти, а не на диске. Если вы посмотрите в файл /proc/mounts (в котором приводится список всех примонтированных файловых систем), то увидите строку вроде этой:

/proc контролируется ядром, у этой файловой системы нет «под собой» какого-либо устройства. Так как в ней в основном содержится информация, управляемая ядром, наиболее логичным место для хранения такой информации является память, также контролируемая ядром.

В /proc названиями многих каталогов являются числа. Эти директории ссылаются на номера PID. В таких каталогах находятся файлы, которые предоставляют подробную информацию о положении, окружении и прочих деталях процесса. В выводе ps (см. выше) была следующая строка:

Этот процесс — запущенный bash shell, имеющий PID 1219. Каталог /proc/1219 содержит информацию об этом процессе.

В файле «cmdline» располагается команда, которая вызвала процесс. В файле «environ» находятся данные о значениях окружения для процесса. «status» содержит информацию о статусе процесса, среди которой пользовательский (UID) и групповой (GID) идентификаторы для пользователя, запустившего процесс, идентификатор родительского процесса (parent process ID — PPID) и текущий статус процесса (например, «Sleep» или «Running»).

У каждого каталога процесса есть несколько символических ссылок. «cwd» ссылается на текущий рабочий каталог для процесса. «exe» — ссылка на исполняемую программу процесса, а «root» ссылается на каталог, который процесс рассматривает как корневой (обычно «/»). В каталоге «fd» содержится список символических ссылок на дескрипторы файлов, используемых процессом.

Существуют и другие файлы в каталоге процесса, предоставляющие исчерпывающую информацию: от занятности процессора и памяти до количества времени, которое запущен процесс. Большая часть этих файлов описана в документации исходников ядра («Documentation/file systems/proc.txt»), а также доступна в man — «man proc».

Информация о ядре: Кроме хранения сведений о процессах, файловая система /proc содержит множество информации, самостоятельно созданной ядром для описания общего состояния системы.

Ядро и модули могут создавать файлы в /proc для того, чтобы предоставить информацию о своем текущем состоянии. Например, /proc/fb показывает, какие сейчас доступны устройства типа frame buffer (буферы фреймов обычно используются для отображения загрузочного логотипа).

Обратите внимание, что 0 ссылается на индекс frame buffer’а и устройство /dev/fb0. Если бы у меня был второй framebuffer, то появилась бы еще и строка с 1, соответствующая /dev/fb1. Часто данные proc ссылаются на устройства в /dev.

В /proc хранится немало информации о железе. В файле /proc/pci написано про все обнаруженные в системе PCI устройства. Запуск команды «lspci» выводит идентичную информацию, так как использует /proc/pci для получения сведений об устройствах. В /proc/bus находятся каталоги для bus-архитектур (PCI, PCCard, USB), в которых содержится информация об устройствах, присоединенных таким образом (PCI, PCCard, USB). Информация о сети располагается в /proc/net. Информацию о жестких дисках можно найти в /proc/ide и /proc/scsi (в зависимости от типа устройства). В /procs/devices присутствует список всех устройств системы (они разделены на две категории: «block» — блочные, «character» — символьные).

В действительности, в /proc находится намного больше файлов, чем было описано здесь. У каждого ядра они могут несколько различаться, в зависимости от того, что было включено в ядро, какое железо и программное обеспечение используется и в каком состоянии в настоящий момент находится компьютер. К некоторым из этих файлов постоянно обращается машина, а другие предоставляют «интуитивную» информацию.

Работа с процессами через /proc: Некоторые файлы /proc предназначены не только для чтения. Запись в них может влиять на состояние ядра. Просмотр содержимого файла в /proc обычно безопасно, но запись в них без точной уверенности в своих действиях может приводить к фатальным последствиям. Несмотря на это, иногда запись в /proc — единственный способ связи с ядром.

Например, в некоторых версиях ядра присутствует опция включения Web-сервера (khttp), работающего на уровне ядра. Из-за того, что запуск Web-сервера по умолчанию является риском с точки зрения безопасности, khttp требует записи в /proc для запуска.

Когда ядро видит, что содеримое /proc/sys/net/khttps/start меняется с 0 (по умолчанию) на 1, оно запускает сервер khttpd.

Существуют десятки других настраиваемых параметров в /proc — некоторые для конфигурации железа, другие для управления ядром. Однако, многие из них являются низкоуровневыми и могут привести к печальным последствиям, если указать неправильные значения. Поэтому, если вы твердо не уверены в своих действиях, менять параметры в /proc строго не рекомендуется.

/proc и /dev представляют интерфейсы к внутренностям Linux’а с помощью файлов. Они способствуют настройке и получению сведений об устройствах и процессах системы. Благодаря ним, можно с легкостью обновлять, изучать, запускать систему и устранять разнообразные неполадки. Понимание и применение знаний этих двух файловых систем являются ключом к созданию «более вашей» Linux-системы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *