Docker что за программа
Понимая Docker
Уже несколько месяцев использую docker для структуризации процесса разработки/доставки веб-проектов. Предлагаю читателям «Хабрахабра» перевод вводной статьи о docker — «Understanding docker».
Что такое докер?
Докер — это открытая платформа для разработки, доставки и эксплуатации приложений. Docker разработан для более быстрого выкладывания ваших приложений. С помощью docker вы можете отделить ваше приложение от вашей инфраструктуры и обращаться с инфраструктурой как управляемым приложением. Docker помогает выкладывать ваш код быстрее, быстрее тестировать, быстрее выкладывать приложения и уменьшить время между написанием кода и запуска кода. Docker делает это с помощью легковесной платформы контейнерной виртуализации, используя процессы и утилиты, которые помогают управлять и выкладывать ваши приложения.
В своем ядре docker позволяет запускать практически любое приложение, безопасно изолированное в контейнере. Безопасная изоляция позволяет вам запускать на одном хосте много контейнеров одновременно. Легковесная природа контейнера, который запускается без дополнительной нагрузки гипервизора, позволяет вам добиваться больше от вашего железа.
Для чего я могу использовать docker?
Быстрое выкладывание ваших приложений
Docker прекрасно подходит для организации цикла разработки. Docker позволяет разработчикам использовать локальные контейнеры с приложениями и сервисами. Что в последствии позволяет интегрироваться с процессом постоянной интеграции и выкладывания (continuous integration and deployment workflow).
Например, ваши разработчики пишут код локально и делятся своим стеком разработки (набором docker образов) с коллегами. Когда они готовы, отравляют код и контейнеры на тестовую площадку и запускают любые необходимые тесты. С тестовой площадки они могут оправить код и образы на продакшен.
Более простое выкладывание и разворачивание
Основанная на контейнерах docker платформа позволят легко портировать вашу полезную нагрузку. Docker контейнеры могут работать на вашей локальной машине, как реальной так и на виртуальной машине в дата центре, так и в облаке.
Портируемость и легковесная природа docker позволяет легко динамически управлять вашей нагрузкой. Вы можете использовать docker, чтобы развернуть или погасить ваше приложение или сервисы. Скорость docker позволяет делать это почти в режиме реального времени.
Высокие нагрузки и больше полезных нагрузок
Docker легковесен и быстр. Он предоставляет устойчивую, рентабельную альтернативу виртуальным машинам на основе гипервизора. Он особенно полезен в условиях высоких нагрузок, например, при создания собственного облака или платформа-как-сервис (platform-as-service). Но он так же полезен для маленьких и средних приложений, когда вам хочется получать больше из имеющихся ресурсов.
Главные компоненты Docker
Архитектура Docker
Docker использует архитектуру клиент-сервер. Docker клиент общается с демоном Docker, который берет на себя тяжесть создания, запуска, распределения ваших контейнеров. Оба, клиент и сервер могут работать на одной системе, вы можете подключить клиент к удаленному демону docker. Клиент и сервер общаются через сокет или через RESTful API.
Docker-демон
Как показано на диаграмме, демон за пускается на хост-машине. Пользователь не взаимодействует с сервером на прямую, а использует для этого клиент.
Docker-клиент
Docker-клиент, программа docker — главный интерфейс к Docker. Она получает команды от пользователя и взаимодействует с docker-демоном.
Внутри docker-а
Образы
Docker-образ — это read-only шаблон. Например, образ может содержать операционку Ubuntu c Apache и приложением на ней. Образы используются для создания контейнеров. Docker позволяет легко создавать новые образы, обновлять существующие, или вы можете скачать образы созданные другими людьми. Образы — это компонента сборки docker-а.
Реестр
Docker-реестр хранит образы. Есть публичные и приватные реестры, из которых можно скачать либо загрузить образы. Публичный Docker-реестр — это Docker Hub. Там хранится огромная коллекция образов. Как вы знаете, образы могут быть созданы вами или вы можете использовать образы созданные другими. Реестры — это компонента распространения.
Контейнеры
Контейнеры похожи на директории. В контейнерах содержится все, что нужно для работы приложения. Каждый контейнер создается из образа. Контейнеры могут быть созданы, запущены, остановлены, перенесены или удалены. Каждый контейнер изолирован и является безопасной платформой для приложения. Контейнеры — это компонента работы.
Так как же работает Docker?
Как работает образ?
Мы уже знаем, что образ — это read-only шаблон, из которого создается контейнер. Каждый образ состоит из набора уровней. Docker использует union file system для сочетания этих уровней в один образ. Union file system позволяет файлам и директориями из разных файловых систем (разным ветвям) прозрачно накладываться, создавая когерентную файловую систему.
Одна из причин, по которой docker легковесен — это использование таких уровней. Когда вы изменяете образ, например, обновляете приложение, создается новый уровень. Так, без замены всего образа или его пересборки, как вам возможно придётся сделать с виртуальной машиной, только уровень добавляется или обновляется. И вам не нужно раздавать весь новый образ, раздается только обновление, что позволяет распространять образы проще и быстрее.
В основе каждого образа находится базовый образ. Например, ubuntu, базовый образ Ubuntu, или fedora, базовый образ дистрибутива Fedora. Так же вы можете использовать образы как базу для создания новых образов. Например, если у вас есть образ apache, вы можете использовать его как базовый образ для ваших веб-приложений.
Примечание! Docker обычно берет образы из реестра Docker Hub.
Docker образы могут создаться из этих базовых образов, шаги описания для создания этих образов мы называем инструкциями. Каждая инструкция создает новый образ или уровень. Инструкциями будут следующие действия:
Как работает docker реестр?
Реестр — это хранилище docker образов. После создания образа вы можете опубликовать его на публичном реестре Docker Hub или на вашем личном реестре.
С помощью docker клиента вы можете искать уже опубликованные образы и скачивать их на вашу машину с docker для создания контейнеров.
Docker Hub предоставляет публичные и приватные хранилища образов. Поиск и скачивание образов из публичных хранилищ доступно для всех. Содержимое приватных хранилищ не попадает в результат поиска. И только вы и ваши пользователи могут получать эти образы и создавать из них контейнеры.
Как работает контейнер?
Контейнер состоит из операционной системы, пользовательских файлов и метаданных. Как мы знаем, каждый контейнер создается из образа. Этот образ говорит docker-у, что находится в контейнере, какой процесс запустить, когда запускается контейнер и другие конфигурационные данные. Docker образ доступен только для чтения. Когда docker запускает контейнер, он создает уровень для чтения/записи сверху образа (используя union file system, как было указано раньше), в котором может быть запущено приложение.
Что происходит, когда запускается контейнер?
Что же происходит под капотом, когда мы запускаем эту команду?
Используемые технологии
Докер написан на Go и использует некоторые возможности ядра Linux, чтобы реализовать приведенный выше функционал.
Пространство имен(namespaces)
Docker использует технологию namespaces для организации изолированных рабочих пространств, которые мы называем контейнерами. Когда мы запускаем контейнер, docker создает набор пространств имен для данного контейнера.
Это создает изолированный уровень, каждый аспект контейнера запущен в своем простанстве имен, и не имеет доступ к внешней системе.
Control groups (контрольные группы)
Docker также использует технологию cgroups или контрольные группы. Ключ к работе приложения в изоляции, предоставление приложению только тех ресурсов, которые вы хотите предоставить. Это гарантирует, что контейнеры будут хорошими соседями. Контрольные группы позволяют разделять доступные ресурсы железа и если необходимо, устанавливать пределы и ограничения. Например, ограничить возможное количество памяти контейнеру.
Union File System
Union File Sysem или UnionFS — это файловая система, которая работает создавая уровни, делая ее очень легковесной и быстрой. Docker использует UnionFS для создания блоков, из которых строится контейнер. Docker может использовать несколько вариантов UnionFS включая: AUFS, btrfs, vfs и DeviceMapper.
Что такое Docker, и как его использовать? Подробно рассказываем
Разберем по косточкам, ведь Docker – это мощный инструмент, и огромное количество информации по работе с ним вряд ли уместится в брошюрку.
Что такое Docker?
Это ПО с открытым кодом, принцип работы которого проще всего сравнить с транспортными контейнерами. Только подумайте, ведь когда-то транспортные компании сталкивались с похожими проблемами:
С введением контейнеров стало возможным перевозить вместе кирпичи и стекло, химикаты и еду, а также многое другое. Груз разного размера может быть распределен по стандартизированным контейнерам, которые загружаются/выгружаются одним и тем же транспортным средством.
Но вернемся же к контейнерам. Когда вы разрабатываете приложение, вам нужно предоставить код вместе со всеми его составляющими, такими как библиотеки, сервер, базы данных и т. д. Вы можете оказаться в ситуации, когда приложение работает на вашем компьютере, но отказывается включаться на устройстве другого пользователя.
Эта проблема решается через создание независимости ПО от системы.
В чем отличие от виртуализации?
Изначально виртуализация была призвана избавить от подобных проблем, но в ней есть существенные недостатки:
Докер же просто разделяет ядро ОС на все контейнеры (Docker container), работающие как отдельные процессы. Это не единственная подобная платформа, но, бесспорно, одна из самых популярных и востребованных.
Какие очевидные плюсы?
К его преимуществам относятся:
Поддерживаемые платформы
Докер работает не только на его родной ОС, Linux, но также поддерживается Windows и macOS. Единственное отличие от взаимодействия с Linux в том, что на macOS и Windows платформа инкапсулируется в крошечную виртуальную машину. На данный момент Докер для macOS и Windows достиг значительного уровня удобства в использовании.
Кроме того, существует множество дополнительных приложений, таких как Kitematic или Docker Machine, которые помогают устанавливать и использовать Докер на платформах, отличных от Linux.
Установка
Здесь можно посмотреть подробную инструкцию по установке. Если вы работаете с Докером на ОС Linux, вам нужно выполнить несколько несложных действий и повторно войти в систему:
Терминология
1. Контейнер – это исполняемый экземпляр, который инкапсулирует требуемое программное обеспечение. Он состоит из образов. Его можно легко удалить и снова создать за короткий промежуток времени.
2. Образ – базовый элемент каждого контейнера. В зависимости от образа, может потребоваться некоторое время для его создания.
3. Порт – это порт TCP/UDP в своем первоначальном значении. Чтобы все было просто, предположим, что порты могут быть открыты во внешнем мире или подключены к контейнерам (доступны только из этих контейнеров и невидимы для внешнего мира).
4. Том – описывается как общая папка. Тома инициализируются при создании контейнера и предназначены для сохранения данных, независимо от жизненного цикла контейнера.
5. Реестр – это сервер, на котором хранятся образы. Сравним его с GitHub: вы можете вытащить образ из реестра, чтобы развернуть его локально, и так же локально можете вносить в реестр созданные образы.
6. Docker Hub – публичный репозиторий с интерфейсом, предоставляемый Докер Inc. Он хранит множество образов. Ресурс является источником «официальных» образов, сделанных командой Докер или созданных в сотрудничестве с разработчиком ПО. Для официальных образов перечислены их потенциальные уязвимости. Эта информация открыта для любого зарегистрированного пользователя. Доступны как бесплатные, так и платные аккаунты.
Пример 1: Hello World
Пришло время запустить наш первый контейнер:
Теперь попробуем создать интерактивную оболочку внутри контейнера:
Если вы хотите, чтобы контейнер работал после окончания сеанса, вам необходимо его «демонизировать»:
Давайте посмотрим, какие контейнеры у нас есть на данный момент:
ps показывает нам, что у нас есть два контейнера:
Давайте проверим журналы и посмотрим, что делает контейнер-демон прямо сейчас:
Теперь давайте остановим контейнер-демон:
Проверяем его остановку:
Контейнер остановлен. Давайте запустим его снова:
Убедимся, что он запущен:
Теперь остановим его и удалим все контейнеры вручную:
Чтобы удалить все контейнеры, мы можем использовать следующую команду:
Пример 2: Nginx
Начиная с этого примера, вам понадобятся дополнительные файлы, которые вы можете найти в репозитории GitHub. Как вариант, загрузите образцы файлов по ссылке.
Пришло время создать и запустить более важный контейнер, такой как Nginx.
Измените каталог на examples/nginx:
Теперь проверьте этот URL-адрес в своем веб-браузере.
Еще мы можем попробовать изменить /example/nginx/index.html (который добавляется в каталог /usr/share/nginx/html внутри контейнера) и обновить страницу.
Получим информацию о контейнере test-nginx:
Эта команда отображает системную информацию об установке Докер. Она включает версию ядра, количество контейнеров и образов, открытые порты и т. д.
Пример 3: запись Dockerfile
Чтобы создать образ, сперва вам нужно создать Dockerfile: это текстовый файл с инструкциями и аргументами. Краткое описание инструкций, которые мы собираемся использовать в примере:
Более подробная информация здесь.
Давайте создадим образ, который получит содержимое сайта и сохранит его в текстовом файле. Нам нужно передать URL-адрес через переменную SITE_URL. Результирующий файл будет помещен в каталог, установленный как том:
Dockerfile готов, пришло время создать образ.
Создание образа
Перейдите к examples/curl и выполните следующую команду:
Теперь у нас есть новый образ, и мы можем его увидеть в списке существующих:
Мы можем создавать и запускать контейнер из образа. Давайте попробуем сделать это с параметрами по умолчанию:
Чтобы просмотреть результаты, сохраненные в файле:
Попробуем с facebook.com:
Чтобы просмотреть результаты, сохраненные в файле:
Рекомендации по созданию образов
Соединение между контейнерами
Пример 4: Python + Redis
В этом примере мы подключим контейнеры Python и Redis.
Перейдем к examples/compose и выполним команду:
Текущий пример увеличит счетчик просмотров в Redis. Откройте ссылку и убедитесь в этом.
Использование docker-compose – это тема для целого учебника. Чтобы начать работу, вы можете поиграться с некоторыми образами из Docker Hub, а если хотите создать свои собственные – следуйте рекомендациям, перечисленным выше. Единственное, что можно добавить с точки зрения использования docker-compose – всегда давайте явные имена вашим томам. Это простое правило избавит вас от проблемы в будущем.
В этом случае redis_data будет именем внутри файла docker-compose.yml.
Смотрим выполнение тома:
Без явного имени тома будет UUID. И вот пример:
В заключение
Докер стал одним из важнейших инструментов современного разработчика. Да, он имеет некоторые ограничения и требования в зависимости от архитектуры вашей системы, но немного усидчивости – и мир контейнеров обязательно будет приручен!
Изучаем Docker, часть 2: термины и концепции
В первой части перевода серии материалов, посвящённых Docker, мы сделали общий обзор этой системы. В частности, мы говорили о том, почему технологии контейнеризации важны в наше время, о том, что такое контейнеры Docker, и о том, с чем их можно сравнить. Сегодня мы поговорим об экосистеме Docker и рассмотрим важные термины, с которыми вы можете столкнуться на пути изучения и использования Docker. Продолжив аналогию с разными вкусностями, представим, что наши термины — это пончики. Дюжина пончиков.
Термины экосистемы Docker
Я разбил термины, с которыми вы можете столкнуться в ходе работы с Docker, на две части. Думаю, это облегчит их запоминание. Первый блок терминов будет относиться к механизмам Docker. Второй — к средствам масштабирования решений, основанных на контейнерах.
Механизмы Docker
▍Платформа Docker
Платформа Docker (Docker Platform) — это программа, которая даёт нам возможность упаковывать приложения в контейнеры и запускать их на серверах. Платформа Docker позволяет помещать в контейнеры код и его зависимости. Как результат, системы, основанные на контейнерах, легко масштабировать, так как контейнеры можно переносить и воспроизводить.
▍Движок Docker
Движок Docker (Docker Engine) — это клиент-серверное приложение. Компания Docker разделила движок Docker на два продукта. Docker Community Edition (CE) — это бесплатное ПО, во многом основанное на опенсорсных инструментах.
Вероятно, вы будете пользоваться именно этой версией Docker. Docker Enterprise — это платная версия системы, дающая пользователям дополнительные возможности в области поддержки систем, управления ими и безопасности. Платная версия Docker даёт компании средства, необходимые для её существования.
▍Клиент Docker
Клиент Docker и другие механизмы экосистемы (взято из документации)
▍Демон Docker
Демон Docker (Docker Daemon) — это сервер Docker, который ожидает запросов к API Docker. Демон Docker управляет образами, контейнерами, сетями и томами.
▍Тома Docker
Тома Docker (Docker Volumes) представляют собой наиболее предпочтительный механизм постоянного хранения данных, потребляемых или производимых приложениями.
▍Реестр Docker
Реестр Docker (Docker Registry) представляет собой удалённую платформу, используемую для хранения образов Docker. В ходе работы с Docker образы отправляют в реестр и загружают из него. Подобный реестр может быть организован тем, кто пользуется Docker. Кроме того, поставщики облачных услуг могут поддерживать и собственные реестры. Например, это касается AWS и Google Cloud.
▍Хаб Docker
Хаб Docker (Docker Hub) — это самый крупный реестр образов Docker. Кроме того, именно этот реестр используется при работе с Docker по умолчанию. Пользоваться хабом Docker можно бесплатно.
▍Репозиторий Docker
Репозиторием Docker (Docker Repository) называют набор образов Docker, обладающих одинаковыми именами и разными тегами. Теги — это идентификаторы образов.
Обычно в репозиториях хранятся разные версии одних и тех же образов. Например, Python — это имя популярнейшего официального репозитория Docker на хабе Docker. А вот Python:3.7-slim — это версия образа с тегом 3.7-slim в репозитории Python. В реестр можно отправить как целый репозиторий, так и отдельный образ.
Теперь поговорим о терминах экосистемы Docker, имеющих отношение к масштабированию.
Масштабирование решений, основанных на контейнерах
Следующие четыре термина имеют отношение к одновременному использованию нескольких контейнеров.
▍Сеть Docker
Сетевые механизмы Docker (Docker Networking) позволяют организовывать связь между контейнерами Docker. Соединённые с помощью сети контейнеры могут выполняться на одном и том же хосте или на разных хостах. Подробности о сетевой подсистеме Docker можно почитать здесь.
▍Docker Compose
▍Docker Swarm
Docker Swarm — это решение, предназначенное для управления контейнерными развёртываниями (то есть, как говорят, для оркестрации контейнеров). В этом материале из официального учебного курса по Docker можно найти сведения о Docker Swarm. Мне хотелось бы порекомендовать вам не тратить время на изучение Docker Swarm в том случае, если у вас нет на то веской причины.
▍Сервисы Docker
Сервисы Docker (Docker Services) — это различные части распределённого приложения. Вот что о них говорится в документации:
Сервисы — это всего лишь «контейнеры в продакшне». В пределах сервиса выполняется лишь один образ, но сервис определяет то, как именно выполняется образ. В частности, речь идёт о том, какие порты должны использоваться, сколько реплик контейнера должно выполняться для того, чтобы сервис обеспечивал бы необходимую вычислительную мощность, и так далее. Масштабирование сервисов предусматривает изменение количества экземпляров контейнера, в которых работает некая программа, благодаря чему сервису выделяется столько системных ресурсов, сколько ему требуется для решения некоей задачи.
Сервисы Docker позволяют масштабировать контейнеры в пределах нескольких демонов Docker, благодаря им существует и технология Docker Swarm.
Краткий перечень терминов
Давайте, буквально в двух словах, повторим только что представленные вам термины:
Вот, на всякий случай, ещё один пончик
Этот термин относится не к самой платформе Docker, а к технологии, которая очень часто используется совместно с Docker.
Kubernetes
Kubernetes — это технология, которая позволяет автоматизировать развёртывание и масштабирование контейнеризированных приложений, а также управление ими. Это — бесспорный лидер рынка средств для оркестрации контейнеров. Если вам нужен инструмент для работы с группами контейнеров, для масштабирования решений, основанных на них, используйте не Docker Swarm, а Kubernetes. Kubernetes не является частью Docker. Они с Docker, скорее, похожи на лучших друзей.
Теперь, когда вы ознакомились с общими понятиями Docker и с терминологией, вы можете приступить к практическим экспериментам.
Итоги: печём пончики с Docker
Помните, как в прошлый раз мы сравнивали платформу Docker с духовкой, которую устанавливают в кухне? Сейчас самое время установить Docker на вашей «кухне» и что-нибудь приготовить.
Docker можно запускать локально на Linux, Mac и Windows. Если вы пользуетесь Mac или Windows, вы можете установить свежую версию Docker Desktop отсюда. Вместе с этой программой, кстати, устанавливается и Kubernetes. Если вы устанавливаете Docker на другой платформе, то загляните сюда для того, чтобы найти подходящую версию.
После установки Docker взгляните на первые две части официального руководства.
В следующий раз мы продолжим разговор о Docker. В частности, поговорим о файлах Dockerfile.
Уважаемые читатели! Если, читая материалы этой серии, вы открываете для себя Docker, просим рассказать о том, как вы планируете использовать технологии контейнеризации приложений.
Docker. Зачем и как
Есть множество прекрасных публикаций для тех, кто уже пользуется docker-ом. Есть хорошие статьи для тех, кто хочет этому научиться. Я пишу для тех, кто не только не знает, что такое docker, но и не уверен стоит ли ему это знать.
Я сознательно опускаю некоторые технические подробности, а кое где допускаю упрощения. Если вы увидите, что docker – то, что вам нужно, вы легко найдете более полную и точную информацию в других статьях.
Начну я с описания нескольких типичных проблем.
Проблемы
Первая проблема — как передать продукт клиенту.
Предположим у вас есть серверный проект, который вы закончили и теперь его необходимо передать пользователю. Вы готовите много разных файликов, скриптов и пишите инструкцию по установке. А потом тратите уйму времени на решения проблем клиента вроде: «у меня ничего не работает», «ваш скрипт упал на середине — что теперь делать», «я перепутал порядок шагов в инструкции и теперь не могу идти дальше» и т. п.
Всё усугубляется если продукт тиражируемый и вместо одного клиента у вас сотни или тысячи покупателей. И становится еще сложнее, если вспомнить о необходимости установки новых версий продукта.
Вторая проблема — тиражируемость. Пусть вам нужно поднять 5 (или 50) почти одинаковых серверов. Делать это вручную долго, дорого и подвержено ошибкам.
Наконец, третья проблема — переиспользуемость. Предположим у вас есть отдел, который делает браузерные игры. Предположим, что их у вас уже несколько. И все они используют один и тот же технологический стэк (например — java-tomcat-nginx-postgre). Но при этом, чтобы поставить новую игру вы вынуждены заново подготавливать на новом сервере почти одинаковую конфигурацию. Вы не можете просто так взять и сказать — «хочу сервер, как в игре странники но только с другим веб архивом»
Обычные решения
Как обычно решаются эти проблемы.
Установочный скрипт
Первый подход я уже упомянул — вы можете написать скрипт, который установит всё, что вам нужно и запускать его на всех нужных серверах. ( Скрипт может быть как простым sh файлом, так и чем-то сложным, созданным с использованием специальных инструментов).
Недостатки этого подхода — хрупкость и неустойчивость к ошибкам. Как бы хорошо не был написан скрипт, рано или поздно на какой-то машине он упадёт. И после этого падения машина фактически окажется «испорченной» — просто так «откатить» те действия, которые скрипт успел выполнить, у вашего клиента не получится.
Облачные сервисы
Второй подход — использование облачных сервисов. Вы вручную устанавливаете на виртуальный сервер всё, что вам нужно. Затем делаете его image. И далее клонируете его столько раз, сколько вам надо.
Недостатка здесь два. Во-первых, vendor-lock-in. Вы не можете запускать свое решение вне выбранного облака, что не всегда удобно и может привести к потерям несогласных с этим выбором клиентов. Во-вторых, облака медленны. Виртуальные (и даже «bare-metal») сервера предоставляемые облаками на сегодняшний день сильно уступают по производительности dedicated серверам.
Виртуальные машины
Третий подход — использование виртуальных машин. Здесь тоже есть недостатки:
Размер — не всегда удобно качать образ виртуальной машины, который может быть довольно большим. При этом, любое изменение внутри образа виртуальной машины требует скачать весь образ заново.
Сложное управление совместным использованием серверных ресурсов — не все виртуальные машины вообще поддерживают совместное использование памяти или CPU. Те что поддерживают, требуют тонкой настройки.
Подход докера — контейнеризация
И вот тут появляется docker, в котором
Как работает docker
Создание образа
Сначала создается docker image (или образ). Он создается при помощи скрипта, который вы для этого пишете.
Образы наследуются и, обычно, для создания своего первого образа мы берём готовый образ и наследуемся от него.
Чаще всего мы берем образ в котором содержится та или иная версия linux. Скрипт тогда начинается как-то так:
Кроме этого, мы можем копировать в наш образ любые локальные файлы при помощи директивы COPY.
Докер поддерживает гораздо больше различных директив. Например, директива USER roman говорит докеру что все следующие директивы нужно выполнять из под пользователя roman. А директива ENTRYPOINT [“/opt/tomcat/catalina.sh”] задает исполняемый файл, который будет запускаться при старте.
Я не буду перечислять все остальные директивы — в этом нет смысла. Здесь главное — принцип: вы создаёте вот такой скрипт, называете его Dockerfile и запускаете команду docker build, docker выполняет скрипт и создает image.
Если в процессе возникают какие-то ошибки, докер о них сообщает и вы их исправляете. То есть исправление скрипта происходит на этапе создания image. На этапе установки скрипт уже не используется.
Создание контейнера
Когда у вас уже есть docker image вы можете создать из него контейнер на любом физическом сервере, где установлен докер. Если image – это тиражируемый образ некоторой «машины», то container это уже сама «машина», которую можно запускать и останавливать.
Важный момент — при создании контейнера из image, его можно параметризовать. Вы можете передавать докеру переменные окружения, которые он использует при создании контейнера из image. Так вы сможете создавать немного разные машины из одного образа. Например, передать образу web-сервера его доменное имя.
Хорошей практикой в докере считается «упаковка» в один контейнер ровно одного постоянно работающего серверного процесса. Как я уже упоминал, этот процесс работает на уровне физического сервера и честно регулируется установленной там операционной системой. Поэтому, в отличие от виртуальных машин, контейнеры докера не требуют специального управления памятью и процессорами. Использование ресурсов становится простым и эффективным.
Union filesystem
Ок — память и процессор используется эффективно. А как насчёт файловой системы? Ведь если у каждого контейнера докера своя собственная копия операционной системы, то мы получим ту же проблему, что и с виртуальными машинами — тяжеловесные образы, которые содержат одно и тоже.
На самом деле в докере это не так. Если вы используете 100500 контейнеров, основанных на одном и том же образе операционной системы, то файлы этой системы будут скачаны докером ровно один раз. Это достигается за счёт использования докером union file system.
Union file system состоит из слоёв (layers). Слои как бы наложены друг на друга. Некоторые слои защищены от записи. Например, все наши контейнеры используют общие защищенные от записи слои, в которых находятся неизменяемые файлы операционной системы.
Для изменяемых файлов каждый из контейнеров будет иметь собственный слой. Естественно, докер использует такой подход не только для операционной системы, но и для любых общих частей контейнеров, которые были созданы на основе общих «предков» их образов.
Container registry
Получается, что docker image состоит из слоёв. И хорошо было бы уметь скачивать на наш сервер только те слои, которых на нём пока нет. Иначе для установки 100 контейнеров, основанных на Ubuntu мы скачаем Ubuntu внутри их образов 100 раз. Зачем?
Хорошая новость в том, что докер решает эту проблему. Докер предоставляет специальный сервис, называемый docker registry. Docker registry предназначен для хранения и дистрибуции готовых образов. Собрав новый образ (или новую версию образа) вы можете закачать его в docker registry. Соответственно, потом его можно скачать оттуда на любой сервер. Главная фишка здесь в том, что физически качаться будут только те слои, которые нужны.
Например, если вы создали новую версию образа, в котором поменяли несколько файлов, то в registry будут отправлены только слои, содержащие эти файлы.
Аналогично, если сервер качает из registry какой-то образ, скачаны будут только слои, отсутствующие на сервере.
Docker registry существует и как общедоступный сервис и как open source проект, доступный для скачивания и установки на собственной инфрастуктуре.
Использование контейнеров
Созданные контейнеры можно запускать, останавливать, проверять их статус и т д. При создании контейнера можно дополнительно передать докеру некоторые параметры. Например, попросить докер автоматически рестартовать контейнер, если тот упадёт.
Взаимодействие между контейнерами
Если контейнеров на сервере несколько, управлять ими вручную становится проблематично. Для этого есть технология docker compose. Она существует поверх докера и просто позволяет управлять контейнерами на основе единого конфигурационного файла, в котором описаны контейнеры, их параметры и их взаимосвязи (например контейнер A имеет право соединяться с портом 5432 контейнера B)
Выводы
Таким образом докер очень хорошо подходит для решения перечисленных выше задач: