Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π“Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

ВсС Ρ‚Π΅Π»Π° ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠ΅ массой ΠΏΡ€ΠΈΡ‚ΡΠ³ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π΄Ρ€ΡƒΠ³ ΠΊ Π΄Ρ€ΡƒΠ³Ρƒ. Исаак ΠΡŒΡŽΡ‚ΠΎΠ½ Π½Π° основС ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½ΠΈΡ… Π΄Π°Π½Π½Ρ‹Ρ… астрономичСских наблюдСний ΠΈ Π·Π°ΠΊΠΎΠ½ΠΎΠ² Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ сформулировал Π·Π°ΠΊΠΎΠ½ всСмирного тяготСния : Π΄Π²Π΅ Π»ΡŽΠ±Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ массами m 1 ΠΈ m 2 ΠΏΡ€ΠΈΡ‚ΡΠ³ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π΄Ρ€ΡƒΠ³ ΠΊ Π΄Ρ€ΡƒΠ³Ρƒ вдоль Π»ΠΈΠ½ΠΈΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ с силой прямо ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ масс Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρƒ расстояния (r) ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ:

ЗСмля Π½Π΅ являСтся «ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ» для Ρ‚Π΅Π», располоТСнных Π½Π° Π΅Π΅ повСрхности. ВСорСтичСски Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ сила, с ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ЗСмля притягиваСт Ρ‚Π΅Π»Π°, располоТСнныС Π²Π½Π΅ Π΅Π΅, Ρ€Π°Π²Π½Π° силС, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ создавала Π±Ρ‹ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ° массой (М), Ρ€Π°Π²Π½ΠΎΠΉ массС Π—Π΅ΠΌΠ»ΠΈ, ΠΈ располоТСнная Π² Ρ†Π΅Π½Ρ‚Ρ€Π΅ Π—Π΅ΠΌΠ»ΠΈ. НазовСм силой тяТСсти силу, с ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ‚Π΅Π»ΠΎ взаимодСйствуСт с ΠΏΠ»Π°Π½Π΅Ρ‚ΠΎΠΉ, Π²Π±Π»ΠΈΠ·ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΎΠ½ΠΎ находится.

Π’ соотвСтствии с Π·Π°ΠΊΠΎΠ½ΠΎΠΌ всСмирного тяготСния Π½Π° ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ массой (m) со стороны Π—Π΅ΠΌΠ»ΠΈ Π±ΡƒΠ΄Π΅Ρ‚ Π΄Π΅ΠΉΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ сила тяТСсти, равная

Если Ρ‚Π΅Π»ΠΎ двиТСтся с ускорСниСм Ρ€Π°Π²Π½Ρ‹ΠΌ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ силы тяТСсти, Ρ‚ΠΎ вСс Ρ‚Π΅Π»Π° Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ:

1) вСс Ρ‚Π΅Π»Π° Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ ΠΊΠΎΠ³Π΄Π° Ρ‚Π΅Π»ΠΎ двиТСтся с ускорСниСм Ρ€Π°Π²Π½Ρ‹ΠΌ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ силы тяТСсти ( ) Π² Π»ΠΈΡ„Ρ‚Π΅ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎ Π²Π½ΠΈΠ·;

Π—Π°ΠΊΠΎΠ½ всСмирного тяготСния опрСдСляСт Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ силы всСмирного тяготСния, Π½ΠΎ Π½Π΅ ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚ Π½Π° вопрос ΠΊΠ°ΠΊ осущСствляСтся это взаимодСйствиС. Π“Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ взаимодСйствиС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚Π΅Π»Π°ΠΌΠΈ осущСствляСтся с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ поля тяготСния, ΠΈΠ»ΠΈ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ поля.

1. ΠΠ°ΠΏΡ€ΡΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ поля ( ), силовая характСристика поля, Ρ€Π°Π²Π½Π° силС, Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ со стороны поля Π½Π° ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ массы, ΠΈ совпадаСт ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ с Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ силой (это Π½ΠΈΡ‡Ρ‚ΠΎ ΠΈΠ½ΠΎΠ΅ ΠΊΠ°ΠΊ ускорСниС, с ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ Ρ‚Π΅Π»ΠΎ двиТСтся Π² ΠΏΠΎΠ»Π΅ тяготСния):

НСзависимо ΠΎΡ‚ своСй массы всС Ρ‚Π΅Π»Π° ΠΏΠΎΠ΄ дСйствиСм силы тяТСсти двиТутся с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌ ускорСниСм ( )

Π•Π΄ΠΈΠ½ΠΈΡ†Π° измСрСния [Ο†]=Π”ΠΆ/ΠΊΠ³.

ΠŸΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ энСргия Ρ‚Π΅Π»Π° Π² Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΌ ΠΏΠΎΠ»Π΅ Ρ€Π°Π²Π½Π°:

Π’ΠΎΠ³Π΄Π° Ρ€Π°Π±ΠΎΡ‚Π° Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ поля ΠΏΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΡŽ Ρ‚Π΅Π»Π° ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ с ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ Ο† 1 Π² Ρ‚ΠΎΡ‡ΠΊΡƒ с ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ Ο† 2 Ρ€Π°Π²Π½Π°:

Π Π°Π±ΠΎΡ‚Π° Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ поля ΠΏΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΡŽ Ρ‚Π΅Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Π½Π΅ зависит ΠΎΡ‚ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ двиТСния Ρ‚Π΅Π»Π°, Π° опрСдСляСтся Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠ² Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΎΡ‡Π΅ΠΊ, Π½Π° Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΌ ΠΏΡƒΡ‚ΠΈ Ρ€Π°Π±ΠΎΡ‚Π° Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ поля Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ. Π’ΠΎ Π΅ΡΡ‚ΡŒ, сила всСмирного тяготСния ΠΈ сила тяТСсти ΡΠ²Π»ΡΡŽΡ‚ΡΡ консСрвативными.

Π’ качСствС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° рассмотрим Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ.

ΠΠ°Π³Π»ΡΠ΄Π½ΡƒΡŽ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Ρƒ поля прСдставляСт Π½Π°Π±ΠΎΡ€ Π»ΠΈΠ½ΠΈΠΉ напряТСнности ΠΈ ΡΠΊΠ²ΠΈΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… повСрхностСй, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ прСдставлСно Π½Π° рисункС (1.8.2).

ΠœΡ‹ ΡƒΠΆΠ΅ ΡƒΠΏΠΎΠΌΠΈΠ½Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ Π—Π΅ΠΌΠ»ΠΈ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ, ΠΊΠ°ΠΊ ΠΏΠΎΠ»Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ располоТСнной Π² Ρ†Π΅Π½Ρ‚Ρ€Π΅ Π—Π΅ΠΌΠ»ΠΈ. Π’ΠΎΠ³Π΄Π° ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ энСргия Ρ‚Π΅Π»Π°, находящСгося Π½Π° высотС h ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π—Π΅ΠΌΠ»ΠΈ:

ΠŸΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ энСргия Ρ‚Π΅Π»Π° Π½Π° высотС h Π½Π°Π΄ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ Π—Π΅ΠΌΠ»ΠΈ, Ρ€Π°Π²Π½Π°:

Рассмотрим взаимосвязь ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ ΠΈ Π½Π°ΠΏΡ€ΡΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ поля тяготСния.

ЭлСмСнтарная Ρ€Π°Π±ΠΎΡ‚Π°, ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅ΠΌΠ°Ρ ΠΏΠΎΠ»Π΅ΠΌ ΠΏΡ€ΠΈ ΠΌΠ°Π»ΠΎΠΌ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΈ Ρ‚Π΅Π»Π° массой (m), Ρ€Π°Π²Π½Π°

Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° dΟ†/dl Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΠ΅Ρ‚ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ Π΄Π»ΠΈΠ½Ρ‹ Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ пСрСмСщСния Π² ΠΏΠΎΠ»Π΅ тяготСния, это Π½ΠΈΡ‡Ρ‚ΠΎ ΠΈΠ½ΠΎΠ΅, ΠΊΠ°ΠΊ Π³Ρ€Π°Π΄ΠΈΠ΅Π½Ρ‚ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π°.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π½Π°ΠΏΡ€ΡΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ поля числСнно Ρ€Π°Π²Π½Π° Π³Ρ€Π°Π΄ΠΈΠ΅Π½Ρ‚Ρƒ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ поля ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° Π² сторону Π΅Π³ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ:

На Π—Π΅ΠΌΠ»Π΅ ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ систСмы отсчСта, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ покоятся ΠΈΠ»ΠΈ двиТутся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ ΠΈ прямолинСйно ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ‚ΠΎΡ‡Π΅ΠΊ Π½Π° повСрхности Π—Π΅ΠΌΠ»ΠΈ.

Π‘ΠΈΠ»Ρ‹ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ обусловлСны ускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ систСмы отсчСта ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ измСряСмой систСмы, Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ Ρ‚Ρ€ΠΈ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° проявлСния этих сил.

1. Π‘ΠΈΠ»Π° ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ ΠΏΡ€ΠΈ ускорСнном ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ систСмы отсчСта ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ² Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ускорСния Π½Π΅ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ систСмы отсчСта :

Π”Π΅ΠΉΡΡ‚Π²ΠΈΡŽ Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ±Π΅ΠΆΠ½ΠΎΠΉ силы ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°ΡŽΡ‚ΡΡ пассаТиры Π² двиТущСмся транспортС Π½Π° ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π°Ρ…; Π»Π΅Ρ‚Ρ‡ΠΈΠΊΠΈ ΠΏΡ€ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ Ρ„ΠΈΠ³ΡƒΡ€ Π²Ρ‹ΡΡˆΠ΅Π³ΠΎ ΠΏΠΈΠ»ΠΎΡ‚Π°ΠΆΠ°; Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ±Π΅ΠΆΠ½Ρ‹Π΅ силы ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π²ΠΎ всСх Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ±Π΅ΠΆΠ½Ρ‹Ρ… ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°Ρ…: насосах, сСпараторах, Π³Π΄Π΅ ΠΎΠ½ΠΈ Π΄ΠΎΡΡ‚ΠΈΠ³Π°ΡŽΡ‚ ΠΎΠ³Ρ€ΠΎΠΌΠ½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. ΠŸΡ€ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ быстро Π²Ρ€Π°Ρ‰Π°ΡŽΡ‰ΠΈΡ…ΡΡ Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ машин (Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠ², Π²ΠΈΠ½Ρ‚ΠΎΠ² самолСтов) ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ΡΡ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠ΅Ρ€Ρ‹ для ΡƒΡ€Π°Π²Π½ΠΎΠ²Π΅ΡˆΠΈΠ²Π°Π½ΠΈΡ Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ±Π΅ΠΆΠ½Ρ‹Ρ… сил ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ.

Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠΉ массы Ρ‚Π΅Π»Π° Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ скорости ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния Ρ‚Π΅Π»Π° ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ систСмы отсчСта ΠΈ ΡƒΠ³Π»ΠΎΠ²ΠΎΠΉ скорости вращСния систСмы отсчСта. Π­Ρ‚Π° сила Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° пСрпСндикулярно Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ скорости Ρ‚Π΅Π»Π° ΠΈ ΡƒΠ³Π»ΠΎΠ²ΠΎΠΉ скорости вращСния систСмы Π² соотвСтствии с ΠΏΡ€Π°Π²ΠΈΠ»ΠΎΠΌ ΠΏΡ€Π°Π²ΠΎΠ³ΠΎ Π²ΠΈΠ½Ρ‚Π°.

ЗСмля прСдставляСт собой Π²Ρ€Π°Ρ‰Π°ΡŽΡ‰ΡƒΡŽΡΡ систСму отсчСта ΠΈ дСйствиС силы ΠšΠΎΡ€ΠΈΠΎΠ»ΠΈΡΠ° ΠΎΠ±ΡŠΡΡΠ½ΡΠ΅Ρ‚ ряд Π½Π°Π±Π»ΡŽΠ΄Π°Π΅ΠΌΡ‹Ρ… Π½Π° Π—Π΅ΠΌΠ»Π΅ явлСний. Π’Π°ΠΊ, Ссли Ρ‚Π΅Π»ΠΎ двиТСтся Π² сСвСрном ΠΏΠΎΠ»ΡƒΡˆΠ°Ρ€ΠΈΠΈ Π½Π° сСвСр (рис.1.8.4), Ρ‚ΠΎ сила ΠšΠΎΡ€ΠΈΠΎΠ»ΠΈΡΠ° Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° Π²ΠΏΡ€Π°Π²ΠΎ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ двиТСния, ΠΈ Ρ‚Π΅Π»ΠΎ отклонится Π½Π° восток. Если Ρ‚Π΅Π»ΠΎ двиТСтся Π² юг, Ρ‚ΠΎ сила ΠšΠΎΡ€ΠΈΠΎΠ»ΠΈΡΠ° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° Π²ΠΏΡ€Π°Π²ΠΎ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ двиТСния, ΠΈ Ρ‚Π΅Π»ΠΎ отклонится Π½Π° Π·Π°ΠΏΠ°Π΄. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π² сСвСрном ΠΏΠΎΠ»ΡƒΡˆΠ°Ρ€ΠΈΠΈ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ Π±ΠΎΠ»Π΅Π΅ сильноС ΠΏΠΎΠ΄ΠΌΡ‹Π²Π°Π½ΠΈΠ΅ ΠΏΡ€Π°Π²Ρ‹Ρ… Π±Π΅Ρ€Π΅Π³ΠΎΠ² Ρ€Π΅ΠΊ; ΠΏΡ€Π°Π²Ρ‹Π΅ Ρ€Π΅Π»ΡŒΡΡ‹ ΠΆΠ΅Π»Π΅Π·Π½ΠΎΠ΄ΠΎΡ€ΠΎΠΆΠ½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΉ ΠΏΠΎ двиТСнию ΠΈΠ·Π½Π°ΡˆΠΈΠ²Π°ΡŽΡ‚ΡΡ быстрСС, Ρ‡Π΅ΠΌ Π»Π΅Π²Ρ‹Π΅. Аналогично ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π² юТном ΠΏΠΎΠ»ΡƒΡˆΠ°Ρ€ΠΈΠΈ сила ΠšΠΎΡ€ΠΈΠΎΠ»ΠΈΡΠ°, Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ Π½Π° двиТущиСся Ρ‚Π΅Π»Π°, Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° Π²Π»Π΅Π²ΠΎ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ двиТСния.

Если ΡƒΡ‡Π΅ΡΡ‚ΡŒ силы ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ, Ρ‚ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ Π·Π°ΠΊΠΎΠ½ ΠΡŒΡŽΡ‚ΠΎΠ½Π° Π±ΡƒΠ΄Π΅Ρ‚ справСдлив для любой систСмы отсчСта : ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ массы Ρ‚Π΅Π»Π° Π½Π° ускорСниС Π² рассматриваСмой систСмС отсчСта Ρ€Π°Π²Π½ΠΎ суммС всСх сил, Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π½Π° Π΄Π°Π½Π½ΠΎΠ΅ Ρ‚Π΅Π»ΠΎ (Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ΠΈ силы ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ):

ΠžΠ±Ρ€Π°Ρ‚ΠΈΠΌ Π΅Ρ‰Π΅ Ρ€Π°Π· Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ силы ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π½Π΅ взаимодСйствиСм Ρ‚Π΅Π», Π° ускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ систСмы отсчСта, поэтому ΠΎΠ½ΠΈ Π½Π΅ ΠΏΠΎΠ΄Ρ‡ΠΈΠ½ΡΡŽΡ‚ΡΡ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΌΡƒ Π·Π°ΠΊΠΎΠ½Ρƒ ΠΡŒΡŽΡ‚ΠΎΠ½Π°. Π”Π²Π° основных полоТСния ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ: 1) ускорСниС всСгда вызываСтся силой; 2) сила всСгда обусловлСна взаимодСйствиСм ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚Π΅Π»Π°ΠΌΠΈ, Π² Π½Π΅ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… систСмах отсчСта ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ Π½Π΅ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ΡΡ.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, силы ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² Π½Π΅ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… систСмах отсчСта, Π² ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… систСмах отсчСта Ρ‚Π°ΠΊΠΈΡ… сил Π½Π΅ сущСствуСт.

ВсС Ρ‚Π΅Π»Π° нСзависимо ΠΎΡ‚ ΠΈΡ… масс ΠΈ химичСского состава, ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ Π² Π΄Π°Π½Π½ΠΎΠΌ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΌ ΠΏΠΎΠ»Π΅ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ускорСния. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π² Ρ‚Π°ΠΊΠΎΠΌ ΠΏΠΎΠ»Π΅ ΠΎΠ½ΠΈ двиТутся ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½ΠΎ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ, Ссли Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Π΅ условия. Π’Π΅ΠΌ ΠΆΠ΅ свойством ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ свободно двиТущиСся Ρ‚Π΅Π»Π°, Ссли ΠΈΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ Π½Π΅ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ систСмы отсчСта.

Π‘ΠΈΠ»Ρ‹ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ, Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π½Π° Ρ‚Π΅Π»Π° Π½Π΅ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ систСмС отсчСта, ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ ΠΈΡ… массам ΠΈ ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΡ‡ΠΈΡ… Ρ€Π°Π²Π½Ρ‹Ρ… условиях ΡΠΎΠΎΠ±Ρ‰Π°ΡŽΡ‚ этим Ρ‚Π΅Π»Π°ΠΌ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ускорСния. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π² «ΠΏΠΎΠ»Π΅ сил ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ» эти Ρ‚Π΅Π»Π° двиТутся ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½ΠΎ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ, Ссли Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Π΅ условия.

ВсС мСханичСскиС явлСния ΠΈ двиТСния Π² Π»ΠΈΡ„Ρ‚Π΅ Π±ΡƒΠ΄ΡƒΡ‚ Π² точности Ρ‚Π°ΠΊΠΈΠΌΠΈ ΠΆΠ΅, Ρ‡Ρ‚ΠΎ ΠΈ Π² Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΌ Π»ΠΈΡ„Ρ‚Π΅, висящСм Π² ΠΏΠΎΠ»Π΅ тяТСсти.

Никакой экспСримСнт, Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π½Ρ‹ΠΉ Π²Π½ΡƒΡ‚Ρ€ΠΈ Π»ΠΈΡ„Ρ‚Π°, Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΡ‚Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ тяготСния ΠΎΡ‚ ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ поля сил ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ.

Аналогия ΠΌΠ΅ΠΆΠ΄Ρƒ силами тяготСния ΠΈ силами ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ Π»Π΅ΠΆΠΈΡ‚ Π² основС ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ° эквивалСнтности Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… сил ΠΈ сил ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ.

ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ° эквивалСнтности Π­ΠΉΠ½ΡˆΡ‚Π΅ΠΉΠ½Π°: всС физичСскиС явлСния Π² ΠΏΠΎΠ»Π΅ сил тяготСния происходят ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½ΠΎ Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΌ ΠΏΠΎΠ»Π΅ сил ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ, Ссли напряТСнности ΠΎΠ±ΠΎΠΈΡ… ΠΏΠΎΠ»Π΅ΠΉ Π² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… пространства ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚, Π° ΠΏΡ€ΠΎΡ‡ΠΈΠ΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Π΅ условия для рассматриваСмых Ρ‚Π΅Π» ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹.

ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏ эквивалСнтности Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… сил ΠΈ сил ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏ эквивалСнтности Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΈ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ масс Ρ‚Π΅Π»Π°.

Β© Π€Π“ΠžΠ£ Π’ΠŸΠž ΠšΡ€Π°ΡΠ½ΠΎΡΡ€ΡΠΊΠΈΠΉ государствСнный Π°Π³Ρ€Π°Ρ€Π½Ρ‹ΠΉ унивСрситСт, 2013

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π“Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅

БвязанныС понятия

Упоминания Π² Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅

БвязанныС понятия (ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠ΅)

КомплСкс Π·Π°Π΄Π°Ρ‡ ΠΎ взаимодСйствии ΠΌΠ½ΠΎΠ³ΠΈΡ… Ρ‚Π΅Π» достаточно ΠΎΠ±ΡˆΠΈΡ€Π½Ρ‹ΠΉ ΠΈ являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π±Π°Π·ΠΎΠ²Ρ‹Ρ…, Π΄Π°Π»Π΅ΠΊΠΎ Π½Π΅ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ Ρ€Π°Π·Ρ€Π΅ΡˆΡ‘Π½Π½Ρ‹Ρ…, Ρ€Π°Π·Π΄Π΅Π»ΠΎΠ² ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ. Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… Π½ΡŒΡŽΡ‚ΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° вСтвится Π½Π°.

Богласно ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ пСрСмС́нной ско́рости свС́та (ПББ) считаСтся, Ρ‡Ρ‚ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ свСта Π² Π²Π°ΠΊΡƒΡƒΠΌΠ΅, ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ обозначаСмая c, Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… случаях ΠΌΠΎΠΆΠ΅Ρ‚ Π½Π΅ Π±Ρ‹Ρ‚ΡŒ константой. Π’ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ ситуаций Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅ кондСнсированного состояния распространСниС свСта Π² срСдС Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ происходит с мСньшСй ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ, Ρ‡Π΅ΠΌ Π² Π²Π°ΠΊΡƒΡƒΠΌΠ΅. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… расчётах ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ поля Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π²ΠΈΡ€Ρ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹Π΅ Ρ„ΠΎΡ‚ΠΎΠ½Ρ‹ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ Π½Π° ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠ΅ расстояния Π² Ρ‚ΠΎΠΌ числС со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ, ΠΎΡ‚Π»ΠΈΡ‡Π½ΠΎΠΉ ΠΎΡ‚ скорости.

Π’ Ρ„ΠΈΠ·ΠΈΠΊΠ΅, ΠΏΡ€ΠΈ рассмотрСнии Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… систСм отсчёта (БО), Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ понятиС слоТного двиТСния β€” ΠΊΠΎΠ³Π΄Π° ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ° двиТСтся ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ систСмы отсчёта, Π° Ρ‚Π°, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, двиТСтся ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΄Ρ€ΡƒΠ³ΠΎΠΉ систСмы отсчёта. ΠŸΡ€ΠΈ этом Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ вопрос ΠΎ связи Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² этих Π΄Π²ΡƒΡ… систСмах отсчСта (Π΄Π°Π»Π΅Π΅ БО).

Π’ Ρ„ΠΈΠ·ΠΈΠΊΠ΅ ΠΈ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅, Π² отрасли динамичСских систСм, Π΄Π²ΠΎΠΉΠ½ΠΎΠΉ маятник β€” это маятник с Π΄Ρ€ΡƒΠ³ΠΈΠΌ маятником, ΠΏΡ€ΠΈΠΊΡ€Π΅ΠΏΠ»Ρ‘Π½Π½Ρ‹ΠΌ ΠΊ Π΅Π³ΠΎ ΠΊΠΎΠ½Ρ†Ρƒ. Π”Π²ΠΎΠΉΠ½ΠΎΠΉ маятник являСтся простой физичСской систСмой, которая проявляСт Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΠ΅ динамичСскоС ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ со Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒΡŽ ΠΎΡ‚ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Ρ… условий. Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ маятника руководствуСтся связанными ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½Ρ‹ΠΌΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ уравнСниями. Для Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… энСргий Π΅Π³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ являСтся хаотичСским.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π“Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ Π—Π΅ΠΌΠ»ΠΈ

Гравита́ция (всСми́рноС тяготС́ниС, тяготС́ниС) (ΠΎΡ‚ Π»Π°Ρ‚. gravitas β€” Β«Ρ‚ΡΠΆΠ΅ΡΡ‚ΡŒΒ») β€” Π΄Π°Π»ΡŒΠ½ΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ взаимодСйствиС Π² ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ ΠΏΠΎΠ΄Π²Π΅Ρ€ΠΆΠ΅Π½Ρ‹ всС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ Ρ‚Π΅Π»Π°. По соврСмСнным Π΄Π°Π½Π½Ρ‹ΠΌ, являСтся ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹ΠΌ взаимодСйствиСм Π² Ρ‚ΠΎΠΌ смыслС, Ρ‡Ρ‚ΠΎ, Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ Π»ΡŽΠ±Ρ‹Ρ… Π΄Ρ€ΡƒΠ³ΠΈΡ… сил, всСм Π±Π΅Π· ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ Ρ‚Π΅Π»Π°ΠΌ нСзависимо ΠΎΡ‚ ΠΈΡ… массы ΠΏΡ€ΠΈΠ΄Π°Ρ‘Ρ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ ускорСниС. Π“Π»Π°Π²Π½Ρ‹ΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ гравитация ΠΈΠ³Ρ€Π°Π΅Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² космичСских ΠΌΠ°ΡΡˆΡ‚Π°Π±Π°Ρ…. Π’Π΅Ρ€ΠΌΠΈΠ½ гравитация ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠ°ΠΊ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ Ρ€Π°Π·Π΄Π΅Π»Π° Ρ„ΠΈΠ·ΠΈΠΊΠΈ, ΠΈΠ·ΡƒΡ‡Π°ΡŽΡ‰Π΅Π³ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ взаимодСйствиС. НаиболСС ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΠΉ соврСмСнной физичСской Ρ‚Π΅ΠΎΡ€ΠΈΠ΅ΠΉ Π² классичСской Ρ„ΠΈΠ·ΠΈΠΊΠ΅, ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰Π΅ΠΉ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΡŽ, являСтся общая тСория ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, квантовая тСория Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ взаимодСйствия ΠΏΠΎΠΊΠ° Π½Π΅ построСна.

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

Π“Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ взаимодСйствиС

Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅.

Π—Π΄Π΅ΡΡŒ G β€” гравитационная постоянная, равная ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅ΠΌΒ³/(кг‒с²). Π—Π½Π°ΠΊ минус ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ сила, Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ Π½Π° Ρ‚Π΅Π»ΠΎ, всСгда Ρ€Π°Π²Π½Π° ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠΌΡƒ Π½Π° Ρ‚Π΅Π»ΠΎ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ взаимодСйствиС ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ всСгда ΠΊ ΠΏΡ€ΠΈΡ‚ΡΠΆΠ΅Π½ΠΈΡŽ Π»ΡŽΠ±Ρ‹Ρ… Ρ‚Π΅Π».

Π—Π°ΠΊΠΎΠ½ всСмирного тяготСния β€” ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π·Π°ΠΊΠΎΠ½Π° ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ², Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‰Π΅Π³ΠΎΡΡ Ρ‚Π°ΠΊ ΠΆΠ΅ ΠΈ ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠΉ (см. Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π”Π°Π²Π»Π΅Π½ΠΈΠ΅ свСта), ΠΈ ΡΠ²Π»ΡΡŽΡ‰ΠΈΠΌΡΡ прямым слСдствиСм ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ увСличСния ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ сфСры ΠΏΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ радиуса, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΌΡƒ ΠΆΠ΅ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡŽ Π²ΠΊΠ»Π°Π΄Π° любой Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Π² ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ всСй сфСры.

ПолС тяТСсти ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ. Π­Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ввСсти ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ ΡΠ½Π΅Ρ€Π³ΠΈΡŽ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ притяТСния ΠΏΠ°Ρ€Ρ‹ Ρ‚Π΅Π», ΠΈ эта энСргия Π½Π΅ измСнится послС пСрСмСщСния Ρ‚Π΅Π» ΠΏΠΎ Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΌΡƒ ΠΊΠΎΠ½Ρ‚ΡƒΡ€Ρƒ. ΠŸΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ поля тяТСсти Π²Π»Π΅Ρ‡Ρ‘Ρ‚ Π·Π° собой Π·Π°ΠΊΠΎΠ½ сохранСния суммы кинСтичСской ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ энСргии ΠΈ ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ двиТСния Ρ‚Π΅Π» Π² ΠΏΠΎΠ»Π΅ тяТСсти часто сущСствСнно ΡƒΠΏΡ€ΠΎΡ‰Π°Π΅Ρ‚ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅. Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… Π½ΡŒΡŽΡ‚ΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠΉ ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ взаимодСйствиС являСтся Π΄Π°Π»ΡŒΠ½ΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ. Π­Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΊ Π±Ρ‹ массивноС Ρ‚Π΅Π»ΠΎ Π½ΠΈ двигалось, Π² любой Ρ‚ΠΎΡ‡ΠΊΠ΅ пространства Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π» зависит Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΡ‚ полоТСния Ρ‚Π΅Π»Π° Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π‘ΠΎΠ»ΡŒΡˆΠΈΠ΅ космичСскиС ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ β€” ΠΏΠ»Π°Π½Π΅Ρ‚Ρ‹, Π·Π²Π΅Π·Π΄Ρ‹ ΠΈ Π³Π°Π»Π°ΠΊΡ‚ΠΈΠΊΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ³Ρ€ΠΎΠΌΠ½ΡƒΡŽ массу ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΡΠΎΠ·Π΄Π°ΡŽΡ‚ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ поля.

Гравитация β€” слабСйшСС взаимодСйствиС. Однако, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠ½ΠΎ дСйствуСт Π½Π° Π»ΡŽΠ±Ρ‹Ρ… расстояниях ΠΈ всС массы ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹, это Ρ‚Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ ΠΎΡ‡Π΅Π½ΡŒ ваТная сила Π²ΠΎ ВсСлСнной. Для сравнСния: ΠΏΠΎΠ»Π½Ρ‹ΠΉ элСктричСский заряд этих Ρ‚Π΅Π» ноль, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ вСщСство Π² Ρ†Π΅Π»ΠΎΠΌ элСктричСски Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎ.

Π’Π°ΠΊΠΆΠ΅ гравитация, Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³ΠΈΡ… взаимодСйствий, ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Π° Π² дСйствии Π½Π° всю ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡŽ ΠΈ ΡΠ½Π΅Ρ€Π³ΠΈΡŽ. НС ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Ρ‹ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π²ΠΎΠΎΠ±Ρ‰Π΅ отсутствовало Π±Ρ‹ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ взаимодСйствиС.

Из-Π·Π° глобального Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π° гравитация отвСтствСнна ΠΈ Π·Π° Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΡ€ΡƒΠΏΠ½ΠΎΠΌΠ°ΡΡˆΡ‚Π°Π±Π½Ρ‹Π΅ эффСкты, ΠΊΠ°ΠΊ структура Π³Π°Π»Π°ΠΊΡ‚ΠΈΠΊ, Ρ‡Π΅Ρ€Π½Ρ‹Π΅ Π΄Ρ‹Ρ€Ρ‹ ΠΈ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ ВсСлСнной, ΠΈ Π·Π° элСмСнтарныС астрономичСскиС явлСния β€” ΠΎΡ€Π±ΠΈΡ‚Ρ‹ ΠΏΠ»Π°Π½Π΅Ρ‚, ΠΈ Π·Π° простоС притяТСниС ΠΊ повСрхности Π—Π΅ΠΌΠ»ΠΈ ΠΈ падСния Ρ‚Π΅Π».

Гравитация Π±Ρ‹Π»Π° ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ взаимодСйствиСм, описанным матСматичСской Ρ‚Π΅ΠΎΡ€ΠΈΠ΅ΠΉ. Π’ Π°Π½Ρ‚ΠΈΡ‡Π½Ρ‹Π΅ Π²Ρ€Π΅ΠΌΠ΅Π½Π° ΠΡ€ΠΈΡΡ‚ΠΎΡ‚Π΅Π»ΡŒ считал, Ρ‡Ρ‚ΠΎ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ с Ρ€Π°Π·Π½ΠΎΠΉ массой ΠΏΠ°Π΄Π°ΡŽΡ‚ с Ρ€Π°Π·Π½ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ. Волько ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ·ΠΆΠ΅ Π“Π°Π»ΠΈΠ»Π΅ΠΎ Π“Π°Π»ΠΈΠ»Π΅ΠΉ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠ», Ρ‡Ρ‚ΠΎ это Π½Π΅ Ρ‚Π°ΠΊ β€” Ссли сопротивлСниС Π²ΠΎΠ·Π΄ΡƒΡ…Π° устраняСтся, всС Ρ‚Π΅Π»Π° ΡƒΡΠΊΠΎΡ€ΡΡŽΡ‚ΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ. Π—Π°ΠΊΠΎΠ½ всСобщСго тяготСния Исаака ΠΡŒΡŽΡ‚ΠΎΠ½Π° (1687) Ρ…ΠΎΡ€ΠΎΡˆΠΎ описывал ΠΎΠ±Ρ‰Π΅Π΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΈ. Π’ 1915 Π³ΠΎΠ΄Ρƒ ΠΠ»ΡŒΠ±Π΅Ρ€Ρ‚ Π­ΠΉΠ½ΡˆΡ‚Π΅ΠΉΠ½ создал ΠžΠ±Ρ‰ΡƒΡŽ Ρ‚Π΅ΠΎΡ€ΠΈΡŽ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Π±ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΡ‡Π½ΠΎ ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰ΡƒΡŽ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΡŽ Π² Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Ρ… Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ пространства-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

НСбСсная ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠ° ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π΅Ρ‘ Π·Π°Π΄Π°Ρ‡ΠΈ

Π Π°Π·Π΄Π΅Π» ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ, ΠΈΠ·ΡƒΡ‡Π°ΡŽΡ‰ΠΈΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π» Π² пустом пространствС Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΠΎΠ΄ дСйствиСм Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΈ называСтся нСбСсной ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΎΠΉ.

НаиболСС простой Π·Π°Π΄Π°Ρ‡Π΅ΠΉ нСбСсной ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ являСтся Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ взаимодСйствиС Π΄Π²ΡƒΡ… Ρ‚Π΅Π» Π² пустом пространствС. Π­Ρ‚Π° Π·Π°Π΄Π°Ρ‡Π° Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ аналитичСски Π΄ΠΎ ΠΊΠΎΠ½Ρ†Π°; Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π΅Ρ‘ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ часто Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‚ Π² Π²ΠΈΠ΄Π΅ Ρ‚Ρ€Ρ‘Ρ… Π·Π°ΠΊΠΎΠ½ΠΎΠ² ΠšΠ΅ΠΏΠ»Π΅Ρ€Π°.

ΠŸΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ количСства Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Ρ‚Π΅Π» Π·Π°Π΄Π°Ρ‡Π° Ρ€Π΅Π·ΠΊΠΎ услоТняСтся. Π’Π°ΠΊ, ΡƒΠΆΠ΅ знамСнитая Π·Π°Π΄Π°Ρ‡Π° Ρ‚Ρ€Ρ‘Ρ… Ρ‚Π΅Π» (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Ρ€Ρ‘Ρ… Ρ‚Π΅Π» с Π½Π΅Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌΠΈ массами) Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½Π° аналитичСски Π² ΠΎΠ±Ρ‰Π΅ΠΌ Π²ΠΈΠ΄Π΅. ΠŸΡ€ΠΈ числСнном ΠΆΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ, достаточно быстро наступаСт Π½Π΅ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Ρ… условий. Π’ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΊ Π‘ΠΎΠ»Π½Π΅Ρ‡Π½ΠΎΠΉ систСмС, эта Π½Π΅ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ Π½Π΅ позволяСт ΠΏΡ€Π΅Π΄ΡΠΊΠ°Π·Π°Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ»Π°Π½Π΅Ρ‚ Π½Π° ΠΌΠ°ΡΡˆΡ‚Π°Π±Π°Ρ…, ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°ΡŽΡ‰ΠΈΡ… ΡΠΎΡ‚Π½ΡŽ ΠΌΠΈΠ»Π»ΠΈΠΎΠ½ΠΎΠ² Π»Π΅Ρ‚.

Π’ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… частных случаях удаётся Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΡ‘Π½Π½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅. НаиболСС Π²Π°ΠΆΠ½Ρ‹ΠΌ являСтся случай, ΠΊΠΎΠ³Π΄Π° масса ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π° сущСствСнно большС массы Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ‚Π΅Π» (ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹: солнСчная систСма ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΠΊΠΎΠ»Π΅Ρ† Π‘Π°Ρ‚ΡƒΡ€Π½Π°). Π’ этом случаС Π² ΠΏΠ΅Ρ€Π²ΠΎΠΌ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π»Ρ‘Π³ΠΊΠΈΠ΅ Ρ‚Π΅Π»Π° Π½Π΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Ρ€ΡƒΠ³ с Π΄Ρ€ΡƒΠ³ΠΎΠΌ ΠΈ двиТутся ΠΏΠΎ ΠΊΠ΅ΠΏΠ»Π΅Ρ€ΠΎΠ²Ρ‹ΠΌ траСкториям Π²ΠΎΠΊΡ€ΡƒΠ³ массивного Ρ‚Π΅Π»Π°. ВзаимодСйствия ΠΆΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Π²ΠΎΠ·ΠΌΡƒΡ‰Π΅Π½ΠΈΠΉ, ΠΈ ΡƒΡΡ€Π΅Π΄Π½ΡΡ‚ΡŒ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ΠŸΡ€ΠΈ этом ΠΌΠΎΠ³ΡƒΡ‚ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Ρ‚ΡŒ Π½Π΅Ρ‚Ρ€ΠΈΠ²ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ явлСния, Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ рСзонансы, Π°Ρ‚Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΡ€Ρ‹, Ρ…Π°ΠΎΡ‚ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΈ Ρ‚. Π΄. Наглядный ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Ρ‚Π°ΠΊΠΈΡ… явлСний β€” Π½Π΅Ρ‚Ρ€ΠΈΠ²ΠΈΠ°Π»ΡŒΠ½Π°Ρ структура ΠΊΠΎΠ»Π΅Ρ† Π‘Π°Ρ‚ΡƒΡ€Π½Π°.

НСсмотря Π½Π° ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠΈ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ систСмы ΠΈΠ· большого числа ΠΏΡ€ΠΈΡ‚ΡΠ³ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ…ΡΡ Ρ‚Π΅Π» ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ массы, ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ этого Π½Π΅ удаётся ΠΈΠ·-Π·Π° явлСния динамичСского хаоса.

Π‘ΠΈΠ»ΡŒΠ½Ρ‹Π΅ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ поля

Π’ ΡΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… полях, ΠΏΡ€ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ с рСлятивистскими скоростями, Π½Π°Ρ‡ΠΈΠ½Π°ΡŽΡ‚ ΠΏΡ€ΠΎΡΠ²Π»ΡΡ‚ΡŒΡΡ эффСкты ΠΎΠ±Ρ‰Π΅ΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ:

Π“Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅

Одним ΠΈΠ· Π²Π°ΠΆΠ½Ρ‹Ρ… прСдсказаний ОВО являСтся Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅, Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π΄ΠΎ сих ΠΏΠΎΡ€ Π½Π΅ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΎ прямыми наблюдСниями. Однако, ΠΈΠΌΠ΅ΡŽΡ‚ΡΡ косвСнныС Π½Π°Π±Π»ΡŽΠ΄Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Π² ΠΏΠΎΠ»ΡŒΠ·Ρƒ Π΅Π³ΠΎ сущСствования, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ: ΠΏΠΎΡ‚Π΅Ρ€ΠΈ энСргии Π² Π΄Π²ΠΎΠΉΠ½ΠΎΠΉ систСмС с ΠΏΡƒΠ»ΡŒΡΠ°Ρ€ΠΎΠΌ PSR B1913+16 β€” ΠΏΡƒΠ»ΡŒΡΠ°Ρ€ΠΎΠΌ Π₯алса-Π’Π΅ΠΉΠ»ΠΎΡ€Π° β€” Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΡΠΎΠ³Π»Π°ΡΡƒΡŽΡ‚ΡΡ с модСлью, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ эта энСргия уносится Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ.

Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

Π³Π΄Π΅ Qij β€” Ρ‚Π΅Π½Π·ΠΎΡ€ ΠΊΠ²Π°Π΄Ρ€ΡƒΠΏΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° распрСдСлСния масс ΠΈΠ·Π»ΡƒΡ‡Π°ΡŽΡ‰Π΅ΠΉ систСмы. ΠšΠΎΠ½ΡΡ‚Π°Π½Ρ‚Π° Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ это Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅(1/Π’Ρ‚) позволяСт ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ порядок Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ мощности излучСния.

Начиная с 1969 Π³ΠΎΠ΄Π° (экспСримСнты Π’Π΅Π±Π΅Ρ€Π° (Π°Π½Π³Π».)) ΠΈ Π΄ΠΎ настоящСго Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (Ρ„Π΅Π²Ρ€Π°Π»ΡŒ 2007) ΠΏΡ€Π΅Π΄ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ΡΡ ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠΈ прямого обнаруТСния Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ излучСния. Π’ БША, Π•Π²Ρ€ΠΎΠΏΠ΅ ΠΈ Π―ΠΏΠΎΠ½ΠΈΠΈ Π² настоящий ΠΌΠΎΠΌΠ΅Π½Ρ‚ сущСствуСт нСсколько Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π½Π°Π·Π΅ΠΌΠ½Ρ‹Ρ… Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² (GEO 600), Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ космичСского Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π° [2] рСспублики Ватарстан.

Π’ΠΎΠ½ΠΊΠΈΠ΅ эффСкты Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΈ

Помимо классичСских эффСктов Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ притяТСния ΠΈ замСдлСния Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, общая тСория ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прСдсказываСт сущСствованиС Π΄Ρ€ΡƒΠ³ΠΈΡ… проявлСний Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π² Π·Π΅ΠΌΠ½Ρ‹Ρ… условиях вСсьма слабы ΠΈ ΠΈΡ… ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° поэтому вСсьма Π·Π°Ρ‚Ρ€ΡƒΠ΄Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹. Π”ΠΎ послСднСго Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€Π΅ΠΎΠ΄ΠΎΠ»Π΅Π½ΠΈΠ΅ этих трудностСй ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΠ»ΠΎΡΡŒ Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Π°ΠΌΠΈ возмоТностСй экспСримСнтаторов.

Π‘Ρ€Π΅Π΄ΠΈ Π½ΠΈΡ…, Π² частности, ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°Ρ‚ΡŒ ΡƒΠ²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… систСм отсчСта (ΠΈΠ»ΠΈ эффСкт Π›Π΅Π½Π·Π΅-Π’ΠΈΡ€Ρ€ΠΈΠ½Π³Π°) ΠΈ Π³Ρ€Π°Π²ΠΈΡ‚ΠΎΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅. Π’ 2005 Π³ΠΎΠ΄Ρƒ автоматичСский Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ НАБА Gravity Probe B ΠΏΡ€ΠΎΠ²Ρ‘Π» бСспрСцСдСнтный ΠΏΠΎ точности экспСримСнт ΠΏΠΎ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΡŽ этих эффСктов Π²Π±Π»ΠΈΠ·ΠΈ Π—Π΅ΠΌΠ»ΠΈ, Π½ΠΎ Π΅Π³ΠΎ ΠΏΠΎΠ»Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ° Π½Π΅ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Ρ‹.

ΠšΠ²Π°Π½Ρ‚ΠΎΠ²Π°Ρ тСория Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΈ

НСсмотря Π½Π° Π±ΠΎΠ»Π΅Π΅ Ρ‡Π΅ΠΌ ΠΏΠΎΠ»ΡƒΠ²Π΅ΠΊΠΎΠ²ΡƒΡŽ ΠΈΡΡ‚ΠΎΡ€ΠΈΡŽ ΠΏΠΎΠΏΡ‹Ρ‚ΠΎΠΊ, гравитация β€” СдинствСнноС ΠΈΠ· Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… взаимодСйствий, для ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΠΎΠΊΠ° Π΅Ρ‰Ρ‘ Π½Π΅ построСна нСпротиворСчивая пСрСнормируСмая квантовая тСория. Π’ΠΏΡ€ΠΎΡ‡Π΅ΠΌ, ΠΏΡ€ΠΈ Π½ΠΈΠ·ΠΊΠΈΡ… энСргиях, Π² Π΄ΡƒΡ…Π΅ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ поля, Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ взаимодСйствиС ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ ΠΎΠ±ΠΌΠ΅Π½ Π³Ρ€Π°Π²ΠΈΡ‚ΠΎΠ½Π°ΠΌΠΈ β€” ΠΊΠ°Π»ΠΈΠ±Ρ€ΠΎΠ²ΠΎΡ‡Π½Ρ‹ΠΌΠΈ Π±ΠΎΠ·ΠΎΠ½Π°ΠΌΠΈ со спином 2.

Π‘Ρ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½Ρ‹Π΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΈ

Π’ связи с Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Π΅ эффСкты Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΈ Ρ‡Ρ€Π΅Π·Π²Ρ‹Ρ‡Π°ΠΉΠ½ΠΎ ΠΌΠ°Π»Ρ‹ Π΄Π°ΠΆΠ΅ Π² самых ΡΠΊΡΡ‚Ρ€Π΅ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ Π½Π°Π±Π»ΡŽΠ΄Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… условиях, Π΄ΠΎ сих ΠΏΠΎΡ€ Π½Π΅ сущСствуСт ΠΈΡ… Π½Π°Π΄Ρ‘ΠΆΠ½Ρ‹Ρ… наблюдСний. ВСорСтичСскиС ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ Π² ΠΏΠΎΠ΄Π°Π²Π»ΡΡŽΡ‰Π΅ΠΌ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΡ‚ΡŒΡΡ классичСским описаниСм Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ взаимодСйствия.

БущСствуСт соврСмСнная каноничСская [3] классичСская тСория Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΈ β€” общая тСория ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, ΠΈ мноТСство ΡƒΡ‚ΠΎΡ‡Π½ΡΡŽΡ‰ΠΈΡ… Π΅Ρ‘ Π³ΠΈΠΏΠΎΡ‚Π΅Π· ΠΈ Ρ‚Π΅ΠΎΡ€ΠΈΠΉ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ стСпСни разработанности, ΠΊΠΎΠ½ΠΊΡƒΡ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΌΠ΅ΠΆΠ΄Ρƒ собой (см. ΡΡ‚Π°Ρ‚ΡŒΡŽ ΠΠ»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΈ). ВсС эти Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Π΄Π°ΡŽΡ‚ ΠΎΡ‡Π΅Π½ΡŒ ΠΏΠΎΡ…ΠΎΠΆΠΈΠ΅ прСдсказания Π² Ρ€Π°ΠΌΠΊΠ°Ρ… Ρ‚ΠΎΠ³ΠΎ приблиТСния, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π² настоящСС врСмя ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‚ΡΡ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ тСсты. Π”Π°Π»Π΅Π΅ описаны нСсколько основных, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Ρ…ΠΎΡ€ΠΎΡˆΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… ΠΈΠ»ΠΈ извСстных Ρ‚Π΅ΠΎΡ€ΠΈΠΉ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΈ.

ΠžΠ±Ρ‰Π°Ρ тСория ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ

Π’ стандартном ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π΅ ΠΎΠ±Ρ‰Π΅ΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ (ОВО) гравитация рассматриваСтся ΠΈΠ·Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎ Π½Π΅ ΠΊΠ°ΠΊ силовоС взаимодСйствиС, Π° ΠΊΠ°ΠΊ проявлСниС искривлСния пространства-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π² ОВО гравитация интСрпрСтируСтся ΠΊΠ°ΠΊ гСомСтричСский эффСкт, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ пространство-врСмя рассматриваСтся Π² Ρ€Π°ΠΌΠΊΠ°Ρ… Π½Π΅Π΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²ΠΎΠΉ Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²ΠΎΠΉ (Ρ‚ΠΎΡ‡Π½Π΅Π΅ псСвдо-Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²ΠΎΠΉ) Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π“Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ (ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ Π½ΡŒΡŽΡ‚ΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π°) ΠΈΠ½ΠΎΠ³Π΄Π° Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠ΅ Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ»Π΅ΠΌ тяготСния, Π² ОВО отоТдСствляСтся с Ρ‚Π΅Π½Π·ΠΎΡ€Π½Ρ‹ΠΌ мСтричСским ΠΏΠΎΠ»Π΅ΠΌ ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΎΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ пространства-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π° Π½Π°ΠΏΡ€ΡΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ поля β€” с Π°Ρ„Ρ„ΠΈΠ½Π½ΠΎΠΉ ΡΠ²ΡΠ·Π½ΠΎΡΡ‚ΡŒΡŽ пространства-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, опрСдСляСмой ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΎΠΉ. Π‘Ρ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ ОВО являСтся ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ мСтричСского Ρ‚Π΅Π½Π·ΠΎΡ€Π°, Π² совокупности Π·Π°Π΄Π°ΡŽΡ‰ΠΈΡ… ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΡƒ пространства-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, ΠΏΠΎ извСстному Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ источников энСргии-ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° Π² рассматриваСмой систСмС Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Π’ свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ Π·Π½Π°Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ позволяСт Ρ€Π°ΡΡΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ±Π½Ρ‹Ρ… частиц, Ρ‡Ρ‚ΠΎ эквивалСнтно знанию свойств поля тяготСния Π² Π΄Π°Π½Π½ΠΎΠΉ систСмС. Π’ связи с Ρ‚Π΅Π½Π·ΠΎΡ€Π½Ρ‹ΠΌ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΎΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ОВО, Π° Ρ‚Π°ΠΊΠΆΠ΅ со стандартным Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌ обоснованиСм Π΅Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠΈ, считаСтся, Ρ‡Ρ‚ΠΎ гравитация Ρ‚Π°ΠΊΠΆΠ΅ носит Ρ‚Π΅Π½Π·ΠΎΡ€Π½Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€. Одним ΠΈΠ· слСдствий являСтся Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ Π½Π΅ Π½ΠΈΠΆΠ΅ ΠΊΠ²Π°Π΄Ρ€ΡƒΠΏΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ порядка. Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π² ОВО ΠΈΠΌΠ΅ΡŽΡ‚ΡΡ затруднСния с объяснСниСм Ρ„Π°ΠΊΡ‚Π° нСинвариантности энСргии Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ поля, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ данная энСргия Π½Π΅ описываСтся Ρ‚Π΅Π½Π·ΠΎΡ€ΠΎΠΌ. Π’ классичСской ОВО Ρ‚Π°ΠΊΠΆΠ΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° описания спин-ΠΎΡ€Π±ΠΈΡ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ взаимодСйствия. БчитаСтся, Ρ‡Ρ‚ΠΎ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ с ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎΡΡ‚ΡŒΡŽ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΈ обоснованиСм нСпротиворСчивости. Однако ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ ОВО считаСтся ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°ΡŽΡ‰Π΅ΠΉΡΡ Π΄ΠΎ самого послСднСго Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΌΠ½ΠΎΠ³ΠΈΠ΅ Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ ΡΠΉΠ½ΡˆΡ‚Π΅ΠΉΠ½ΠΎΠ²ΡΠΊΠΎΠΌΡƒ, Π½ΠΎ стандартныС для соврСмСнной Ρ„ΠΈΠ·ΠΈΠΊΠΈ, ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠ΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΈ приводят ΠΊ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρƒ, ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰Π΅ΠΌΡƒ с ОВО Π² низкоэнСргСтичСском ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π² основном ΠΈ доступно ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ΅.

ВСория Π­ΠΉΠ½ΡˆΡ‚Π΅ΠΉΠ½Π°-ΠšΠ°Ρ€Ρ‚Π°Π½Π°

ВСория Π­ΠΉΠ½ΡˆΡ‚Π΅ΠΉΠ½Π°-ΠšΠ°Ρ€Ρ‚Π°Π½Π° (ЭК) Π±Ρ‹Π»Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΊΠ°ΠΊ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ ОВО, Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅Π΅ Π² сСбя описаниС воздСйствия Π½Π° пространство-врСмя ΠΊΡ€ΠΎΠΌΠ΅ энСргии-ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈ спина ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ². [4] Π’ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ЭК вводится Π°Ρ„Ρ„ΠΈΠ½Π½ΠΎΠ΅ ΠΊΡ€ΡƒΡ‡Π΅Π½ΠΈΠ΅, Π° вмСсто псСвдоримановой Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ для пространства-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ гСомСтрия Π ΠΈΠΌΠ°Π½Π°-ΠšΠ°Ρ€Ρ‚Π°Π½Π°. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΎΡ‚ мСтричСской Ρ‚Π΅ΠΎΡ€ΠΈΠΈ пСрСходят ΠΊ Π°Ρ„Ρ„ΠΈΠ½Π½ΠΎΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ пространства-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ уравнСния для описания пространства-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ρ€Π°ΡΠΏΠ°Π΄Π°ΡŽΡ‚ΡΡ Π½Π° Π΄Π²Π° класса. Один ΠΈΠ· Π½ΠΈΡ… Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π΅Π½ ОВО, с Ρ‚Π΅ΠΌ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ΠΌ, Ρ‡Ρ‚ΠΎ Π² Ρ‚Π΅Π½Π·ΠΎΡ€ ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ с Π°Ρ„Ρ„ΠΈΠ½Π½Ρ‹ΠΌ ΠΊΡ€ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ. Π’Ρ‚ΠΎΡ€ΠΎΠΉ класс ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Π·Π°Π΄Π°Ρ‘Ρ‚ связь Ρ‚Π΅Π½Π·ΠΎΡ€Π° кручСния ΠΈ Ρ‚Π΅Π½Π·ΠΎΡ€Π° спина ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠΈ ΠΈ излучСния. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΡ‹Π΅ ΠΏΠΎΠΏΡ€Π°Π²ΠΊΠΈ ΠΊ ОВО Π½Π°ΡΡ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΌΠ°Π»Ρ‹, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠΊΠ° Π½Π΅ Π²ΠΈΠ΄Π½ΠΎ Π΄Π°ΠΆΠ΅ гипотСтичСских ΠΏΡƒΡ‚Π΅ΠΉ для ΠΈΡ… измСрСния.

РСлятивистская тСория Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΈ

РСлятивистская тСория Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΈ (Π Π’Π“) разрабатываСтся Π°ΠΊΠ°Π΄Π΅ΠΌΠΈΠΊΠΎΠΌ Π›ΠΎΠ³ΡƒΠ½ΠΎΠ²Ρ‹ΠΌ А. А. с Π³Ρ€ΡƒΠΏΠΏΠΎΠΉ сотрудников. [5] Π’ рядС Ρ€Π°Π±ΠΎΡ‚ ΠΎΠ½ΠΈ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ Π Π’Π“ ΠΈΠΌΠ΅Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ отличия ΠΎΡ‚ ОВО [6] :

Как ΠΈ Π² ОВО, Π² Π Π’Π“ ΠΏΠΎΠ΄ вСщСством ΠΏΠΎΠ½ΠΈΠΌΠ°ΡŽΡ‚ΡΡ всС Ρ„ΠΎΡ€ΠΌΡ‹ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠΈ (Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ΠΈ элСктромагнитноС ΠΏΠΎΠ»Π΅), Π·Π° ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ самого Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ поля. БлСдствия ΠΈΠ· Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Π Π’Π“ Ρ‚Π°ΠΊΠΎΠ²Ρ‹: Ρ‡Ρ‘Ρ€Π½Ρ‹Ρ… Π΄Ρ‹Ρ€ ΠΊΠ°ΠΊ физичСских ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ², прСдсказываСмых Π² ОВО, Π½Π΅ сущСствуСт; ВсСлСнная плоская, однородная, изотропная, нСподвиТная ΠΈ Свклидовая.

C Π΄Ρ€ΡƒΠ³ΠΎΠΉ стороны, ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ ΡƒΠ±Π΅Π΄ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρ‹ ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΈΠΊΠΎΠ² Π Π’Π“, сводящиСся ΠΊ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ полоТСниям:

ВСория Бранса β€” Π”ΠΈΠΊΠΊΠ΅

Π’ скалярно-Ρ‚Π΅Π½Π·ΠΎΡ€Π½Ρ‹Ρ… тСориях, самой извСстной ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… являСтся тСория Бранса β€” Π”ΠΈΠΊΠΊΠ΅ (ΠΈΠ»ΠΈ Π™ΠΎΡ€Π΄Π°Π½Π° β€” Бранса β€” Π”ΠΈΠΊΠΊΠ΅), Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ ΠΊΠ°ΠΊ эффСктивная ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠ° пространства-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ опрСдСляСтся воздСйствиСм Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚Π΅Π½Π·ΠΎΡ€Π° энСргии-ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠΈ, ΠΊΠ°ΠΊ Π² ОВО, Π½ΠΎ ΠΈ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ скалярного поля. Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊΠΎΠΌ скалярного поля считаСтся свёрнутый Ρ‚Π΅Π½Π·ΠΎΡ€ энСргии-ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠΈ. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, скалярно-Ρ‚Π΅Π½Π·ΠΎΡ€Π½Ρ‹Π΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ, ΠΊΠ°ΠΊ ОВО ΠΈ Π Π’Π“, относятся ΠΊ мСтричСским тСориям, Π΄Π°ΡŽΡ‰ΠΈΠΌ объяснСниС Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΈ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡŽ пространства-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ Π΅Π³ΠΎ мСтричСскиС свойства. НаличиС скалярного поля ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π΄Π²ΡƒΠΌ Ρ‚Π΅Π½Π·ΠΎΡ€Π½Ρ‹ΠΌ уравнСниям для ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ. ВСория Бранса β€” Π”ΠΈΠΊΠΊΠ΅ вслСдствиС наличия скалярного поля ΠΌΠΎΠΆΠ΅Ρ‚ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒΡΡ Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠ°ΠΊ Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ Π² пятимСрном ΠΌΠ½ΠΎΠ³ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠΈ, состоящСм ΠΈΠ· пространства-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ скалярного поля. [9]

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π“Π ΠΠ’Π˜Π’ΠΠ¦Π˜ΠžΠΠΠžΠ• ΠŸΠžΠ›Π•

Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ «Π“Π ΠΠ’Π˜Π’ΠΠ¦Π˜ΠžΠΠΠžΠ• ΠŸΠžΠ›Π•» Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… словарях:

Π“Π ΠΠ’Π˜Π’ΠΠ¦Π˜ΠžΠΠΠžΠ• ΠŸΠžΠ›Π• β€” (ΠΏΠΎΠ»Π΅ тяготСния) ΠΏΠΎΠ»Π΅ физичСскоС, создаваСмоС Π»ΡŽΠ±Ρ‹ΠΌΠΈ физичСскими ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ; Ρ‡Π΅Ρ€Π΅Π· Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ осущСствляСтся Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ взаимодСйствиС Ρ‚Π΅Π» … Π‘ΠΎΠ»ΡŒΡˆΠΎΠΉ ЭнциклопСдичСский ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ

Π“Π ΠΠ’Π˜Π’ΠΠ¦Π˜ΠžΠΠΠžΠ• ΠŸΠžΠ›Π• β€” Π“Π ΠΠ’Π˜Π’ΠΠ¦Π˜ΠžΠΠΠžΠ• ΠŸΠžΠ›Π•, пространство Π²ΠΎΠΊΡ€ΡƒΠ³ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π°, Ρ‡ΡŒΡ масса способна ΠΏΡ€ΠΈΡ‚ΡΠ³ΠΈΠ²Π°Ρ‚ΡŒ Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚. Π‘ΠΈΠ»Π° этого притяТСния, раздСлСнная Π½Π° массу Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π°, ΠΈ Π΅ΡΡ‚ΡŒ сила Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ поля. ΠŸΡ€Π΅Π΄ΠΌΠ΅Ρ‚ с большой массой, Ρ‚Π°ΠΊΠΎΠΉ ΠΊΠ°ΠΊ ЗСмля, имССт… … Научно-тСхничСский энциклопСдичСский ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ

Π“Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ β€” (ΠΏΠΎΠ»Π΅ тяготСния), ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π²ΠΈΠ΄ΠΎΠ² поля физичСского, посрСдством ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ осущСствляСтся Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ взаимодСйствиС (притяТСниС) Ρ‚Π΅Π», Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π‘ΠΎΠ»Π½Ρ†Π° ΠΈ ΠΏΠ»Π°Π½Π΅Ρ‚ Π‘ΠΎΠ»Π½Π΅Ρ‡Π½ΠΎΠΉ систСмы, ΠΏΠ»Π°Π½Π΅Ρ‚ ΠΈ ΠΈΡ… спутников, Π—Π΅ΠΌΠ»ΠΈ ΠΈ находящихся Π½Π° Π½Π΅ΠΉ ΠΈΠ»ΠΈ Π²Π±Π»ΠΈΠ·ΠΈ Π½Π΅Π΅ Ρ‚Π΅Π» … Π˜Π»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ энциклопСдичСский ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ

Π“Π ΠΠ’Π˜Π’ΠΠ¦Π˜ΠžΠΠΠžΠ• ΠŸΠžΠ›Π• β€” (ΠΏΠΎΠ»Π΅ тяготСния), (см. Π’Π―Π“ΠžΠ’Π•ΠΠ˜Π•). ЀизичСский энциклопСдичСский ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ. М.: БовСтская энциклопСдия. Π“Π»Π°Π²Π½Ρ‹ΠΉ Ρ€Π΅Π΄Π°ΠΊΡ‚ΠΎΡ€ А. М. ΠŸΡ€ΠΎΡ…ΠΎΡ€ΠΎΠ². 1983 … ЀизичСская энциклопСдия

Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ β€” [Π“ΠžΠ‘Π’ 25645.103 84] Π’Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ условия физичСскиС косм. пространства EN gravity field … Π‘ΠΏΡ€Π°Π²ΠΎΡ‡Π½ΠΈΠΊ тСхничСского ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Ρ‡ΠΈΠΊΠ°

Π“Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ β€” Π“Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅, ΠΈΠ»ΠΈ ΠΏΠΎΠ»Π΅ тяготСния физичСскоС ΠΏΠΎΠ»Π΅, Ρ‡Π΅Ρ€Π΅Π· ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ осущСствляСтся Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ взаимодСйствиС[1]. Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ 1 Π“Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ Π² классичСской Ρ„ΠΈΠ·ΠΈΠΊΠ΅ … ВикипСдия

Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ β€” (ΠΏΠΎΠ»Π΅ тяготСния), ΠΏΠΎΠ»Π΅ физичСскоС, создаваСмоС Π»ΡŽΠ±Ρ‹ΠΌΠΈ физичСскими ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ; Ρ‡Π΅Ρ€Π΅Π· Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ осущСствляСтся Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ взаимодСйствиС Ρ‚Π΅Π». * * * Π“Π ΠΠ’Π˜Π’ΠΠ¦Π˜ΠžΠΠΠžΠ• ΠŸΠžΠ›Π• Π“Π ΠΠ’Π˜Π’ΠΠ¦Π˜ΠžΠΠΠžΠ• ΠŸΠžΠ›Π• (ΠΏΠΎΠ»Π΅ тяготСния), ΠΏΠΎΠ»Π΅ физичСскоС (см. ΠŸΠžΠ›Π•β€¦ … ЭнциклопСдичСский ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ

Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ β€” gravitacijos laukas statusas T sritis Standartizacija ir metrologija apibrΔ—ΕΎtis KlasikinΔ—s fizikos poΕΎiΕ«riu – gravitacinΔ—s sΔ…veikos tarpininkas, kai lauko Ε‘altiniai yra sΔ…veikaujančiΕ³jΕ³ daleliΕ³ ar jΕ³ sistemΕ³ masΔ—s. Bendrosios reliatyvumo teorijos … Penkiakalbis aiΕ‘kinamasis metrologijos terminΕ³ ΕΎodynas

Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ β€” gravitacijos laukas statusas T sritis fizika atitikmenys: angl. gravitational field vok. Gravitationsfeld, n; Schwerefeld, n rus. Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅, n; ΠΏΠΎΠ»Π΅ тяготСния, n pranc. champ de gravitation, m; champ de pesanteur, m; champ… … Fizikos terminΕ³ ΕΎodynas

Π“Π ΠΠ’Π˜Π’ΠΠ¦Π˜ΠžΠΠΠžΠ• ΠŸΠžΠ›Π• β€” (ΠΏΠΎΠ»Π΅ тяготСния), ΠΏΠΎΠ»Π΅ физичСскоС, создаваСмоС Π»ΡŽΠ±Ρ‹ΠΌΠΈ Ρ„ΠΈΠ·. ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ; Ρ‡Π΅Ρ€Π΅Π· Π“. ΠΏ. осущСствляСтся Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†. взаимодСйствиС Ρ‚Π΅Π» … ЕстСствознаниС. ЭнциклопСдичСский ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *