Face recognition windows 10 что это
Windows Hello: как настроить функцию распознавание лица
Основное назначение системы Windows Hello, как известно, состоит в том, чтобы еще больше упростить процедуру аутентификации пользователя компьютера.
Hello позволяет заходить в Windows 10 с помощью сканера отпечатков пальцев или камеры устройства, минуя стандартный этап ввода пароля.
С первым понятно — как работает дактилоскопический сканер, мы уже знаем. А вот об опции распознавания лица юзера и о том, как она настраивается, мы и расскажем в этом посте.
Сразу отметим несколько важных моментов. Во-первых, хотя Windows Hello лицо распознает стабильно и регулярно, бывают все же некоторое накладки, потому время от времени приходится логинится по-старинке — через обычный пароль.
Во-вторых, если одним компом (или планшетом) пользуются несколько юзеров, то Hello можно настроить для каждого из них. Таким образом и самим юзерам будет проще авторизоваться, и администратор в последствии сэкономит немножко времени, поскольку сбрасывать забытые пароли и восстанавливать доступы к учетным записям можно будет реже. По крайней мере, есть такая вероятность.
С учетом упомянутого функционала Windows Hello, для других пользователей эту систему настроить можно как минимум двумя способами. Но в любом случае понадобиться личное присутствие каждого из них — чтобы смотреть в камеру или прикладывать палец к сканеру.
В первом варианте Windows Hello включить можно сразу же по факту создания новой учетной записи. Windows 10 традиционно предлагает произвести её настройку при первом входе в систему. И одним из этапов этой процедуры является активация Hello в новом аккаунте.
Если же учетная запись создана когда-то ранее, то Windows Hello включить можно следующим образом:
Процедура предусматривает предварительное создание обычного ПИН-кода (если он еще не создан) и небольшую фотосессию, в ходе которой надо будет пару секунд посидеть неподвижно перед камерой.
Что такое распознавание лиц – определение и описание
Что такое распознавание лиц?
Распознавание лиц – это способ идентификации или подтверждения личности человека по его лицу. Систему распознавания лиц можно использовать для идентификации людей на фотографиях, видео или в режиме реального времени.
Распознавание лиц – это категория биометрических систем аутентификации. Другие виды биометрических систем аутентификации включают распознавание голоса, распознавание отпечатков пальцев и распознавание сетчатки или радужной оболочки глаза. Эти технологии в основном используются для обеспечения безопасности и соблюдения правопорядка, однако наблюдается рост интереса к другим областям использования.
Как работает распознавание лиц?
Многим знакома технология распознавания лиц FaceID, используемая для разблокировки iPhone (это только один из примеров применения технологи распознавания лиц). Как правило, технология распознавания лиц не использует огромную базу данных фотографий для определения личности человека. Она идентифицирует и распознает одного человека как единственного владельца устройства и ограничивает доступ для других людей.
В общем случае, технология распознавания лиц работает путем сопоставления лиц людей, проходящих мимо специальных камер, с изображениями людей в списке наблюдения. Списки наблюдения могут содержать фотографии кого угодно, в том числе людей, которые не подозреваются в каких-либо правонарушениях. Изображения могут поступать из любых источников, даже из учетных записей в социальных сетях. Существуют различные технологии распознавания лиц, но в целом они работают следующим образом:
Шаг 1. Обнаружение лица
Камера обнаруживает и фиксирует положение изображения лица, как одного, так и в толпе. На изображении может быть человек, смотрящий в анфас или в профиль.
Шаг 2. Анализ лица
Затем выполняется снимок и проводится анализ изображения лица. Большинство технологий распознавания лиц используют 2D, а не 3D-изображения, поскольку 2D-изображения удобнее сопоставлять с общедоступными фотографиями или фотографиями в базе данных. Программа считывает геометрию лица. Ключевые факторы включают расстояние между глазами, глубину глазниц, расстояние от лба до подбородка, форму скул и контуры губ, ушей и подбородка. Цель состоит в том, чтобы определить черты, отличающие данное конкретное лицо.
Шаг 3. Преобразование изображения в данные
В процессе анализа аналоговая информация (лицо) преобразуется в набор цифровой информации (данных) на основе черт лица человека. По сути, анализ лица представляет собой математическую формулу. Цифровой код называется «отпечатком лица». У каждого человека есть свой уникальный отпечаток лица, так же как и отпечатки пальцев.
Шаг 4. Поиск совпадения
Затем отпечаток лица сравнивается с данными в базе известных лиц. Например, у ФБР есть доступ к 650 миллионам фотографий, взятых из баз данных различных государств. В Facebook все фотографии, на которых отмечены люди, становятся частью базы данных Facebook, которая также может использоваться для распознавания лиц. Если отпечаток лица совпадает с изображением в базе данных для распознавания лиц, устанавливается, чье это лицо.
Из всех биометрических систем идентификации распознавание лиц считается наиболее естественным. Это интуитивно понятно, поскольку мы обычно узнаем себя и других по лицам, а не по отпечаткам пальцев и радужной оболочке глаз. По оценкам, более половины населения мира регулярно сталкивается с технологиями распознавания лиц.
Где используется распознавание лиц?
Технология распознавания лиц используется для самых разных целей. К ним относятся:
Разблокировка телефонов
Различные телефоны, включая последние модели iPhone, используют технологию распознавания лиц для разблокировки устройств. Эта технология обеспечивает мощный способ защиты личных данных и гарантирует недоступность конфиденциальных данных в случае кражи телефона. Apple утверждает, что шанс разблокировки телефона случайным лицом составляет примерно один из миллиона.
Соблюдение правопорядка
Технология распознавания лиц используется правоохранительными органами. Согласно отчету NBC, использование этой технологии распространено в правоохранительных органах США и других стран. Полиция собирает фотографии задержанных и сравнивает их с местными, государственными и федеральными базами данных распознавания лиц. Фотографии задержанных добавляются в базы данных, по которым впоследствии полиция выполняет поиск преступников.
Кроме того, мобильное распознавание лиц позволяет полицейским использовать смартфоны, планшеты и другие портативные устройства, чтобы фотографировать водителей и пешеходов на месте и сразу же сравнивать их фотографии с базами данных распознавания лиц, чтобы попытаться их идентифицировать.
Аэропорты и пограничный контроль
Распознавание лиц стало привычным явлением во многих аэропортах по всему миру. Все больше путешественников имеют биометрические паспорта. Это позволяют им не стоять в длинных очередях, а проходить автоматизированный контроль электронных паспортов и быстрее добираться до выхода на посадку. Распознавание лиц не только сокращает время ожидания, но и позволяет повысить безопасность в аэропортах. Министерство внутренней безопасности США прогнозирует, что к 2023 году распознавание лиц будет использоваться для 97% путешественников. Эта технология используется не только в аэропортах и на пограничном контроле, но и для повышения безопасности на крупных мероприятиях, таких как Олимпийские игры.
Поиск пропавших без вести
Распознавание лиц можно использовать для поиска пропавших без вести и жертв торговли людьми. Предположим, пропавшие люди добавлены в базу данных распознавания лиц. В этом случае правоохранительные органы могут получить уведомление, как только эти люди будут идентифицированы системой распознавания лиц в аэропорту, магазине или другом общественном месте.
Снижение уровня преступности в розничной торговле
Распознавание лиц используется для идентификации покупателей, ворующих товары, организованных преступников в сфере розничной торговли или людей, попадавшихся в прошлом на мошенничестве, при входе в магазин. Фотографии людей сопоставляются с крупными базами данных преступников, и, когда покупатели, представляющие потенциальную угрозу, входят в магазин, сотрудники службы предотвращения потерь и обеспечения безопасности розничной торговли получают уведомление.
Улучшение качества розничной торговли
Технология распознавания лиц предлагает возможности улучшения качества обслуживания клиентов в розничной торговле. Например, терминалы в торговых центрах могут распознавать покупателей, предлагать товары на основе их истории покупок и указывать им правильное направление. Технология Face Pay позволит покупателям избегать длинных очередей в кассы с более медленными способами оплаты.
Банки
Биометрический онлайн-банкинг – еще одно преимущество технологии распознавания лиц. Вместо использования одноразовых паролей станет возможно авторизовать транзакции, глядя на смартфон или компьютер. Благодаря технологии распознаванию лиц злоумышленники не смогут взламывать пароли. Если злоумышленники украдут базу данных фотографий, «оценка витальности» – метод, используемый для определения, является ли источник биометрического образца живым человеком или поддельным изображением – должна (теоретически) помешать им использовать фотографии из базы для имитации живого человека. Благодаря технологии распознавания лиц дебетовые карты и подписи могут уйти в прошлое.
Маркетинг и реклама
Маркетологи используют распознавание лиц для повышения качества обслуживания клиентов. Например, бренд замороженной пиццы DiGiorno использовал распознавание лиц в маркетинговой кампании 2017 года, в ходе которой проводился анализ выражений лиц на вечеринках, посвященных DiGiorno, и оценивалась эмоциональная реакция людей на пиццу. Медиа-компании также используют технологию распознавания лиц для проверки реакции аудитории на трейлеры к фильмам, персонажей пилотных серий телевизионных проектов и оптимального размещения рекламы на телевидении. Рекламные щиты с технологией распознавания лиц, такие как на площади Пикадилли в Лондоне, позволяют брендам запускать персонализированную рекламу.
Здравоохранение
Больницы используют распознавание лиц для оказания помощи пациентам. Медицинские организации тестируют использование технологии распознавания лиц для доступа к картам пациентов, упрощения регистрации пациентов, выявления эмоций и боли у пациентов и даже для выявления определенных генетических заболеваний. Компания AiCure разработала приложение, использующее технологию распознавания лиц, чтобы пациенты принимали лекарства в соответствии с предписаниями. По мере того, как биометрические технологии становятся менее дорогими, ожидается рост их внедрения в секторе здравоохранения.
Отслеживание посещаемости студентами или работниками
Некоторые учебные заведения Китая используют технологию распознавания лиц, чтобы учащиеся не пропускали занятия. Для сканирования лиц учащихся и сопоставления их с фотографиями в базе данных для подтверждения личности используются специальные планшеты. В более широком смысле эту технологию можно использовать для регистрации работников на рабочих местах, чтобы работодатели могли отслеживать посещаемость.
Распознавание водителей
Согласно потребительским отчетам, автомобильные компании экспериментируют с технологией распознавания лиц, чтобы заменить ключи от машины. Эта технология заменит ключ для открытия и запуска автомобиля. Она также запоминает предпочтения водителей относительно положения сиденья и зеркал, а также настроек радиостанций.
Отслеживание игровой зависимости
Распознавание лиц может помочь игорным компаниям в большей степени защитить своих клиентов. Наблюдать за теми, кто входит в игровые залы и перемещается по ним, сложно для персонала, особенно в больших людных местах, таких как казино. Технология распознавания лиц позволяет игорным компаниям идентифицировать клиентов, являющихся заядлыми игроманами, и вести учет их игры, чтобы сотрудники могли посоветовать, когда пора остановиться. Казино могут столкнуться с серьезными штрафами, если игроки из списков добровольного исключения будут уличены в азартных играх.
Примеры технологии распознавания лиц
Компании-разработчики технологий распознавания лиц включают:
Преимущества технологии распознавания лиц
Помимо разблокировки смартфона, распознавание лиц дает и другие преимущества:
Повышение безопасности
На государственном уровне распознавание лиц может помочь идентифицировать террористов или других преступников. На личном уровне распознавание лиц можно использовать как инструмент безопасности для блокировки устройств и в личных камерах видеонаблюдения.
Снижение уровня преступности
Распознавание лиц упрощает поиск грабителей, воров и правонарушителей. Одно только знание о присутствии системы распознавания лиц может служить сдерживающим фактором, особенно в отношении мелких преступлений. Помимо физической безопасности, имеются преимущества и в сфере кибербезопасности. Компании могут использовать технологию распознавания лиц вместо паролей для доступа к компьютерам. Теоретически эту технологию невозможно взломать, поскольку красть или менять, как в случае с паролем, нечего.
Устранение предвзятости при остановке и обысках
Обеспокоенность общественности по поводу необоснованных остановок и обысков является источником разногласий в полиции. Технология распознавания лиц может улучшить этот процесс. Выявление подозрительных личностей в толпе с помощью автоматизированного, а не управляемого человеком процесса, такого как технология распознавания лиц, может снизить потенциальную предвзятость и сократить количество остановок и обысков законопослушных граждан.
Удобство
По мере распространения технологии распознавания лиц, покупатели смогут расплачиваться в магазинах, используя собственное лицо, и не вынимать кредитные карты или наличные деньги. Это позволит сэкономить время в очереди к кассе. Поскольку для распознавания лиц не требуется никакого контакта, как при снятии отпечатков пальцев или выполнении других мер безопасности, эта технология особенно полезна во время эпидемии COVID. Распознавание лиц обеспечивает быструю, автоматическую и беспроблемную проверку.
Быстрая обработка
Процесс распознавания лица занимает всего секунду, что дает преимущества компаниям, использующим технологию распознавания лиц. В эпоху кибератак и продвинутых инструментов взлома компаниям нужны безопасные быстрые технологии. Распознавание лиц позволяет быстро и эффективно проверить личность человека.
Интеграция с другими технологиями
Большинство решений для распознавания лиц совместимы с программами обеспечения безопасности. Фактически, эта технология легко интегрируется. Это снижает объем дополнительных инвестиций, необходимых для ее внедрения.
Недостатки технологии распознавания лиц
Некоторые люди не возражают, когда их снимают, и не имеют ничего против использования распознавания лиц там, где от этого есть явная выгода или необходимость. Однако использование этой технологии может вызвать бурную реакцию у других людей. Некоторые из недостатков или проблем распознавания лиц:
Тотальная слежка
Некоторые опасаются, что использование технологии распознавания лиц, повсеместные видеокамеры, искусственный интеллект и анализ данных создадут предпосылки для массового наблюдения и могут ограничить свободу личности. Хотя технология распознавания лиц позволяет правительствам выслеживать преступников, она также может позволить им выслеживать обычных законопослушных людей.
Возможные ошибки
Результат распознавания лиц не исключает ошибок, а это может привести к обвинению людей в преступлениях, которых они не совершали. Например, к ошибке может привести небольшое изменение ракурса камеры или изменение внешнего вида, например прически. В 2018 году издание Newsweek сообщило, что технология распознавания лиц Amazon ложно идентифицировала 28 членов Конгресса США как лиц, арестованных за преступления.
Нарушение конфиденциальности
Вопрос этики и конфиденциальности – самый спорный. Известно, что правительства хранят фотографии граждан без их согласия. В 2020 году Европейская комиссия заявила, что рассматривает вопрос запрета использования технологии распознавания лиц в общественных местах на срок до пяти лет, чтобы дать время на разработку нормативной базы для предотвращения нарушений конфиденциальности и этических норм.
Огромное хранилище данных
Программное обеспечение для распознавания лиц основано на технологии машинного обучения, требующей огромных наборов данных для обучения и получения точных результатов. Такие огромные наборы данных требуют надежного хранилища. Малые и средние компании могут не располагать достаточными ресурсами для хранения необходимых данных.
Безопасность распознавания лиц: как защититься
Хотя биометрические данные обычно считаются одним из самых надежных методов аутентификации, их использование также сопряжено со значительным риском. Это связано с тем, что в случае взлома данных кредитной карты ее хозяин может заблокировать свой кредитный счет и принять меры для изменения украденной личной информации. А что делать, если вы потеряете свое «цифровое лицо»?
Во всем мире собираются, хранятся и анализируются растущие объемы биометрических данных. Часто это делается организациями и правительствами, имеющими неоднозначную репутацию в области кибербезопасности. Все чаще задается вопрос, насколько безопасна инфраструктура, в которой хранятся и обрабатываются эти данные?
Поскольку программное обеспечение для распознавания лиц все еще находится в зачаточном состоянии, законы, регулирующие эту область, только разрабатываются (а иногда и полностью отсутствуют). Обычные граждане, данные которых скомпрометированы, имеют относительно немного законных возможностей для действия. Киберпреступники часто ускользают от властей или получают обвинительные приговоры спустя годы после преступлений, а их жертвы не получают компенсаций и вынуждены сами заботиться о себе.
По мере распространения технологии распознавания лиц, возрастают и возможности злоумышленников красть данные о лицах для совершения мошеннических действий.
Комплексный пакет кибербезопасности – необходимая часть защиты конфиденциальных данных и обеспечения безопасности в интернете. Рекомендуется использовать решение Kaspersky Security Cloud, обеспечивающее защиту всех устройств и включающее антивирус, защиту от программ-вымогателей, защиту мобильных устройств, управление паролями, VPN и родительский контроль.
Биометрические технологии являются интересными решениями в области безопасности. Несмотря на риски, эти решения весьма удобны и их сложно дублировать. Они будут развиваться и в будущем, а задача будет заключаться в усилении их преимуществ и минимизации рисков.
Создание модели распознавания лиц с использованием глубокого обучения на языке Python
Переводчик Елена Борноволокова специально для Нетологии адаптировала статью Файзана Шайха о том, как создать модель распознавания лиц и в каких сферах ее можно применять.
Введение
За последние годы компьютерное зрение набрало популярность и выделилось в отдельное направление. Разработчики создают новые приложения, которыми пользуются по всему миру.
В этом направлении меня привлекает концепция открытого исходного кода. Даже технологические гиганты готовы делиться новыми открытиями и инновациями со всеми, чтобы технологии не оставались привилегией богатых.
Одна из таких технологий — распознавание лиц. При правильном и этичном использовании эта технология может применяться во многих сферах жизни.
В этой статье я покажу вам, как создать эффективный алгоритм распознавания лиц, используя инструменты с открытым исходным кодом. Прежде чем перейти к этой информации, хочу, чтобы вы подготовились и испытали вдохновение, посмотрев это видео:
Распознавание лиц: потенциальные сферы применения
Приведу несколько потенциальных сфер применения технологии распознавания лиц.
Распознавание лиц в соцсетях. Facebook заменил присвоение тегов изображениям вручную на автоматически генерируемые предложения тегов для каждого изображения, загружаемого на платформу. Facebook использует простой алгоритм распознавания лиц для анализа пикселей на изображении и сравнения его с соответствующими пользователями.
Распознавание лиц в сфере безопасности. Простой пример использования технологии распознавания лиц для защиты личных данных — разблокировка смартфона «по лицу». Такую технологию можно внедрить и в пропускную систему: человек смотрит в камеру, а она определяет разрешить ему войти или нет.
Распознавание лиц для подсчета количества людей. Технологию распознавания лиц можно использовать при подсчете количества людей, посещающих какое-либо мероприятие (например, конференцию или концерт). Вместо того чтобы вручную подсчитывать участников, мы устанавливаем камеру, которая может захватывать изображения лиц участников и выдавать общее количество посетителей. Это поможет автоматизировать процесс и сэкономить время.
Настройка системы: требования к аппаратному и программному обеспечению
Рассмотрим, как мы можем использовать технологию распознавания лиц, обратившись к доступным нам инструментам с открытым исходным кодом.
Я использовал следующие инструменты, которые рекомендую вам:
Шаг 1: Настройка аппаратного обеспечения
Проверьте, правильно ли настроена камера. С Ubuntu это сделать просто: посмотрите, опознано ли устройство операционной системой. Для этого выполните следующие шаги:
Шаг 2: Настройка программного обеспечения
Шаг 2.1: Установка Python
Код, указанный в данной статье, написан с использованием Python (версия 3.5). Для установки Python рекомендую использовать Anaconda – популярный дистрибутив Python для обработки и анализа данных.
Шаг 2.2: Установка OpenCV
OpenCV – библиотека с открытым кодом, которая предназначена для создания приложений компьютерного зрения. Установка OpenCV производится с помощью pip :
Шаг 2.3: Установите face_recognition API
Внедрение
После настройки системы переходим к внедрению. Для начала, мы создадим программу, а затем объясним, что сделали.
Пошаговое руководство
Создайте файл face_detector.py и затем скопируйте приведенный ниже код:
Затем запустите этот файл Python, напечатав:
Если все работает правильно, откроется новое окно с запущенным режимом распознавания лиц в реальном времени.
Подведем итоги и объясним, что сделал наш код:
Пример применения технологии распознавания лиц
На этом все самое интересное не заканчивается. Мы сделаем еще одну классную вещь: создадим полноценный пример применения на основе кода, приведенного выше. Внесем небольшие изменения в код, и все будет готово.
Предположим, что вы хотите создать автоматизированную систему с использованием видеокамеры для отслеживания, где спикер находится в данный момент времени. В зависимости от его положения, система поворачивает камеру так, что спикер всегда остается в центре кадра.
Первый шаг — создайте систему, которая идентифицирует человека или людей на видео и фокусируется на местонахождении спикера.
Разберем, как это сделать. В качестве примера я выбрал видео на YouTube с выступлением спикеров конференции «DataHack Summit 2017».
Сначала импортируем необходимые библиотеки:
Затем считываем видео и устанавливаем длину:
После этого создаем файл вывода с необходимым разрешением и скоростью передачи кадров, аналогичной той, что была в файле ввода.
Загружаем изображение спикера в качестве образца для распознания его на видео:
Закончив, запускаем цикл, который будет:
Trying to Install face_recognition on my Windows 10 machine #339
Comments
drawalex commented Feb 2, 2018
Description
I am trying to Install face_recognition on my Windows 10 machine
What I Did
CMake Error in CMakeLists.txt:
The CMAKE_CXX_COMPILER:
— Configuring incomplete, errors occurred!
See also «C:/Users/alext/AppData/Local/Temp/pip-build-j8x4c1wz/dlib/build/temp.win32-3.6/Release/CMakeFiles/CMakeOutput.log».
See also «C:/Users/alext/AppData/Local/Temp/pip-build-j8x4c1wz/dlib/build/temp.win32-3.6/Release/CMakeFiles/CMakeError.log».
Traceback (most recent call last):
File «», line 1, in
File «C:\Users\alext\AppData\Local\Temp\pip-build-j8x4c1wz\dlib\setup.py», line 238, in
‘Topic :: Software Development’,
File «c:\program files (x86)\python36-32\lib\site-packages\setuptools_init_.py», line 129, in setup
return distutils.core.setup(**attrs)
File «c:\program files (x86)\python36-32\lib\distutils\core.py», line 148, in setup
dist.run_commands()
File «c:\program files (x86)\python36-32\lib\distutils\dist.py», line 955, in run_commands
self.run_command(cmd)
File «c:\program files (x86)\python36-32\lib\distutils\dist.py», line 974, in run_command
cmd_obj.run()
File «c:\program files (x86)\python36-32\lib\site-packages\wheel\bdist_wheel.py», line 204, in run
self.run_command(‘build’)
File «c:\program files (x86)\python36-32\lib\distutils\cmd.py», line 313, in run_command
self.distribution.run_command(command)
File «c:\program files (x86)\python36-32\lib\distutils\dist.py», line 974, in run_command
cmd_obj.run()
File «c:\program files (x86)\python36-32\lib\distutils\command\build.py», line 135, in run
self.run_command(cmd_name)
File «c:\program files (x86)\python36-32\lib\distutils\cmd.py», line 313, in run_command
self.distribution.run_command(command)
File «c:\program files (x86)\python36-32\lib\distutils\dist.py», line 974, in run_command
cmd_obj.run()
File «C:\Users\alext\AppData\Local\Temp\pip-build-j8x4c1wz\dlib\setup.py», line 119, in run
self.build_extension(ext)
File «C:\Users\alext\AppData\Local\Temp\pip-build-j8x4c1wz\dlib\setup.py», line 153, in build_extension
subprocess.check_call(cmake_setup, cwd=build_folder)
File «c:\program files (x86)\python36-32\lib\subprocess.py», line 291, in check_call
raise CalledProcessError(retcode, cmd)
subprocess.CalledProcessError: Command ‘[‘cmake’, ‘C:\Users\alext\AppData\Local\Temp\pip-build-j8x4c1wz\dlib\tools\python’, ‘-DCMAKE_LIBRARY_OUTPUT_DIRECTORY=C:\Users\alext\AppData\Local\Temp\pip-build-j8x4c1wz\dlib\build\lib.win32-3.6’, ‘-DPYTHON_EXECUTABLE=c:\program files (x86)\python36-32\python.exe’, ‘-DCMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE=C:\Users\alext\AppData\Local\Temp\pip-build-j8x4c1wz\dlib\build\lib.win32-3.6′]’ returned non-zero exit status 1.
The text was updated successfully, but these errors were encountered: