как работает смесительный узел теплого пола
Смесительный узел для теплого пола: принцип действия и описание
Организация теплых водяных полов в доме с применением высокотемпературного отопительного оборудования (котел, радиаторы) невозможна без использования специального смесителя. Официальное название устройства — смесительный узел, обеспечивающий соблюдения СНиП и строительных норм по эксплуатации систем нагрева воздушных масс снизу помещений.
Его необходимо устанавливать и в том случае, когда обогрев объекта выполняется с помощью высоко- и низкотемпературных систем, и в том случае, когда низкотемпературная система играет роль основной и функционирует за счет автономного котла отопления. Выясним, можно ли установить смесительный узел для теплого пола своими руками, как он работает, и зачем используется.
Зачем устанавливать смесительный узел?
При организации системы водяного нагрева пола ее подключают к отопительному оборудованию — котлу. Он подает нагретый до 70-950С теплоноситель (воду) в радиаторы и автоматически в трубы водяного пола. В результате поверхность напольного покрытия раскаляется до 65-850С. Но нормам СНиП такой температурный режим недопустим. Правила четко оговаривают допустимый диапазон — 27-330С — нагрева напольной поверхности. Получить требуемую настроечную температуру позволяет установка смесителя в систему теплого пола — оборудование для принудительного распределения водных потоков.
Благодаря ему горячий теплоноситель, поступающий из котла, автоматически смешивается с остывшей водой, поступающей из обратки. В подающую трубу попадает среда оптимальная по температурным данным для нагрева поверхности пола — 35-550С.
Установкой насосно-смесительного узла для теплого пола решают и ряд других проблем:
Как работает и из чего состоит смесительный узел для теплого пола?
Узлы продаются в различных вариантах сборки. Классический смесительный узел состоит из трехходового (предохранительного) клапана и циркуляционного насоса. В магазинах можно встретить и модели с расширительным баком, коллектором. При этом нужно учитывать, что даже в том случае, если котел отопления уже снабжен насосом, его будет недостаточно для нормальной работы системы обогрева. Он будет работать на снабжение горячей средой радиаторов, поэтому узел подмеса для теплого пола обязательно должен иметь автономным насос — нужен для обеспечения регулировки t0 среды в системе нагрева воздушных масс снизу.
Помимо этого смесительный узел для теплого пола оснащается термостатом, который отключает подачу жидкой среды, если в подающей трубе t0 теплоносителя превышает заданную пользователем. То есть предохраняющий датчик соединен непосредственно с насосом системы водяного нагрева пола. Описать принцип работы смесительного узла теплого пола достаточно просто:
Классический смесительный узел выполняет не только функцию подмеса остывшей среды в горячую жидкость, но и обеспечивает его движение по петлям. Именно эту функцию берет на себя циркуляционный насос. Современный термостатический смеситель для теплого пола может оснащаться и отводчиком воздуха, и байпасом (предупреждает перегрузки), и отсекающими/дренажными клапанами. Набор входящего в состав оборудования напрямую зависит от тех задач, которые поставлены перед системой нагрева. Поэтому если перед вами стоит проблема, как собрать смесительный узел для теплого пола своими руками, то первоначально рекомендуют определиться с функциональностью отопительного оборудования, а затем только закупать составляющие.
Устанавливается смесительный узел строго до контура системы. Место размещения не играет существенной роли — в комнате, где оборудован теплый пол, котельной и т.д. Хотя многие эксперты рекомендуют при обогреве свыше 2 комнат монтировать узлы подмеса локально — в обогреваемом помещении. Грамотно продумав устройство смесительного узла для теплого пола, можно организовывать водяные системы в квартирах многоквартирных домов. То есть проводить подключение вспомогательного нагрева к однотрубной системе. Также при сборке узла подмеса можно использовать двухходовые клапаны. Выяснив, из каких составляющих собирается смесительный узел для теплого пола и, разобрав принцип работы оборудования, рассмотрим схемы подключения.
Разновидности узлов смешения для теплого пола и схемы подключения
Недостаточно разобраться с тем, как самому собрать смесительный узел для теплого пола, нужно определиться с типом оборудования. На рынке можно найти:
Этот класс подмеса сред называют наиболее энергоэффективным. Это связано с тем, что среда обратки имеет низкую t0. А это значит, что теплоотдача максимальна. Но при этом узел последовательного смешения для теплого пола еще и наиболее производителен. Доказано, что расход циркуляционного насоса поступает непосредственно в петлю, для которой осуществлялась сверка t0 среды. Благодаря этим особенностям смесительный узел этого класса подмеса является идеальным оборудованием для низкотемпературных систем.
Применяется в системах водяных полов довольно редко, поскольку считается наименее производительным. Полный расход циркуляционного насоса поступает не в петлю водяной системы, а по разные стороны насосного узла для теплого пола, что создает существенные потери. При этом производители предлагают модели оборудования, в которых имеется и внутренние потери. Невысока и его энергоэффективность. Дело в том, что t0 среды идущей от оборудования приблизительно равна t0 настроечной среды. Поэтому эксперты не рекомендуют использовать смесительный узел для теплого пола, а устанавливать на высокотемпературные обогревательные системы.
Выбирая распределительное устройство, обращают внимание, что есть приборы последовательного подмеса с центральным и боковым смешиванием. Тип оборудования подбирается индивидуально по характеристикам системы. Устанавливая смесительный узел для теплого пола своими руками, нужно строго следовать рекомендациям производителя.
Двух- и трехходовой смесительный узел для теплого пола и схемы подключения
При организации вспомогательного нагрева воздушных масс снизу помещения можно установить своими руками смесительный узел для теплого пола с трехходовым краном или двухходовым. Схема и принцип функционирования систем будут разными. Применение двухходовых клапанов обеспечивает создание простейшей конструкции.
Их также можно найти в магазин под названием питающие краны. Двухходовый узел теплого пола снабжается термоголовкой и датчиком среды жидкостного класса. Благодаря дополнительным устройствам происходит контроль t0 среды.
Принцип функционирования системы будет следующим:
Главное преимущество двухходовых устройств — плавность нагрева среды. Они гарантируют отсутствие перегрузок системы, поскольку обладают низкой пропускающей способностью. За счет этого применять питающий смеситель для теплого водяного пола наиболее рационально в небольших помещениях — ванная или детская комната, спальня, кухня. Для обогрева площадей свыше 60 м2 его использование неразумно.
Трехходовой насосно-нагревательный узел для теплого пола выполняет две функции — балансировочного и питающего крана. Его принцип работы заключается в смешивании горячей среды с охлажденной обраткой (детально описан выше). Преимущество термосмесительного узла в возможности оборудовать систему дополнительными устройствами, позволяющими расширить ее возможности и упростить регулировку. Его считают универсальным оборудованием. Рекомендуют использовать:
Имеет трехходовой смеситель теплого пола и недостатки. Главный из них — высокая пропускающая способность. Она при малейших отклонениях в работе заслонки устройства неизбежно приведет к существенному повышению t0 среды. Неизбежны перегревы. Второй недостаток — насосный узел может приводить к скачкам температуры. Если объем среды, идущей от котла, больше объема обратки, нестабильной работы не избежать. Именно поэтому в схемах смесительного узла с трехходовым клапаном всегда присутствует дополнительное контрольное оборудование — сервопривод, датчики, контролеры и пр.
Монтаж обоих видов устройств проводится строго по схеме. А как правильно установить трехходовой клапан на теплый пол, подскажут рекомендации производителя устройства.
Как отрегулировать теплые полы водяные на узле смешивания?
После подключения трехходового клапана к теплому полу, нужно проверить его корректность установки и отрегулировать работу. Для новичка эта процедура может показаться длительной и трудоемкой, но если следовать инструкции, представленной ниже в тексте, можно избежать ошибок. На первом этапе потребуется снять сервопривод. Затем действовать так:
Кv6=〈〈t1 – t2обр〉/〈t2подачи – t2обр〉-1〉 * Кvt
Цифрой 1 обозначаются контур радиаторов, а двойкой — водяной системы. Чтобы определить, какая должна быть пропускающая способность клапана для выбранной схемы теплого пола с трехходовым клапаном, нужно подставить все известные в формулу. Учитывают, что коэффициент К=0.9.
Кv6=〈〈t1 – t2обр〉/〈t2подачи – t2обр〉–1〉 * Кvt=((95-35)/(45-35)-1)*0,9=4,05
На этом регулировка теплых полов в смесительном узле завершена. При выявлении на каком-либо этапе отклонений проводят сброс настроек и повторную регулировку. Процедура непростая, особенно если используется самодельный смесительный узел для теплого пола, поскольку есть немалый шанс некорректного подбора оборудования и сборки конструкции. Поэтому монтаж и регулировку водяной системы (самой сложной в подключении и настройке) разумнее доверить специалисту.
Здесь приведено несколько схем подключения трехходового смесительного клапана теплого пола, а также варианты систем с двух- и 4-ходовыми элементами. Их выбор зависит от индивидуальных особенностей системы и целесообразности. Купить насосно-смесительный узел теплого пола можно в специализированных магазинах. Лучшими считаются узлы смешивания для теплого пола производства торговой марки VALTEC, Uni Fitt Solomix, Oventrop, Watts и других. При выборе обращают внимание на комплектацию оборудования — с насосом и клапаном, без насоса и т.д.
Смесительный узел для теплого пола: устройство, достоинства и недостатки
Чаще всего, при выборе системы теплого пола используется водяная система отопления, одним из основных элементов которой считается смесительный узел для теплого пола. С его помощью обеспечивается нормальное функционирование системы, работающей в низкотемпературном режиме. Достигается это благодаря смешению горячего теплового носителя с обраткой.
Устройство и принцип работы
Если представить себе схему смесительного узла теплого пола, то состоит он из клапана и насоса. Зачастую встречаются более расширенные варианты комплектаций.
Насос может быть вмонтирован на самом отопительном агрегате, но мощности его будет мало. Для системы обогрева пола придется устанавливать отдельную насосную установку на узел. С его помощью температура воды будет легко регулироваться и с 90 градусов снижаться до 35 – 50.
Кроме этого, смеситель обязательно снабжается предохранителем, отключающим насос, когда температура подающейся воды превысит установленную норму.
Труба для обратного хода воды, температура которой составляет 40 градусов, проходит от коллектора. На обратке встроен обратный клапан, предотвращающий движение воды в обратном направлении.
Как выглядит смесительный узел для теплого пола
А как работает узел подмеса теплового пола? После того, как терморегулятор сработает, автоматически откроется заслонка, чтобы подмешать более холодный носитель, находящийся в обратке. Нормализовав температурный режим, заслонка закроется.
Разновидности
Основной элемент насосно-смесительного узла для теплого пола – двухходовой или трехходовой клапан.
Двухходовой тип
Этот вариант имеет датчик жидкости, вмонтированный в головку термостата. Его основным предназначением является контроль температурного режима воды. Клапан перекрывается с помощью головки, перекрывающей поступление воды из кола в случаях, когда в контуре создается высокая температура.
Из обратки тепловой носитель в систему поступает постоянно. Клапан позволяет поступать горячей воде только в том случае, когда температура не достигает требуемого уровня. Регулировка происходит плавно, температурные скачки исключены, так как клапан не обладает большой пропускной возможностью. Узел подмеса для теплого пола помогает не только поддерживать комфортный микроклимат, но обеспечивает всей отопительной системе продолжительный эксплуатационный период.
Клапан двухходового типа прекрасно справляется с функцией контроля требуемого температурного режима. Но использовать его в системе, обогревающей помещения, площадь которых превышает 200 кв. м., не следует.
Трехходовой тип
Такой клапан выполняет сразу две функции – регулирует подачу горячего теплового носителя и выступает в роли балансировочного байпаса. Смешивание горячей и охлажденной воды происходи непосредственно в клапане.
Устройство довольно часто оснащено термостатическим элементом, контролером погодозависимого типа, сервоприводом. С помощью регулировки заслонки появляется возможность создавать в системе нужную температуру носителя.
Комплект на 3 контура до 40 м2 водяного теплого пола с трехходовым клапаном и трубой
Трехходовой тип клапана для смесителя системы отопления пола рекомендуется устанавливать в домах, имеющих несколько контуров обогрева, или в помещениях, отличающихся большой площадью.
Преимущества и недостатки
Насосно-смесительный узел для теплого пола дает много преимуществ, из-за которых отопительная система и стала популярной. Наиболее главными из них считаются:
Недостатки в принципе работы узла подмеса пользователями не отмечаются.
Значение основных параметров смесительного узла
Если вы решили монтировать смесительный узел для теплого пола своими руками, при выборе нужных комплектующих рекомендуется отслеживать их параметры, которые должны соответствовать показателям системы. Здесь имеются в виду не диаметры и монтажные размеры комплектующих, а показатели производительности основных элементов. Выполнить необходимые расчеты способен специалист, но и вы сможете справиться с этой задачей самостоятельно.
Производительность
Данный параметр одинаково важен и для насосной установки, и для клапана термостата. Считается, что насос выполняет функции активного элемента, обеспечивающего перекачивание необходимых объемов, а клапан должен обладать достаточной пропускной способностью.
Чтобы определить производительность системы, потребуются следующие данные:
Монтировать смесительный узел для теплого пола своими руками достаточно трудно
Напор циркуляционного насоса
Кроме узла подмеса, для системы теплого пола предусматривается монтаж насосной установки, отвечающей за оптимальный напор горячей и холодной воды в контуре, которая после смешивания перемещается по трубам, установленным под напольным покрытием. Именно на него возлагаются основные надежды по созданию требуемого напора, потому что циркуляционный насосный агрегат, имеющийся в общей отопительной сети, полностью перекрывает свой клапан.
Итак, как определить напор для насосной установки, своими руками установленной в систему теплого пола, имеющую смесительный узел?
К узлу смешения подсоединяется коллектор, от которого отводятся контуры системы. Как следует из законов гидравлики, создаваемое насосом давление на коллекторе окажется одинаковым для каждого подключенного контура, и чтобы выполнить более точную настройку, для каждого монтируют устройство для балансировки. Но такие клапаны помогают немного понизить избыток давления в контурах, не отличающихся большой протяженностью, а расчеты ведутся именно по максимальной длине труб, потому что именно здесь создается максимальная гидравлическая сопротивляемость.
Гидравлическое сопротивление будет зависеть от диаметра труб, так что этот параметр тоже придется уточнить. Кроме труб, сопротивление может создаваться фитингами и клапанами.
Приобретая насос, рекомендуется изучить его техпаспорт. Как правило, производитель указывает в нем оптимальные соотношения производительности и образующегося напора на различных рабочих режимах.
Основные схемы
Есть несколько вариантов схем подключения смесительных узлов теплового пола. Чаще всего пользуются стандартной, имеющей трехклапанный или двухклапанный узел. Разберемся, как подсоединить узел подмеса для теплого пола своими руками.
Система работает просто – вода перемещается через фильтр и термометр, достигает клапана. Здесь сила пока уменьшается, термоголовка срабатывает на температурный режим, подавая сигналы для открытия или закрытия. Насос во время работы создает разреженную зону, в которую подается поток холодной воды. После смешивания тепловой носитель получает необходимый температурный режим.
При обустройстве теплого пола можно использовать любой вариант. Здесь все зависит от ваших возможностей и наличия необходимых элементов.
Самостоятельная сборка смесительного узла
Стоимость смесительного устройства существенная, по этой причине многие потребители предпочитают собрать нужный узел самостоятельно.
Необходимые инструменты
Для сборки следует приготовить:
Для монтажа смесительного узла понадобится набор ключей
Схема подключения
Разберем вариант подключения узла Vaitec. Сначала собирается коллектор, тройники которого могу спаиваться или скручиваться. Первый вариант обходится дороже, потому что каждое отверстие оснащается дорогостоящим МРН.
Изготавливается гидрострелка. Для этого можно использовать простой регулировочный кран, устанавливаемый на радиаторах. Потребуются также пара ройников и столько же ниппелей, имеющих резьбы внутреннего и наружного типа.
Собирается насос. Естественно, что его придется приобрести в магазине. Монтируют его ниже гидрострелки на разъемные соединения, имеющиеся в комплекте поставки. Возможна его установка вместо упомянутой стрелки – насос отлично справится с ее функциями.
Гидрострелку соединяют с гребенкой. Для насоса понадобится купить отдельный парубок соответствующей длины.
Теперь можно устанавливать краны, клапаны, устройство для сброса воздуха.
Тонкости монтажа
Потребуется установка отсекающих кранов. Их монтируют на узел и обогревательные конуры. Чтобы не запутаться в действиях, рекомендуется следовать несложному алгоритму – подключать подачу и обратку очередного сегмента последовательно.
Следует учесть вероятность образования конденсата и предусмотреть защиту электрических узлов от попадания на них влаги.
Нужен ли узел подмеса для теплого пола, каждый решает сам. Но выбирать его необходимо индивидуально, чтобы система обеспечивала требуемый для комфортной жизни микроклимат.
Устройство и работа насосно-смесительного узла теплого пола
Системы водяного подогрева полов (вторичного контура отопления, теплые полы — ТП), используемые совместно высокотемпературным радиаторным отоплением (первичным контуром), нуждаются в приведении параметров теплоносителя к определенным характеристикам. В первую очередь, это касается гидравлической и температурной увязки контуров обоих типов. Ведь важно обеспечить как полноценное снабжение теплоносителем в требуемых объемах коммуникаций ТП, так и не допустить перегрева вторичной низкотемпературной системы. Эти задачи возлагаются на насосно-смесительный узел теплого пола (НСУ). Они решаются посредством сбалансированной автоматической работы запорно-регулирующей арматуры и насосного агрегата, обеспечивающей дозированный подмес теплоносителя из обратной линии.
Рисунок 1
Требования к температуре теплононосителя
НСУ теплого пола является достаточно сложным комплектом оборудования, от грамотной сборки и настройки которого во многом зависит правильность функционирования всей тепловой установки. Например, если котел спроектирован на подачу теплоносителя 70-90 0 С в радиаторы, то, в параллельно работающих в этих же помещениях контурах напольного обогрева, температура циркулирующей жидкости допускается не выше 45-50 0 С (max 55 0 С). Точные температурные параметры выводятся путем инженерных расчетов системы теплого пола. Они призваны обеспечить подготовку воды в НСУ таким образом, чтобы прогрев напольных поверхностей, с учетом структуры и материала их покрытий, не превышал:
Кроме того, настройка смесительного узла будет выполнена наиболее оптимально, если удастся добиться перепада температур между подачей и обраткой ТП 5-15 0 С. Уменьшение теплового градиента (Δt) требует наращивания расхода теплоносителя, как следствие роста скорости его циркуляции, которая приводит к гидравлическим потерям. Высокий же градиент температур уже ощущается тактильно, как разница в нагреве поверхности напольного покрытия, что вызывает определенный дискомфорт.
Рисунок 2
Типовые схемы насосно-смесительных узлов
В зависимости от способ включения циркуляционного насоса различают следующие схемы НСУ:
При этом основными считаются первые две, а последняя схема, соответственно, представляет их гибридный вариант.
Включенный последовательно насос эксплуатируется только для подготовки теплоносителя и его циркуляции в контурах теплого пола. Подобная схема, хотя и требует использования двух раздельных перекачивающих агрегатов (для первичного и вторичного контуров), однако, отличается лучшими, чем параллельная, технологическими показателями. В профессионально изготовленных системах ТП, зачастую, сборку НСУ осуществляют с последовательным включением насоса. При этом следует учитывать, что эффективность работы такой сборки существенно зависит от правильности её расчетов и настройки.
Преимущество параллельного подключения насоса заключается в возможности использования всего одного агрегата для обеспечения циркуляции теплоносителя в первичном и вторичном контурах. С одной стороны, это упрощает сборку, а с другой – требует установки более мощного перекачивающего оборудования. Если изготовление смешивающего узла для небольшой бытовой системы выполняется своими руками, то выбрав параллельную компоновку, легче избежать критических ошибок, которые могут негативно отразиться на работе водяного теплого пола.
Как в параллельных, так и в последовательных сборках НСУ практикуется использование термостатических двухходовых (рис. 2-5 и 7) или трехходовых (рис. 1, 8 и 9) клапанов. Схемы с термостатами первого типа рекомендуется применять для помещений с площадями ТП в несколько десятков квадратных метров. Поэтому для организации напольного отопления в среднестатистической типовой квартире они вполне подходят. Смешивание теплоносителя в них осуществляется после двухходового клапана непосредственно в циркуляционном потоке системы теплого пола.
Трехходовые термостаты сами являются смешивающими устройствами. Внутри их корпусов происходит регулируемый подмес теплоносителя из первичного контура к циркулирующему потоку из системы ТП. Трехходовая термостатическая запорно-регулирующая арматура рекомендуется для установки на крупных отапливаемых площадях, измеряемой сотнями квадратных метров.
Комплектация смесительного узла
Добиться обеспечения функциональности системы ТП возможно, только имея четкое представление о строении НСУ, практическом назначении его основных и вспомогательных элементов. Устройство и работу типового узла удобно будет разобрать на примере схемы с последовательным включением насосного агрегата и двухходовым клапаном-термостатом (рис. 3). Указанную компоновку имеет смесительный узел для теплого пола Valtec (рис.5), реализуемый в торговой сети в виде готового комплекта оборудования.
Рисунок 3
Основные функциональные элементы НСУ Valtec
Насос (рис. 3 и 5, поз.3)
Инициирует подачу и возврат теплоносителя через узлы и петли ТП. Применяется циркуляционное оборудование аналогичное тому, которое используется в первичных контурах системы отопления. Величин его главных рабочих параметров (давление и производительность) должно хватать на преодоление гидросопротивлений в трубопроводах, чтобы обеспечивать циркуляцию теплоносителя с требуемой скоростью и в заданных объемах.
Балансирный клапан первичного контура (рис. 3 и 5, поз.8)
Отвечает за поступающие объемы теплоносителя, подпитывающего систему теплого пола из первичного высокотемпературного контура отопления (Т1, Т2). Балансировка потока жидкости осуществляется изменением пропускной способности клапана. Регулировка балансирного клапана выполняется путем вращения его настроечного винта с головкой под ключ-шестигранник, который закрывается защитным колпачком. Процесс также синхронизируется с работой клапана-термостата (поз. 1), управляемого выносным погружным датчиком (поз. 1а). Чувствительный элемент датчика монтируется в резьбовую гильзу (поз. 4).
Балансирный клапан вторичного контура (рис. 3 и 5, поз.2)
Его настройка зависит от площади подогреваемой поверхности напольного покрытия. Открытие/закрытие регулирующего устройства влияет на изменение пропорции соотношения объемов теплоносителей из обратки ТП (Т21) и подачи первичной системы отопления (Т1). Прикрытие балансировочным клапаном оборотного потока из вторичного контура способствует более интенсивному поступлению разогретой жидкости от теплогенератора (котла). Таким образом, теплопроизводительность ТП увеличивается.
Установка степени открытия клапана (рис. 4) осуществляется по шкале на его оголовке (рис. 5, поз. 2), где указана его пропускная способность в м 3 /час. После завершения настройки шкала от случайного смещения фиксируется винтом 2а.
Рисунок 4
Байпасный клапан (рис. 3 и 5, поз.7)
Совместно с перепускным патрубком (поз. 12) обеспечивает безаварийную работу циркуляционного насоса в режиме подпора, когда циркуляция через петли ТП прекращается полностью либо становится недостаточной. Подобный режим может быть вызван перекрытием контуров на гребенке посредством ручных вентилей либо же работой их клапанов с простым термостатическими или автоматическим управлением. В результате сопротивление течению жидкости, как и нагрузка на оборудование, увеличиваются. При определенном перепаде давления, величина которого настраивается по шкале перепускного клапана (градуировка в бар), он приоткрывается. Теплоноситель либо часть его потока начинает перетекать по байпасному патрубку, замыкая через насос малый цикл циркуляции. Таким образом, исключается аварийная перегрузка и обеспечивается сохранность оборудования.
Вспомогательные элементы
Обеспечивать, поддерживать и контролировать работу НСУ также помогают различные вспомогательные и сервисные устройства:
Как все работает?
Подача теплоносителя в заданном диапазоне температур на коллектор теплого пола обеспечивается настройками узла подмеса. Главный цикл оборота жидкости внутри системы ТП складывается из циклов циркуляции в каждой из веток. При этом НСУ подмешивает горячий теплоноситель из первичного контура отопления в объемах необходимых для восполнения суммарных теплопотерь на отопление всех помещений. То есть, чем интенсивней происходит охлаждение теплоносителя в ветках теплого пола, тем большее его количество добавляется во внутренний оборот всего вторичного контура. Объем обновляемой горячей жидкости изменяется автоматически – от максимального, разово установленного настройками балансирного клапана 8 (рис. 3 и 5), до полного перекрытия. В диапазоне от максимума до минимума потока регулировка осуществляется термостатическим клапаном 1, который получает управляющие импульсы от своего выносного датчика (рис. 5, поз. 1а), контролирующего температуру потока Т11 на подающий коллектор.
Важно! Непосредственно на работу системы теплого оказывают влияние регулирующие функции термостатического клапана 1. В свою очередь, балансировочный клапан 8 служит лишь для согласования суммарных потерь давления во вторичных контурах ТП с потерями давления в отопительных приборах первичного контура. При этом аналогичной настройке по потерям давления должны подвергаться все потребители в первичной системе, чтобы распределение тепловой энергии происходило в соответствие с их запросами, а не по пути наименьшего гидравлического сопротивления. Важность и степень подобной балансировки наглядно показаны на рисунке 6.
Рисунок 6
Одновременно с всасыванием обновляемого горячего теплоносителя Т1 через клапан-термостат 1 (рис. 3 и 5), происходит также втягивание насосом 3 остывшего потока Т21 через балансировочный клапан 2 (вторичного контура). Проходя через насос потоки теплоносителя смешиваются, в результате, на подачу Т11 в коллектор теплого пола уже поступает жидкость заданной настройками НСУ температуры.
Пример циклической работы оборудования НСУ
Совместная работа насоса, балансировочного клапана вторичного контура и термостата происходит следующим образом. Например, в системе ТП предусмотрен термический градиент между подачей и обраткой ТП Δt=10 0 С, а расчетная температура в подающем коллекторе 50 0 С. Допустим, система работает в установившемся режиме, когда результирующий поток теплоносителя от подмеса из первичного контура Т1 и обратного коллектора теплого пола Т21 имеет температуру равную расчетной. При правильно установленных настройках балансира 2 и определенной степени приоткрытия термостата 1, это возможно, только в случае, если из обратки Т21 поступает вода с температурой 40 0 С.
Если же начинает поступать теплоноситель, остывший до 39 0 С или ниже, то соответственно происходит охлаждение и результирующего потока после насоса. Этот дисбаланс улавливается выносным датчиком 1 а, который дает команду на еще большее приоткрытие клапана-термостата 1. В результате увеличивается приток горячей воды из первичного контура отопления Т1 и температура в подающем коллекторе Т11 возвращается к своим расчетным 50 0 С.
Постепенно из обратки Т21 начинает поступать перегретая выше 40 0 С, что влечет за собой обратные процессы – клапан термостата 1 прикрывается и объем подмеса из Т1 снижается. Таким образом, термические циклы в системе ТП постоянно изменяются в режиме поддержания градиент Δt=10 0 С, с подачей t=50 0 С.
Рисунок 7
Какой смеситель выбрать?
Сборка водяного отопления теплого пола может целиком осуществляться своими руками. Это касается не только монтажа отопительных контуров или подключения к коллекторному распределителю, но и комплектации НСУ. Понимая принципы работы его элементов, а также используя типовые рабочие схемы, вполне возможно собрать действующую эффективную смесительную установку. Если же идти по пути наименьшего сопротивления и затратить немного больше средств, то можно обратиться к готовым предложениям от известных производителей отопительного оборудования. Сборка, установка и настройка таких НСУ отличается простотой. И если все делать в точном соответствии с прилагаемыми к ним заводскими инструкциями, то результат гарантировано окажется положительным.
Выше уже был рассмотрен насосно смесительный узел Valtec. Однако также хорошо у потребителей зарекомендовали себя и некоторые другие готовые комплектации НСУ. Например, оборудование для подготовки теплоносителя для системы теплого пола от немецкой компании Kermi (рис.8).
Рисунок 8
Комплект Kermi Стандарт ESM оборудован трехходовым клапаном (Oventrop), циркуляционным насосом (модель Wilo Yonos PARA RS) и, управляющим его работой, предохранительным термостататом. Клапанный модуль Oventrop включает:
В Kermi Стандарт ESM заложена возможность настройки поддержания температуры теплоносителя в диапазоне 20-50 0 С при давлении в системе ТП до 6 бар. Регулировка осуществляется автоматически в соответствие с установками шкалы на головке-рукоятке трехходового клапана.
Рисунок 9
Еще одна сборка НСУ Solomix от компании Uni-Fitt из более бюджетной серии, но так же неплохо зарекомендовавшая себя на российском рынке. Это готовый смесительный узел на базе трехходового термостата, с встроенным термометром, теплонасосом, байпасным и обратным клапаном и автоматическим воздухоотводчиком.
В НСУ Solomix предусмотрено ручное изменение температуры посредством аналоговой подстройки термостата в диапазоне 20-65 0 С. Комплект рассчитан на работу в системах теплых полов с максимальным давлением до 10 бар. А его форм-фактор, обеспечивающий нижнее подключение трубопроводов первичного контура, заметно облегчает проведение монтажных работ.