физический параметр определяющий пропускную способность шины компьютера

Шина — королева джунглей. Просто и ясно о шинах и памяти

физический параметр определяющий пропускную способность шины компьютера. Смотреть фото физический параметр определяющий пропускную способность шины компьютера. Смотреть картинку физический параметр определяющий пропускную способность шины компьютера. Картинка про физический параметр определяющий пропускную способность шины компьютера. Фото физический параметр определяющий пропускную способность шины компьютерафизический параметр определяющий пропускную способность шины компьютера. Смотреть фото физический параметр определяющий пропускную способность шины компьютера. Смотреть картинку физический параметр определяющий пропускную способность шины компьютера. Картинка про физический параметр определяющий пропускную способность шины компьютера. Фото физический параметр определяющий пропускную способность шины компьютера физический параметр определяющий пропускную способность шины компьютера. Смотреть фото физический параметр определяющий пропускную способность шины компьютера. Смотреть картинку физический параметр определяющий пропускную способность шины компьютера. Картинка про физический параметр определяющий пропускную способность шины компьютера. Фото физический параметр определяющий пропускную способность шины компьютера

физический параметр определяющий пропускную способность шины компьютера. Смотреть фото физический параметр определяющий пропускную способность шины компьютера. Смотреть картинку физический параметр определяющий пропускную способность шины компьютера. Картинка про физический параметр определяющий пропускную способность шины компьютера. Фото физический параметр определяющий пропускную способность шины компьютера

В наших статьях часто встречаются выражения а-ля “ пропускная способность ”, “ задержки памяти ”, “ DDR SDRAM ” и другие. Во всей этой терминологии легко запутаться. Поэтому мы решили написать статью, где популярно расскажем о том, как работают память и шины, а также узнаем о влиянии пропускной способности и задержек памяти на производительность системы.

Теория и практика
Термин «пропускная способность» определяет количество данных, передаваемых шиной за единицу времени. Пропускная способность измеряется в мегабайтах в секунду (Мбайт/с) или в мегабитах в секунду (Мбит/с). Здесь важно не путать эти два значения, поскольку скорость в мегабайтах в восемь раз больше скорости в мегабитах (1 байт = 8 бит).
Существует два типа шин: последовательные и параллельные. Для наглядности представим кусочки информации в виде автомобилей, а шину — дорогой. Последовательная шина — это узкое шоссе в две полосы. По первой полосе машины движутся в одном направлении, по второй — в обратном. Параллельная шина — это многополосное шоссе, где по каждой полосе движутся автомобили.
Современные параллельные шины очень широкие — число полос в них может достигать 64 или даже 128! Правда, прокладывать 128 полос в одном направлении, а затем в другом — очень накладно. Поэтому параллельные шины часто используют одни и те же полосы для передачи данных в обоих направлениях. Скажем, в первую секунду шина работает в одном направлении, во вторую — в обратном. Стоит отметить, что не все полосы передают данные. Многие шины используют часть полос для передачи “служебной информации” — адреса, управления шиной и так далее.
Скорость работы последовательных шин принято выражать в мегабитах в секунду, а параллельных — в мегабайтах в секунду.
Если в жизни мы всю свою работу сверяем по часам, то в компьютере для этой цели используются тактовые импульсы. Компьютер — это целый мир, где все комплектующие живут тактами. Легче всего представить импульсы в виде звонков в школе: между двумя звонками проходит один урок. За это время все ученики должны выполнить определенную работу. Так и в компьютере. За период одного такта (промежутка между импульсами) процессор должен выполнить задачу и выдать ответ. За такт шина передает данные с одного конца на другой. И так по кругу.
Количество тактов за единицу времени называется частотой — она измеряется в герцах. Скажем, частота процессора 1 ГГц соответствует одному миллиарду тактов в секунду. Чтобы процессор работал быстрее, можно поднять тактовую частоту. За счет этого уменьшатся промежутки между тактовыми импульсами. Но увеличивать тактовую частоту можно лишь до какого-то предела. Рано или поздно процессор перестанет успевать выполнять работу в отведенный срок, и компьютер даст сбой.

Memento
Теоретическая пиковая пропускная способность, которую производители железа любят указывать везде, где только можно, на самом деле не соответствует реальным показателям. На практике на производительность любой шины влияет множество факторов, и самый значимый — задержка доступа.
Инженеры придумали множество способов для повышения эффективности работы шины. Один из самых популярных подходов заключается в использовании пакетного режима. В этом случае задержки чтения будут максимальными только для первой порции данных, а все остальные следуют с минимальными задержками.
Другое решение для повышения эффективности работы шины — банальное увеличение ее пропускной способности. Это достигается с помощью повышения частоты шины, увеличения ее ширины, а также перехода на технологию DDR.
Но, как бы хороши ни были эти способы, добиться от шины идеальной пропускной способности практически невозможно. Так что при выборе памяти всегда помните, что важно учитывать не только ее теоретическую пиковую пропускную способность, но также ее задержки и частоту.

Источник

Современные внутренние шины – смена приоритетов!

Среди наиболее динамично развивающихся областей компьютерной техники стоит отметить сферу технологий передачи данных: в отличие от сферы вычислений, где наблюдается продолжительное и устойчивое развитие параллельных архитектур, в «шинной» 1 сфере, как среди внутренних, так и среди периферийных шин, наблюдается тенденция перехода от синхронных параллельных шин к высокочастотным последовательным. (Заметьте, «последовательные» – не обязательно значит «однобитные», здесь возможны и 2, и 8, и 32 бит ширины при сохранении присущей последовательным шинам пакетной передачи данных, то есть в пакете импульсов данные, адрес, CRC и другая служебная информация разделены на логическом уровне 2 ).

1 Компьютерная шина (магистраль передачи данных между отдельными функциональными блоками компьютера) – совокупность сигнальных линий, объединённых по их назначению (данные, адреса, управление), которые имеют определённые электрические характеристики и протоколы передачи информации. Шины отличаются разрядностью, способом передачи сигнала (последовательные или параллельные), пропускной способностью, количеством и типами поддерживаемых устройств, протоколом работы, назначением (внутренняя, интерфейсная).

Шины могут быть синхронными (осуществляющими передачу данных только по тактовым импульсам) и асинхронными (осуществляющими передачу данных в произвольные моменты времени), а также могут использовать мультиплексирование (передачу адреса и данных по одним и тем же линиям) и различные схемы арбитража (то есть способа совместного использования шины несколькими устройствами).

2 Основным отличием параллельных шин от последовательных является сам способ передачи данных. В параллельных шинах понятие «ширина шины» соответствует её разрядности – количеству сигнальных линий, или, другими словами, количеству одновременно передаваемых («выставляемых на шину») битов информации. Сигналом для старта и завершения цикла приёма/передачи данных служит внешний синхросигнал. В последовательных же каналах передачи используется одна сигнальная линия (возможно использование двух отдельных каналов для разделения потоков приёма-передачи). Соответственно, информационные биты здесь передаются последовательно. Данные для передачи через последовательную шину облекаются в пакеты (пакет – единица информации, передаваемая как целое между двумя устройствами), в которые, помимо собственно полезных данных, включается некоторое количество служебной информации: старт-биты, заголовки пакетов, синхросигналы, биты чётности или контрольные суммы, стоп-биты и т. п. Но в свете последних достижений в «железной» сфере компьютерной индустрии малое количество сигнальных линий и логически более сложный механизм передачи данных последовательных шин оборачиваются для них существенным преимуществом – возможностью практически безболезненного наращивания рабочих частот в таких пределах, каких никогда не достичь громоздким параллельным шинам с их высокочастотными проблемами ожидания доставки каждого бита к месту назначения. Проблема в том, что каждая линия такой шины имеет свою длину, свою паразитную ёмкость и индуктивность и, соответственно, своё время прохождения сигнала от источника к приёмнику, который вынужден выжидать дополнительное время для гарантии получения данных по всем линиям. Так, к примеру, каждый байт, передаваемый через линк шины PCIExpress, для увеличения помехозащищённости «раздувается» до 10 бит, что, однако, не мешает шине передавать до 0,25 ГБ за секунду по одной паре проводов. Да, ширина последовательной шины на самом деле является количеством одновременно задействованных отдельных последовательных каналов передачи.

Все эти нововведения и смена приоритетов преследуют в конечном итоге одну цель – повышение суммарного быстродействия системы, ибо не все существующие архитектурные решения способны эффективно масштабироваться. Несоответствие пропускной способности шин потребностям обслуживаемых ими устройств приводит к эффекту «бутылочного горлышка» и препятствует росту быстродействия даже при дальнейшем увеличении производительности вычислительных компонентов – процессора, оперативной памяти, видеосистемы и так далее.

Процессорная шина

3 Кстати, именно результирующей «учетверённой» частотой передачи данных (как и в случае с «удвоенной» передачей DDR-шины, где данные передаются дважды за такт) хвастаются производители и продавцы, умалчивая тот факт, что для многочисленных мелких запросов, где данные в большинстве своём умещаются в одну 64-байтную порцию (и, соответственно, не используются возможности DDR или QDR/QPB), на чтение/запись важнее именно частота тактирования.

В архитектуре же AMD64 (и её микроархитектуре K8), используемой компанией AMD в своих процессорах линеек Athlon 64/Sempron/Opteron, применён революционно новый подход к организации интерфейса центрального процессора – здесь имеет место наличие в самом процессоре нескольких отдельных шин. Одна (или две – в случае двухканального контроллера памяти) шина служит для непосредственной связи процессора с памятью, а вместо процессорной шины FSB и для сообщения с другими процессорами используются высокоскоростные шины HyperTransport. Преимуществом данной схемы является уменьшение задержек (латентности) при обращении процессора к оперативной памяти, ведь из пути следования данных по маршруту «процессор – ОЗУ» (и обратно) исключаются такие весьма загруженные элементы, как интерфейсная шина и контроллер северного моста.

Различия реализации классической архитектуры и АМD-K8

Различия реализации классической архитектуры и АМD-K8

Ещё одним довольно заметным отличием архитектуры К8 является отказ от асинхронности, то есть обеспечение синхронной работы процессорного ядра, ОЗУ и шины HyperTransport, частоты которых привязаны к «шине» тактового генератора (НТТ), которая в этом случае является опорной. Таким образом, для процессора архитектуры К8 частоты ядра и шины HyperTransport задаются множителями по отношению к НТТ, а частота шины памяти выставляется делителем от частоты ядра процессора 4

4 Пример: для системы на базе процессора Athlon 64-3000+ (1,8 ГГц) с установленной памятью DDR-333 стандартная частота ядра (1,8 ГГц) достигается умножением на 9 частоты НТТ, равной 200 МГц, стандартная частота шины HyperTransport (1 ГГц) – умножением НТТ на 5, а частота шины памяти (166 МГц) – делением частоты ядра на 11.

В классической же схеме с шиной FSB и контроллером памяти, вынесенным в северный мост, возможна (и используется) асинхронность шин FSB и ОЗУ, а опорной частотой для процессора выступает частота тактирования 5 (а не передачи данных) шины FSB, частота же тактирования шины памяти может задаваться отдельно. Из наиболее свежих чипсетов возможностью раздельного задания частот FSB и памяти обладает NVIDIA nForce 680i SLI, что делает его отличным выбором для тонкой настройки системы (разгона).

Источник

Шины персонального компьютера

Шиной (Bus) называется вся совокупность линий (проводников на материнской плате), по которым обмениваются информацией компоненты и устройства ПК. Шины предназначены для обмена информацией между двумя и более устройствами. Шина, связывающая только два устройства, называется портом. На рис. 1 дана структура шины.

Шина имеет места для подключения внешних устройств – слоты, которые в результате становятся частью шины и могут обмениваться информацией со всеми другими подключенными к ней устройствами.

физический параметр определяющий пропускную способность шины компьютера. Смотреть фото физический параметр определяющий пропускную способность шины компьютера. Смотреть картинку физический параметр определяющий пропускную способность шины компьютера. Картинка про физический параметр определяющий пропускную способность шины компьютера. Фото физический параметр определяющий пропускную способность шины компьютера

Рис. 1. Структура шины

Шины в ПК различаются по своему функциональному назначению:

Локальная шина ввода/вывода – это скоростная шина, предназначенная для обмена информацией между быстродействующими периферийными устройствами (видеоадаптерами, сетевыми картами, картами сканера и др.) и системной шиной под управлением CPU. В настоящее время в качестве локальной шины используется шина PCI. Для ускорения ввода/вывода видеоданных и повышения производительности ПК при обработке трехмерных изображений корпорацией Intel была разработана шина AGP (Accelerated Graphics Port).

Стандартная шина ввода/вывода используется для подключения к перечисленным выше шинам более медленных устройств (например, мыши, клавиатуры, модемов, старых звуковых карт). До недавнего времени в качестве этой шины использовалась шина стандарта ISA. В настоящее время – шина USB.

физический параметр определяющий пропускную способность шины компьютера. Смотреть фото физический параметр определяющий пропускную способность шины компьютера. Смотреть картинку физический параметр определяющий пропускную способность шины компьютера. Картинка про физический параметр определяющий пропускную способность шины компьютера. Фото физический параметр определяющий пропускную способность шины компьютера

Пожалуйста оцените материал по пятибальной шкале внизу страницы!

Шина имеет собственную архитектуру, позволяющую реализовывать важнейшие ее свойства – возможность параллельного подключения практически неограниченного числа внешних устройств и обеспечение обмена информацией между ними. Архитектура любой шины имеет следующие компоненты:

Контроллер шины осуществляет управление процессором обмена данными и служебными сигналами и обычно выполняется в виде отдельной микросхемы либо в виде совместимого набора микросхем – Chipset.

Шина данных обеспечивает обмен данными между CPU, картами расширения, установленными в слоты, и памятью RAM. Чем выше разрядность шины, тем больше данных может быть передано за один такт и тем выше производительность ПК. Компьютеры с процессором 80286 имеют 16-разрядную шину данных, с CPU 80386 и 80486 – 32-разрядную, а компьютеры с CPU семейства Pentium – 64-разрядную шину данных.

Шина адреса служит для указания адреса к какому-либо устройству ПК, с которым CPU производит обмен данными. Каждый компонент ПК, каждый регистр ввода/вывода и ячейка RAM имеют свой адрес и входят в общее адресное пространство ПК. По шине адреса передается идентификационный код (адрес) отправителя и (или) получателя данных.

Процессор 8088, например, имел 20 адресных линий и мог, таким образом, адресовать память объемом 1 Мбайт (2 20 =1 048 576 байт=1024 Кбайт). В ПК с процессором 80286 разрядность адресной шины была увеличена до 24 бит, а процессоры 80486, Pentium, Pentium MMX и Pentium II имеют уже 32-разрядную шину адреса, с помощью которой можно адресовать 4 Гбайт памяти.

Шина управления передает ряд служебных сигналов: записи/считывания, готовности к приему/передаче данных, подтверждения приема данных, аппаратного прерывания, управления и других, чтобы обеспечить передачу данных.

Основные характеристики шины

Разрядность шины определяется числом параллельных проводников, входящих в нее. Первая шина ISA для IBM PC была восьмиразрядной, т.е. по ней можно было одновременно передавать 8 бит. Системные шины современных ПК, например, Pentium IV – 64-разрядные.

Пропускная способность шины определяется количеством байт информации, передаваемых по шине за секунду.

При расчете пропускной способности, например шины AGP, следует учитывать режим ее работы: благодаря увеличению в два раза тактовой частоты видеопроцессора и изменению протокола передачи данных удалось повысить пропускную способность шины в два (режим 2 х ) или четыре (режим 4 х ) раза, что эквивалентно увеличению тактовой частоты шины в соответствующее число раз (до 133 и 266 МГц соответственно).

Внешние устройства к шинам подключается посредством интерфейса (Interface – сопряжение), представляющего собой совокупность различных характеристик какого-либо периферийного устройства ПК, определяющих организацию обмена информацией между ним и центральным процессором.

К числу таких характеристик относятся электрические и временные параметры, набор управляющих сигналов, протокол обмена данными и конструктивные особенности подключения. Обмен данными между компонентами ПК возможен, только если интерфейсы этих компоненты совместимы.

Стандарты шин ПК

Принцип IBM-совместимости подразумевает стандартизацию интерфейсов отдельных компонентов ПК, что, в свою очередь, определяет гибкость системы в целом, т.е. возможность по мере необходимости изменять конфигурацию системы и подключать различные периферийные устройства. В случае несовместимости интерфейсов используются контроллеры. Кроме того, гибкость и унификация системы достигаются за счет введения промежуточных стандартных интерфейсов, таких как интерфейсы необходимы для работы наиболее важных периферийных устройств ввода и вывода.

Системная шина предназначена для обмена информацией между CPU, памятью и другими устройствами, входящими в систему. К системным шинам относятся:

Шины ввода/вывода совершенствуются в соответствии с развитием периферийных устройств ПК. В табл. 2 представлены характеристики некоторых шин ввода/вывода.

Шина ISA в течение многих лет считалась стандартом ПК, однако и до сих пор сохраняется в некоторых ПК наряду с современной шиной PCI. Корпорация Intel совместно с Microsoft разработала стратегию постепенного отказа от шины ISA. В начале планируется исключить ISA-разъемы на материнской плате, а впоследствии исключить слоты ISA и подключить дисководы, мыши, клавиатуры, сканеры к шине USB, а винчестеры, приводы CD-ROM – к шине IEEE 1394. Однако наличие огромного парка ПК с шиной ISA будет востребована еще на протяжении некоторого времени.

Шина EISA стала дальнейшим развитием шины ISA в направлении повышения производительности системы и совместимости ее компонентов. Шина не получила широкого распространения в связи с ее высокой стоимостью и пропускной способностью, уступающей пропускной способности появившейся на рынке шины VESA.

Таблица 2. Характеристики шин ввода/вывода

ШинаРазрядность, битТактовая частота, МГцПропускная способность, Мбайт/с
ISA 8-разрядная088,330008,33
ISA 16-разрядная168,330016,6
EISA328,330033,3
VLB32330132,3
PCI32330132,3
PCI 2.1 64-разрядная64660528,3
AGP (1 x )32660262,6
AGP (2 x )3266х20528,3
AGP (4 x )3266х21056,6

Шина VESA, или VLB, предназначена для связи CPU с быстрыми периферийными устройствами и представляет собой расширение шины ISA для обмена видеоданными.

Шина PCI была разработана фирмой Intel для процессора Pentium и представляет собой совершено новую шину. Основополагающим принципом, положенным в основу шины PCI, является применение так называемых мостов (Bridges), которые осуществляют связь между шиной PCI и другими типами шин. В шине PCI реализован принцип Bus Mastering, который подразумевает способность внешнего устройства при пересылке данных управлять шиной (без участия CPU). Во время передачи информации устройство, поддерживающее Bus Mastering, захватывает шину и становится главным. В этом случае центральный процессор освобождается для решения других задач, пока происходит передача данных. В современных

материнских платах тактовая частота шины PCI задается как половина тактовой частоты системной шины, т.е. при тактовой частоте системной шины 66 МГц шина PCI будет работать на частоте 33 МГц. В настоящее время шина PCI стала фактическим стандартом среди шин ввода/вывода.

Шина AGP – высокоскоростная локальная шина ввода/вывода, предназначенная исключительно для нужд видеосистемы. Она связывает видеоадаптер (3D-акселератор) с системой памятью ПК. Шина AGP была разработана на основе архитектуры шины PCI, поэтому она также является 32-разрядной. Однако при этом у нее есть дополнительные возможности увеличения пропускной способности, в частности, за счет использования более высоких тактовых частот.

Шина USB была разработана лидерами компьютерной и телекоммуникационной промышленности Compaq, DEC, IBM, Intel, Microsoft для подключения периферийных устройств вне корпуса PC. Скорость обмена информацией по шине USB составляет 12 Мбит/с или 15 Мбайт/с. К компьютерам, оборудованным шиной USB, можно подключать такие периферийные устройства, как клавиатура, мышь, джойстик, принтер, не выключая питания. Все периферийные устройства должны быть оборудованы разъемами USB и подключаться к ПК через отдельный выносной блок, называемый USB-хабом, или концентратором, с помощью которого к ПК можно подключить до 127 периферийных устройств. Архитектура шины USB представлена на рис. 4.

Шина SCSI (Small Computer System Interface) обеспечивает скорость передачи данных до 320 Мбайт/с и предусматривает подключение к одному адаптеру до восьми устройств: винчестеры, приводы CD-ROM, сканеры, фото- и видеокамеры. Отличительной особенностью шины SCSI является то, что она представляет собой кабельный шлейф. С шинами PC (ISA или PCI) шина SCSI связана через хост-адаптер (Host Adapter). Каждое устройство, подключенное к шине SCSI, может инициировать обмен с другими устройством.

Шина IEEE 1394 это стандарт высокоскоростной локальной последовательной шины, разработанный фирмами Apple и Texas Instruments. Шина IEEE 1394 предназначена для обмена цифровой информацией между

ПК и другими электронными устройствами, особенно для подключения жестких дисков и устройств обработки аудио- и видеоинформации, а также работы мультимедийных приложений. Она способна передавать данные со скоростью до 1600 Мбайт/с, работать одновременно с несколькими устройствами, передающими данные с разными скоростями, как и SCSI.

Подключить к компьютеру через интерфейс IEEE 1394 можно практически любые устройств, способные работать с SCSI. К ним относятся все виды накопителей на дисках, включая жесткие, оптические, CD-ROM, DVD, цифровые видеокамеры, устройства. Благодаря таким широким возможностям, эта шина стала наиболее перспективной для объединения компьютера с бытовой электроникой. В настоящее время уже выпускаются адаптеры IEEE 1394 для шины PCI.

Источник

Пропускная способность шины

Тема: Устройства ПК.

Учебныевопросы:

1. Устройства, составляющие архитектуру ПК.

2. Внутренние устройства ПК.

3. Внешние устройства ПК.

Современные ЭВМ весьма разнообразны как по своему устройству, так и по исполняемым функциям.

Если рассматривать ЭВМ по их функциональности, можно условно классифицировать их:

2. «Учебные» ЭВМ (упрощенной архитектуры);

3. «Профессиональные» ЭВМ (рабочие станции на производстве, в офисе и др.);

4. ЭВМ-серверы (управление рабочими станциями, объединенными в сети, хранение больших массивов информации и т.д.) и др.

В зависимости от выполняемых функций и, благодаря открытой архитектуре устройство ЭВМ весьма разнообразно. В результате научно-технического развития архитектура ЭВМ постоянно усовершенствуется (эволюционирует).

Открытая архитектура современных ПК:

Интерфейсная система

физический параметр определяющий пропускную способность шины компьютера. Смотреть фото физический параметр определяющий пропускную способность шины компьютера. Смотреть картинку физический параметр определяющий пропускную способность шины компьютера. Картинка про физический параметр определяющий пропускную способность шины компьютера. Фото физический параметр определяющий пропускную способность шины компьютера

Архитектура ЭВМ – это наиболее общие принципы построения, реализующие программное управление взаимодействием её основных узлов. Архитектура ЭВМ – это, прежде всего блоки и устройства, а также структура связей между ними.

Блоки и устройства, составляющие архитектуру ПК, кроме того разделяют на две группы:

· внутренние устройства;

· внешние (периферийные) устройства.

Внутренние устройства, вероятно, получили такое обобщающее название, так как объединены в одном корпусе, называемом системным блокомПК.

Внешний вид и размеры корпусов системных блоков разнообразны. Однако обязательным для всех корпусов элементом являются разъёмы для подключения внешних устройств и интерфейс управления.

При огромном разнообразии вариантов, составляемых из устройств, систем, помещенных в корпус системного блока, обязательно наличие минимальной их комплектации.

К «обязательным» относятся:

· Блок питания. В среднем мощность их составляет 100 – 400 Вт. Чем больше устройств в системе, тем большую мощность должен иметь блок питания. (Средняя мощность 200 – 300 Вт).

· Системная (материнская) плата. Это многофункциональное устройство является центральным для ЭВМ с открытой архитектурой. По физическому строению она представляет собой очень сложно организованную многослойную печатную плату.

С точки зрения функциональности системная плата выполняет комплекс функций по интеграции устройств и обеспечению их взаимодействия.

По мере того, как элементы конфигурации архитектуры ЭВМ стандартизируется, реализуется тенденция включения их в состав материнской платы.

Первая материнская плата была разработана фирмой IBM в августе 1981 года (PC-1). С самого начала материнская плата задумывалась как компонент, обеспечивающий механическое соединение и электрическую связь между всеми прочими аппаратными средствами. Кроме этих функций, она также осуществляет подачу электроэнергии (питание) на компоненты компьютера.

Архитектура современной системной платы (обобщенная).

физический параметр определяющий пропускную способность шины компьютера. Смотреть фото физический параметр определяющий пропускную способность шины компьютера. Смотреть картинку физический параметр определяющий пропускную способность шины компьютера. Картинка про физический параметр определяющий пропускную способность шины компьютера. Фото физический параметр определяющий пропускную способность шины компьютера

Современная МП содержит большое количество контроллеров (специализированных микропроцессоров) обеспечивающих взаимодействие всех устройств. Они реализованы в двух наборах микросхем, исторически получивших название «северный мост» и «южный мост» или чипсетов.

· Контроллер-концентратор памяти, или «северный мост» (англ. North Bridge) обеспечивает работу процессора, оперативной памяти и видеоподсистемы;

· Контроллер-концентратор ввода-вывода, или «Южный мост» (англ. South Bridge) обеспечивает работу с внешними устройствами.

Пропускная способность шины.

Быстродействие процессора, оперативной памяти и периферийных устройств существенно различаются.

Быстродействие устройства зависит от:

· тактовой частоты обработки данных (обычно измеряется в мегагерцах – МГц);

· и разрядности, т.е. количества битов данных, обрабатываемых за один такт (промежуток времени между подачей электрических импульсов, синхронизирующих работу устройств ПК).

Соответственно скорость передачи данных – пропускная способность соединяющих эти устройства шин также должна различаться. Пропускная способность шины равна разрядности шины (биты) умноженной на частоту шины (Гц – герцы. 1Гц = 1 такт в секунду).

Системная шина (FSB от англ. Front Side Bus) осуществляет передачу данных между «Северным мостом» и микропроцессором. В современных ПК системная шина имеет разрядность 64 бита и частоту 400 МГц – 1600 МГц.

Пропускная способность может достигать 12,5 Гбайт/с.

Шина памяти осуществляет передачу данных между «Северным мостом» и оперативной памятью ПК. Имеет те же показатели, что и системная шина.

Шина PCI Express (Peripherial Component Interconnect Bus Express – ускоренная шина взаимодействия периферийных устройств) осуществляет передачу данных между «Северным мостом» и видеоплатой (видеокартой). Пропускная способность этой шины может достигать 32 Гбайт/с.

Шина SATA (англ. Serial Advanced Technology Attachment – последовательная шина подключения накопителей) осуществляет передачу данных между «Южным мостом» и устройством внешней памяти (жесткие диски, CD и DVD дисководы, дискеты). Пропускная способность может достигать 300 Мбайт/с.

Шина USB (англ. Universal Serial Bus – универсальная последовательная шина) осуществляет передачу данных между «Южным мостом» и разнообразными внешними устройствами (сканерами, цифровыми камерами и др.). Пропускная способность до 60 Мбайт/с. Обеспечивает подключение к ПК одновременно до 127 периферийных устройств.

Другие важные функции системной платы – обеспечение механического соединения и электрической связи между всеми прочими аппаратными средствами, а также подачи на них питания.

Существует большое разнообразие конструктивных решений системных плат.

Одной из характеристик системной платы является форм-фактор (AT/ATX). Она определяет размеры системной платы и расположений на ней компонентов аппаратных средств.

Упрощенная схема размещения компонентов СП.

физический параметр определяющий пропускную способность шины компьютера. Смотреть фото физический параметр определяющий пропускную способность шины компьютера. Смотреть картинку физический параметр определяющий пропускную способность шины компьютера. Картинка про физический параметр определяющий пропускную способность шины компьютера. Фото физический параметр определяющий пропускную способность шины компьютера

Центральным блоком ПК считается расположенный в специальном разъёме системной платы электронный блок получивший название процессорили микропроцессор.

Первоначально микропроцессор объединил на одном кристалле кремния СБИС арифметико-логического устройства (АЛУ) и устройства управления (УУ).

Выполняемые микропроцессором команды предусматривают обычно арифметические действия, логические операции, передачу управления и перемещение данных между регистрами, оперативной памятью и портами ввода-вывода. С внешними устройствами микропроцессор сообщается благодаря своим шинам адреса, данных и управления, выведенным на специальные контакты корпуса микросхемы.

Устройство управления вырабатывает управляющие сигналы, поступающие по шинам инструкций во все блоки ЭВМ.

Упрощенная схема УУ

физический параметр определяющий пропускную способность шины компьютера. Смотреть фото физический параметр определяющий пропускную способность шины компьютера. Смотреть картинку физический параметр определяющий пропускную способность шины компьютера. Картинка про физический параметр определяющий пропускную способность шины компьютера. Фото физический параметр определяющий пропускную способность шины компьютера

Регистр команд – запоминающий регистр, в котором хранится код команды: код выполняемой операции и адреса операндов, участвующих в операции.

Постоянное запоминающее устройство микропрограмм – хранит в своих ячейках управляющие сигналы (импульсы), необходимые для выполнения в блоках ПК операций обработки информации. Дешифратор операций, считывая код операции из регистратора команд, выбирает в ПЗУ микропрограмм необходимую последовательность управляющих сигналов ­– код команды.

Узел формирования адреса – устройство, вычисляющее полный адрес ячейки памяти (регистра) по реквизитам, поступающим из регистра команд.

Кодовые шины данных, адреса и инструкций – части внутренней шины микропроцессора, осуществляющие передачу сигналов между процессором и другими устройствами ПК.

В общем случае УУ формирует управляющие сигналы для выполнения следующих основных процедур:

· выборки из ячеек ОЗУ, когда очередной команды и приёма считанной команды в регистр команд;

· расшифровки кода операции и признаков выбранной команды;

· считывания из соответствующих расшифрованному коду операций ячеек ПЗУ микропрограмм управляющих сигналов (импульсов), определяющих во всех блоках ЭВМ процедуры выполнения заданной операции, и пересылки управляющих сигналов в эти блоки;

· считывания из регистра команд и регистром МПП (микропроцессорной памяти) отдельных составляющих адресов операндов;

· выборки операндов и выполнения заданной операции их обработки;

· записи результатов в памяти;

· формирование адреса следующей команды программы.

Арифметико-логическое устройство предназначено для выполнения арифметических и логических операций преобразования информации.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *