диаметр ливневой канализации с кровли
О расчёте внутренних водостоков
В Своде Правил (СП) 30.13330. 2016 «Актуализированная редакция СНиП 2.04.01–85* “Внутренний водопровод и канализация зданий”» [1] (пункты 8.7.9–8.7.11) приводятся рекомендации по расчёту внутренних водостоков зданий, в том числе и с плоскими [2] кровлями (ВВПК). Однако, как показал анализ в свете современных представлений [3], их нельзя признать достаточными для подбора элементов ВВПК, минимизирующего [4] затраты на весь их жизненный цикл (ЖЦ) в конкретных условиях.
В пункте 8.7.12 [1] рекомендуется: «Водосточные стояки… рассчитывать на гидростатическое давление при… переполнениях…», то есть они должны транспортировать дождевые стоки полным сечением. При этом в пункте 8.7.10 [1] рекомендуется: «Расчётный расход дождевых вод, приходящийся на водосточный стояк, не должен превышать величин, приведённых в табл. 7». Полностью согласиться с этой рекомендацией нельзя, так как расчёты (табл. 1) показывают, что скорости течения дождевых стоков Vр по водосточным стоякам указанных диаметров d при максимально допустимых для них расходах Qр будет различаться на 11–61 %. То есть получается так, что по непонятной причине для некоторых диаметров рекомендуемые расходы либо занижены, либо завышены. В этой связи представляется, что было бы вполне приемлемым использование для указанных диаметров больших расходов Qр (табл. 1, строка 6, столбцы 2, 3 и 5).
В пункте 8.7.9 [1] рекомендуется: «Расчётный расход дождевых вод Q [л/с], с водосборной площади следует вычислять по формулам:
для кровель с уклоном до 1,5 % включительно: Q = Fq20 /10 000, (24)
для кровель с уклоном свыше 1,5 %: Q = Fq5 /10 000, (25)
где F — водосборная площадь, м²; q20 — интенсивность дождя, л/с с 1 га (для данной местности), продолжительностью 20 минут при периоде однократного превышения расчётной интенсивности, равной одному году (принимаемая согласно СП 32.13330); q5 — интенсивность дождя, л/с с 1 га (для данной местности), продолжительностью пять минут при периоде однократного превышения расчётной интенсивности, равной одному году, вычисляемая по формуле:
где n — параметр, принимаемый согласно СП 32.13330».
В пункте 8.7.11 [1] рекомендуется: «При определении расчётной водосборной площади следует дополнительно учитывать 30 % суммарной площади вертикальных стен, примыкающих к кровле и возвышающихся над ней».
Интенсивность дождя q20 в (24) для данной местности продолжительностью 20 минут при P = 1 год для гидравлического расчёта ВВПК можно принимать по рис. 1, а для районов, которые не изучены, расчётным [5] путём.
Показатель степени n для (26) следует принимать по табл. 2.
К сожалению, в Своде Правил [1] не хватает данных для разработки алгоритмов гидравлических расчётов, минимизирующих затраты [4] на весь ЖЦ ВВПК с учётом конкретных условий.
Тем не менее, можно представить схемы расчётов ВВПК, работающих как в напорном режиме, так и в безнапорном. Для сброса посредством напорных ВВПК расчётного расхода дождевых вод Q с водосборной площади F вначале определяем необходимое количество напорных водосборных стояков Nвс.
Для этого принимаем априори их диаметр dр и, руководствуясь данными табл. 7 [1], определяем Nвс ≈ Q/Qр. Затем подбираем для водосборных стояков соответствующие водосборные воронки (согласно пункту 8.7.10 [1] их пропускная способность Qвв должна указываться в паспортах на них).
Движение дождевых стоков [6] через водосточную воронку (от отверстий в её колпаке, по сливной части и патрубок в водосточный стояк и далее через гидравлический затвор в водосточный выпуск) происходит под действием собственных сил гравитации и давления слоя жидкости, накапливаемого на кровле вокруг воронки (рис. 2).
Расход Q, протекающий через воронку с патрубком, например, длиной 3–5D, связан соответствующим образом с её конструкцией и во многом зависит от высоты h слоя дождевых стоков вокруг неё:
где m — коэффициент расхода, зависящий от конструкции водосточной воронки; Ов — площадь рабочего сечения воронки, м². При длине патрубка водосточной воронки более 10–12D кольцевой водовоздушный поток 10 (рис. 2) смыкается, и в системе «водосточная воронка — водосточный стояк», как правило, возникает напорное течение жидких атмосферных осадков 9. Если дождевые стоки движутся сплошным потоком без существенного включения воздушных пузырьков или воздушных струй, то пропускная способность [м³/с]:
где Ост и H — площадь живого сечения и высота водосточного стояка, [м²] и [м], соответственно.
Коэффициент расхода при напорном режиме движения дождевых стоков во внутренних водостоках зданий с плоскими кровлями:
где Σξ — сумма коэффициентов местных гидравлических сопротивлений (табл. 3); λ — коэффициент гидравлического сопротивления трения по длине водосточного трубопровода; l — длина водосточного трубопровода, м.
При течении дождевых стоков по ВВПК (по пути: воронка → стояк → горизонтальный отводной трубопровод) в напорном режиме, наступающем при достижении критической глубины hкр [м], слоем дождевых осадков, выпадающих на кровлю здания, максимальный расход Qmax [м³/с], может быть определён по следующим формулам:
где Нп — полный напор, равный разности отметок поверхности слоя дождевых стоков на кровле и лотка горизонтального отводного трубопровода, м; S0 — полное сопротивление трубопровода ВВПК [м], которое определяют по формуле:
где А — удельное сопротивление трения по длине трубопровода, м·с²/л²; выбирают в зависимости от материала труб; Ам — удельное местное сопротивление, м·с²/л²; К — расходная характеристика водосточной системы, м³/с; e — гидравлический уклон трубопроводов ВВПК.
В общих случаях размеры водосточных стояков, сборных водосточных трубопроводов, гидрозатворов и водосточных выпусков следует определять посредством гидравлических расчётов по методике для напорных сетей [7].
В случае, когда требуется, чтобы полная потеря напора ΔН в (включая отверстия в колпаке водосборной воронки, водосборную воронку, водосточный стояк, примыкающий участок сборного трубопровода, гидравлический затвор и водосточный выпуск) не превышала бы располагаемый напор Н, то есть ΔН ≤ Н, сначала определяют расчётный расход жидких атмосферных осадков Qp, поступающих с расчётной площади F [м²], кровли здания в рассчитываемую водосточную воронку. Затем вычисляют полную потерю напора ΔН во всём ВВПК при расходе Qp по формулам:
Если в результате гидравлического расчёта ВВПК получается, что ΔН > Н, то производят повторный её гидравлический расчёт. При этом можно использовать несколько вариантов. В одном из них используется замена труб: на больший диаметр либо на другой материал, например, вместо чугунных труб — полимерные. В другом варианте уменьшают водосборную площадь, приходящуюся на используемую в расчётах водосборную воронку. Третий вариант предполагает комбинацию первого и второго варианта в различных сочетаниях параметров.
При гидравлических расчётах ВВПК целесообразно использовать коэффициенты запаса с целью учёта возможного увеличения гидравлического сопротивления её элементов с течением времени (из-за зарастания или коррозии внутренней поверхности воронки, водосточных труб и деталей) K3 и вероятности однократного превышения расходов K4, которые можно определить по формулам:
Практика показывает, что в гидравлических расчётах целесообразно применять приближенные значения величин К3 = 1,2 и К4 = 1,1 (для обычных) и К3 = 2 и К4 = 1,4 (для ВВПК, переполнение которых может причинить значительный материальный ущерб).
Формулы (1)–(11) распространяются в основном на гидравлический расчёт самых простых водосточных систем с одной какой-либо воронкой на стояке.
Если руководствоваться тем (пункт 8.7.10 [1]), что пропускная способность водосборной воронки Qвв известна, то можно использовать другую схему расчёта ВВПК, работающих в безнапорном режиме. Для этого вначале определяем необходимое количество Nвв водосборных воронок для пропуска расчётных расходов дождевых стоков, то есть Nвв ≈ Q/Qвв. После этого вычисляем расход Qвс, который должен транспортироваться самотёком по водосточному стояку, то есть Qвc ≈ 0,5Qвв. Затем по табл. 7 [1] подбираем диаметр dр безнапорных водосточных стояков. Размеры сборных водосточных трубопроводов, гидрозатворов и водосточных выпусков следует определять посредством гидравлических расчётов по методике для безнапорных канализационных сетей [7]. При этом следует также учитывать материалы (металлы/полимеры) трубных изделий, предполагаемых к использованию.
Использование в ВВПК полимерных труб [8–11] требует особого рассмотрения, так как их долговечность связана с длительностью [12] воздействия на них внутренних давлений. (Такое рассмотрение можно будет выполнить в дальнейшем на страницах журнала С.О.К.)
На этом можно было бы и остановиться. Однако… В пункте 8.7.12 Свода Правил [1] касательно расчёта внутренних водостоков акцент сделан на явлении, могущем иметь место, — так называемых «переполнениях». Однако как именно могут возникнуть переполнения, в СП на этот счёт никаких сведений не приводится.
Ранее было показано [3], что накапливаемый на плоской крыше объём Wmax дождевых вод целесообразно подразделить на четыре части (с объёмами W1, W2, W3, W4) и объём одной из них W2 принять в качестве расчётного сброса (рис. 3а и 3б) (расход для выбора типов водосборных воронок и диаметров водосточных стояков, вначале расчётных dр, а затем фактических — внутренних dв либо наружных dн). Объёмы дождевых вод других частей — W3 и W4 предложено считать в качестве аккумулирующего (рис. 3в и 3г) и аварийного (рис. 3д и 3е) расходов, соответственно. Как это следует выполнять? (Этот вопрос в случае заинтересованности научно-технической общественности можно будет рассмотреть в следующих статьях.)
В заключение следует отметить, что использование рекомендаций Свода Правил (СП) 30.13330.2016 «Актуализированной редакции СНиП 2.04.01–85* “Внутренний водопровод и канализация зданий”» совместно с рассмотренными в статье положениями могут вполне расширить возможности проектировщиков при проведении гидравлических расчётов с целью минимизации затрат на весь жизненный цикл (ЖЦ: проектирование → монтаж → эксплуатация → ремонт → утилизация) внутренних водостоков зданий и сооружений с плоскими кровлями различного назначения.
(Каким образом функциональные назначения кровель могут влиять на внутренние водостоки, целесообразно проанализировать в следующих публикациях, в случае заинтересованности научно-технической общественности.)
Как самому сделать расчёт водостока для скатной кровли
Монтаж водосточной системы – важный этап в строительстве любого дома. Поэтому перед её покупкой важно правильно всё рассчитать.
Как сделать расчёт водостока самостоятельно и купить необходимое количество элементов? Это не очень сложно и в нашей статье мы сделаем расчёт наружного водостока для скатной кровли.
В качестве примера рассмотрим вариант односкатный крыши. В дальнейшем, на основе этого расчёта, вы сможете просто умножить количество материалов на число скатов.
Сечение водостока
Форма водосточных систем может быть круглой и прямоугольной. По большому счёту это ни на что не влияет, кроме эстетики.
Гораздо более важен размер водоотводной системы. Как правило, для частного дома объёма стандартных конструкций всегда достаточно, поэтому можно не утруждать себя расчётами диаметра водостока.
Простой пример: минимальный диаметр желобов от «Металл Профиль» – 120 мм – рассчитан на скаты площадью до 80 м2. Для частного дома это немало. Увеличенный жёлоб 150 мм – до 110 м2. Для крупных объектов выпускается промышленная серия «Проект» со 185-миллимитровыми желобами, которые могут обслуживать скаты площадью до 180 м2.
Длина желобов
Жёлоб водосточный – обеспечивает эвакуацию талой и дождевой воды с кровли здания.
При расчёте количества желобов для водостока следует исходить из длины одного изделия и длины карниза, плюс нахлёст для монтажа. К примеру, стандартная длина желобов от «Металл Профиль» – 3000 мм. На нахлёст обычно уходит 3-4 см. Таким образом, если у нас карниз 10 метров, нам понадобятся:
Кронштейны
Держатель жёлоба и держатель жёлоба карнизный отличаются друг от друга длиной. Они оба фиксируют жёлоб на кровле, но обычный держатель (более длинный) необходимо монтировать ДО установки кровельного покрытия, а карнизный можно крепить уже при готовой кровле.
Обычные держатели жёлоба, как правило, располагают на расстоянии 60 см друг от друга с уклоном в сторону выпускной воронки. При расчёте уклона водостока, учитывайте, что он может составлять от 3 до 5 мм на каждый метр длины. На 10-метровый карниз нам потребуется 17 держателей жёлоба.
Водосточные трубы
Труба водосточная – обеспечивает вертикальный сток воды, бывает 2 и 3 метров, обжата с одной стороны.
Расчёт количества вертикальных труб и воронок водостока происходит по общему правилу: на каждые 10-12 м жёлоба приходится один водосточный стояк. И, следовательно, одна выпускная воронка.
Где его устанавливать – зависит от ваших предпочтений. Для односкатной кровли шириной 10 м достаточно будет одного стояка. В этом случае при расчёте элементов, нужно учитывать высоту здания и длину карнизного свеса. Будем считать, что высота дома у нас 4 метра, а карнизный свес 50 см. Таким образом, нам потребуются:
Дополнительные элементы
Если у кровли сложная форма, то стояки лучше размещать на всех углах, особенно под ендовами, где поток воды одновременно с двух скатов довольно интенсивный. При большом уклоне кровли в таком месте лучше вместо стандартной выпускной воронки установить водосборную – у неё больше диаметр. Не будут лишними также ограничители перелива.
Для вальмовой или другой кровли, где водосточные желоба замкнуты в единый периметр, нам потребуются ещё и такие элементы:
Не забудьте приготовить для монтажа герметик, чтобы промазывать стыки и ремонтную эмаль на случай небольших царапин.
Как видите, расчёт системы водостока для частного дома не так сложен.
Главное – выяснить заранее все параметры вашего здания: высоту стен, длину карнизного свеса, длину и ширину скатов.
Впрочем, если вы не уверены в своих расчётах или боитесь что-то забыть, всегда можно проверить себя с помощью онлайн-калькуляторов на сайтах производителей.
Они хороши тем, что система предложит вам все обязательные элементы водостока. При расчётах вручную легко забыть о каких-то соединителях, держателях. Здесь же будет наглядно показано: что где устанавливается и для чего служит.
Также система рассчитает примерную стоимость конструкции. Единственный минус подобных калькуляторов в том, что они, как правило, предлагают количество материалов с запасом. Впрочем, это легко скорректировать под ваши личные требования.
Расчет водосточной системы кровли
Назначение водосточной системы очевидно — отвод воды, накапливающейся при дожде и таянии снега, с крыши здания в предназначенное место. Например, в ливневую канализацию, в накопитель или просто на землю, в отдалении от цоколя здания.
Выполняя расчет водосточной системы кровли, принимают во внимание тип крыши – плоская или скатная, периметр по краю крыши, площадь кровли и площадь здания, сложность геометрии крыши, среднее значение осадков в год и пиковое значение осадков за последние годы.
После расчета получают значение необходимого диаметра элементов водосточной системы, число вертикальных водосточных труб и их расположение по фасаду, общее число и ассортимент конструкционных и крепежных частей системы — желобов, углов, труб, воронок, держателей.
Расчет водосточной системы в зависимости от площади кровли производится по нескольким методикам, но ключевой цифрой для всех них является площадь водосборного ската крыши.
Расчет площади крыши
Для расчета площади крыши необходимы лестница, рулетка, лист бумаги и знание геометрии в объеме школьной программы. Методика расчета заключается в мысленном разбиении крыши сколь угодно сложной топологии на элементарные геометрические фигуры — треугольники, прямоугольники, трапеции. После этого измеряется сторона каждой фигуры, вычисляются их площади, суммируются полученные цифры.
Полученная в результате измерений и расчетов площадь крыши (водосборная площадь) будет использована в дальнейшем в формулах расчета систем водостока. Площадь каждого ската крыши необходимо записать отдельно, эти цифры пригодятся
Расчет водостока по требованиям строительных норм и правил
Расчет водосточной системы кровли по СНиП требует учитывать два параметра:
водосборная площадь (площадь ската крыши);
Используя эти два параметра, рассчитывают количество вертикальных водосточных труб (стояков).
Нагрузка водяного потока на один стояк зависит от его диаметра и не должна превышать:
Диаметр стояка (мм) | 85 | 100 | 150 | 200 |
---|---|---|---|---|
Пропускная способность (л/с) | 10 | 20 | 50 | 80 |
Например, если со ската крыши стекает дождевая вода объемом 30 литров в секунду, то надо монтировать или два стояка диаметром 100 мм, или один диаметром 150 мм.
Расчет интенсивности стока воды
Для подсчета используется статистическое значение интенсивности дождя на площади в 1 гектар за двадцать минут (q20) или за пять минут (q5). Между этими параметрами установлена взаимосвязь:
где n – справочный коэффициент.
Справочный коэффициент n приведен в СНиП 2.04.03-85
Если уклон ската крыши менее 1,5%, используется параметр q20, а если уклон более 1,5% — параметр q5.
Итоговая формула интенсивности водяного потока с крыши Q (литров в секунду) выглядит следующим образом:
где S – площадь ската крыши, q – статистическое значение q5 или q20, в зависимости от крутизны ската.
Другие требования СНиП
Нормы и правила предъявляют требования к отводу стекающей воды строго в дождевую канализацию, указывают предельную величину углов наклона горизонтальных труб, описывают требования к ревизиям. Особо оговорено, что расстояние между стояками не может превышать 48 метров.
Практический расчет водосточной системы
После расчета объема стекающей с крыши воды необходимо определиться с материалом, из которого будет изготовлена водосточная система, затем рассчитать ее элементы.
Упрощенный расчет сечений желобов и стояков
Нет необходимости производить строгий расчет водосточной системы в зависимости от площади кровли, в соответствии с методикой СНиП, для личного дома или надворного строения. Также нет необходимости измерять площадь всей крыши. Достаточно измерить и подсчитать площадь самого большого водосборного участка на крыше и определить размеры водосточной системы для этого ската, исходя из предположения, что для остальных участков водосбора поток воды будет меньше.
Таблица упрощенного определения типоразмеров системы
Площадь водосбора | Минимальный размер системы | |
---|---|---|
Сечение желоба, мм | Сечение трубы стояка, мм | |
До 50 м 2 | 100 | 75 |
От 50 до 100 м 2 | 120 | 90 |
От 100 до 200 м 2 | 105 | 100 |
Материалы водосточной системы
Для изготовления системы используют один из трех видов материалов:
металл, обтянутый защитной пленкой.
Оцинкованная жесть отличается дешевизной и позволяет при необходимости изготовить колена, воронки, желоба и другие элементы системы в произвольном размере. К недостаткам относятся недолговечность (тонкая жесть быстро ржавеет) и негерметичность стыков, через которые вода будет вытекать в случайных местах желоба или стояка. Протекающая по жестяной системе вода сильно шумит.
Элементы из ПВХ обладают малым весом, не подвержены коррозии, находятся в нижней ценовой группе. Пластиковые конструкции незаменимы при монтаже на ветровых досках старых строений. Подходят для малоэтажных зданий, гаражей, дачных домиков. При стекании по желобу из пластика дождевая вода создает малый уровень шума, поэтому этот материал рекомендуют при установке возле окон жилых мансард. Недостатки водосточной системы из ПВХ — хрупкость материала и плохая стойкость к низким температурам. На кровле требуется установка снегозадерживающих элементов, чтобы соскальзывающий с крыши сугроб не проломил водосток.
Водосточная система из защищенного пленкой металла отвечает всем потребительским требованиям. Недостатками считаются относительная дороговизна, массивность элементов и требовательность к аккуратности при транспортировке и монтаже. Нарушенное покрытие приведет к быстрому ржавлению, поэтому при установке используется специальный инструмент. Рекомендуется соблюдение температурного режима при монтаже и эксплуатации, так как перегрев вызывает отслаивание и пузырение пленки. Рекомендуется выбор этого материала при большой площади кровли, в условиях тяжелого климата и при проектировании крепления системы водостока к стропилам, а не к ветровым доскам.
Расчет элементов водосточной системы
В первую очередь определяют общую длину желобов и длину каждого горизонтального участка в отдельности. На этом этапе производят расчет водосточной системы кровли по площади дома, точнее, по его периметру. На плане отмечаются все горизонтальные участки свесов кровли, под которыми будут установлены желоба, и их длина.
Отмечают точки расположения стояков, из расчета: до 10 метров желоба – один стояк, свыше 12 метров желоба – два стояка, не более 20 метров между стояками, при сложной конфигурации – отвод в стояк в каждом углу. Близко расположенные отводы можно объединять в один стояк.
Элементы горизонтальной части системы
Количество элементов желоба подсчитывают из расчета 1 элемент = 3 погонных метра. Некоторые производители предлагают вариант четырехметровой длины, требуется уточнить при заказе. На каждый стык элементов желоба друг с другом и с углами надевается соединительная муфта. На окончание горизонтального участка крепится заглушка. Для подсоединения стояка к желобу применяется воронка. Хомуты для крепления желоба к основанию размещаются на расстоянии не менее 60 см друг от друга для пластика при креплении к ветровой доске и 90 см – для металла при креплении к стропилам.
Элементы стыка желоба и стояка
На каждый стояк для связки вертикальной трубы с горизонтальным желобом потребуются воронка, два колена и отрезок трубы.
Элементы вертикальной части системы
Трубы вертикальной части водоотводящей системы продаются в размерах от 2 до 4 метров. Стыки соединяются муфтами, внизу труба заканчивается коленом на высоте не более 25 см от поверхности отмостки.
Хомуты для крепления трубы к стене устанавливаются не реже, чем на расстоянии 2 метра друг от друга.