экономическая интерпретация параметров регрессии
Экономическая интерпретация коэффициента регрессии
Федеральное агентство по образованию ГОУ ВПО
Всероссийский заочный финансово-экономический институт
К.ф. – м.н., доцент кафедры: Василенко В.В.
Студент: Чмиль А.А., ФиК, 3 Курс
По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн.руб.) от объема капиталовложений (X, млн.руб.).
Xi | Yi |
33 | 43 |
17 | 27 |
23 | 32 |
17 | 29 |
36 | 45 |
25 | 35 |
39 | 47 |
20 | 32 |
13 | 22 |
12 | 24 |
Вспомогательная таблица для расчетов параметров линейной регрессии. Табл.2
Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.
После проведенных расчетов линейная модель имеет вид:
Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков; построить график остатков.
Вычисленные остатки приведены в таблице 2. Остаточная сумма квадратов составила 12,02. Дисперсия остатков составила:
График остатков. Рис.1
Проверить выполнение предпосылок МНК.
Остатки гомоскедастичны, автокорреляция отсутствует (корреляция остатков и фактора Х равна нулю, рис.1), математическое ожидание остатков равно нулю, остатки нормально распределены.
Корреляция остатков и переменной Х. Рис 2.
Осуществить проверку значимости параметров уравнения регрессии с помощью t – критерия Стьюдента (α = 0,05).
Найдем стандартную ошибку коэффициента регрессии:
mb = (Dост. / ∑(x – xср.) 2 ) ½ = 0,042585061
Теперь проведем оценку значимости коэффициента регрессии:
tb = b / mb= 21,3424949
При α = 0,05 и числе степеней свободы (n – 2) tтабл. = 2,3060. Так как фактическое значение t – критерия больше табличного, то гипотезу о несущественности коэффициента можно отклонить. Доверительный интервал для коэффицента регрессии определяется как b ± t* mb. Для коэффициента регрессии b границы составят: 0,908871 – 2,3060*0,042585061 ≤ b ≤ 0,908871+2,3060*0,042585061
0,81067 ≤ b ≤ 1,0070722
Далее определим стандартную ошибку параметра a:
ma = (Dост.*( ∑x 2 / (n*∑(x – xср.) 2 )) 1/2 = 1,073194241
Мы видим, что фактическое значение параметра а больше, чем табличное, следовательно, гипотезу о несущественности параметра а можно отклонить. Доверительный интервал составит: a± t* ma. Границы параметра составят:
9,766735 ≤ a ≤14,716305
Проверим значимость линейного коэффициента корреляции на основе ошибки коэффициента корреляции:
mr = ((1 – r 2 ) / (n – 2)) 1/2 = 0,046448763
Фактическое значение t – критерия Стьюдента определяется:
tr = (r / (1 – r 2 )) * (n – 2) 1/2 = 21,3424949
Значение tr фактическое больше табличного, следовательно при уровне значимости α = 0,05 и степени свободы (n – 2), коэффициент корреляции существенно отличен от нуля и зависимость является достоверной.
Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью f – критерия Фишера (α = 0,05), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.
R 2 = Rxy 2 = 0,98274 – детерминация.
F = (R 2 /(1 – R 2 ))*((n – m – 1)/m) = 455,5020887
Fтабл. 5,32 2 / ∑(x – xср ) 2 ) 1/2 = 1,502474351*(1+(1/10)+ ((31,2 – 23,5) 2 / 828,50)) 1/2 = 1,6262596 млн.руб.
Предельная ошибка прогноза, которая в 90% случаев не будет превышена, составит:
Доверительный интервал прогноза:
γур min = 40,598295 – 3,7501546 = 36,848141 млн.руб.
γур max = 40,598295 + 3,7501546 = 44,348449 млн.руб.
Среднее значение показателя составит:
Yp = (36,848141 + 44,348449) / 2 = 40,598295 млн.руб.
Представить графически фактические и модельные значения Y точки прогноза
График фактических и прогнозируемых параметров. Рис.3
Составить уравнения нелинейной регрессии:
Построить графики построенных уравнений регрессии.
Y(x) = 54,1842 + (-415,755) * 1/x – гиперболическое уравнение регрессии.
Y(x) = 4,746556 * X 0,625215 – степенное уравнение регрессии.
Y(x) = 17,38287 * 1,027093 X показательное уравнение регрессии.
Графикимоделей представлены ниже на рисунках 4,5 и 6.
Для указанных моделей найти коэффициенты детерминации, коэффициент эластичности и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать выводы.
Коэффициенты (индексы) детерминации:
R 2 показ = Rxy = 0,959136358
Эпоказ = x * lnb = 0,628221
Средние относительные ошибки аппроксимации:
А = 1/n * ∑ |y – yxi | * 100%
Как мы видим, степенная регрессия наиболее интересна в экономическом смысле, потому что у нее самый низкий показатель средней ошибки аппроксимации, самый высокий показатель эластичности и детерминации. Это говорит о том, что у степенной регрессионной модели высокое качество, она предлагает наибольшую прибыль и более зависима от фактора Х (капиталовложений).
Список использованной литературы
1. Практикум по эконометрике: Учеб. пособие / И.И. Елисеева, С.В. Курашева, Н.М. Гордеенко и др.; Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2001. – 192.: ил.
2. Эконометрика. Учебник для вузов.; Под ред. чл. – кор. РАН И.И. Елисеевой. – М.: Финансы и статистика, 2002. – 344.