как расчитать теплопроводность стен
Расчет теплопроводности стены
Чтобы определить, какой толщины возводить стену при постройке дома, нужно научиться рассчитать теплопроводность стен. Этот показатель зависит от используемых строительных материалов, климатических условий.
Нормы толщины стен в южных и северных регионах будут различаться. Если не сделать расчет до начала строительства, то может оказаться так, что в доме зимой будет холодно и сыро, а летом слишком влажно.
Чтобы этого избежать, нужно высчитать коэффициент сопротивления теплопередачи материала для постройки стен и утеплителя.
Для чего нужен расчет
Чтобы сэкономить на отоплении и способствовать созданию здорового микроклимата в помещении, нужно правильно рассчитать толщину стен и утеплительных материалов, которые будем использовать при строительстве. По закону физики, когда на улице холодно, а в помещении тепло, то через стену и кровлю тепловая энергия выходит наружу.
Если неправильно рассчитать толщину стен, сделать их слишком тонкими и не утеплить, это приведет к негативным последствиям:
Чтобы избежать этих неприятностей, нужно перед началом строительства просчитать показатели теплопроводности материала и определиться, какой толщины возводить стену, и каким теплосберегающим материалом ее утеплять.
От чего зависит теплопроводность
Проводимость тепла рассчитывают исходя из количества тепловой энергии, проходящей через материал площадью 1 кв. м. и толщиной 1 м при разнице температур внутри и снаружи в один градус. Испытания проводят в течение 1 часа.
Проводимость тепловой энергии зависит от:
Теплосберегающими считаются материалы с показателем менее 17 ВТ/ (м·°С).
Выполняем расчеты
Расчет толщины стен по теплопроводности является важным фактором в строительстве. При проектировании зданий архитектор рассчитывает толщину стен, но это стоит дополнительных денег. Чтобы сэкономить, можно разобраться, как рассчитать нужные показатели самостоятельно.
Скорость передачи тепла материалом зависит от компонентов, входящих в его состав. Сопротивление передачи тепла должно быть больше минимального значения, указанного в нормативном документе «Тепловая изоляция зданий».
Рассмотрим, как рассчитать толщину стены в зависимости от применяемых в строительстве материалов.
δ это толщина материала, используемого для строительства стены;
λ показатель удельной теплопроводности, рассчитывается в (м2·°С/Вт).
Когда приобретаете стройматериалы, в паспорте на них обязательно должен быть указан коэффициент теплопроводности.
Значения параметров для жилых домов указаны в СНиП II-3-79 и СНиП 23-02-2003.
Допустимые значения в зависимости от региона
Минимально допустимое значение проводимости тепла для различных регионов указано в таблице:
№ | Показатель теплопроводности | Регион |
---|---|---|
1 | 2 м2•°С/Вт | Крым |
2 | 2,1 м2•°С/Вт | Сочи |
3 | 2,75 м2•°С/Вт | Ростов—на—Дону |
4 | 3,14 м2•°С/Вт | Москва |
5 | 3,18 м2•°С/Вт | Санкт—Петербург |
У каждого материала есть свой показатель проводимости тепла. Чем он выше, тем больше тепла пропускает через себя этот материал.
Показатели теплопередачи для различных материалов
Величины проводимости тепла материалами и их плотность указаны в таблице:
Материал | Величина теплопроводности | Плотность |
---|---|---|
Бетонные | 1,28—1,51 | 2300—2400 |
Древесина дуба | 0,23—0,1 | 700 |
Хвойная древесина | 0,10—0,18 | 500 |
Железобетонные плиты | 1,69 | 2500 |
Кирпич с пустотами керамический | 0,41—0,35 | 1200—1600 |
Теплопроводность строительных материалов зависит от их плотности и влажности. Одни и те же материалы, изготовленные разными производителями, могут отличаться по свойствам, поэтому коэффициент нужно смотреть в инструкции к ним.
Расчет многослойной конструкции
Если стену будем строить из различных материалов, допустим, кирпич, минеральная вата, штукатурка, рассчитывать величины следует для каждого отдельного материала. Зачем полученные числа суммировать.
В этом случае стоит работать по формуле:
Rобщ= R1+ R2+…+ Rn+ Ra, где:
R1-Rn- термическое сопротивление слоев разных материалов;
Ra.l– термосопротивление закрытой воздушной прослойки. Величины можно узнать в таблице 7 п. 9 в СП 23-101-2004. Прослойка воздуха не всегда предусмотрена при постройке стен. Подробнее о расчетах смотрите в этом видео:
На основании этих подсчетов можно сделать вывод о том, можно ли применять выбранные стройматериалы, и какой они должны быть толщины.
Последовательность действий
Первым делом, нужно выбрать строительные материалы, которые будете использовать для постройки дома. После этого рассчитываем термическое сопротивление стены по описанной выше схеме. Полученные величины следует сравнивать с данными таблиц. Если они совпадают или оказываются выше, хорошо.
Если величина ниже, чем в таблице, тогда нужно увеличить толщину утеплителя или стены, и снова выполнить подсчет. Если в конструкции присутствует воздушная прослойка, которая вентилируется наружным воздухом, тогда в учет не следует брать слои, находящиеся между воздушной камерой и улицей.
Как выполнить подсчеты на онлайн калькуляторе
Чтобы получить нужные величины, стоит ввести в онлайн калькулятор регион, в котором будет эксплуатироваться постройка, выбранный материал и предполагаемую толщину стен.
В сервис занесены сведения по каждой отдельной климатической зоне:
Сведения, одинаковые для всех регионов:
Чтобы дом был теплым, и в нем сохранялся здоровый микроклимат, при выполнении строительных работ нужно обязательно выполнять расчет теплопроводности материалов стены. Это несложно сделать самостоятельно или воспользовавшись онлайн калькулятором в интернете. Подробнее о том, как пользоваться калькулятором, смотрите в этом видео:
Для гарантировано точного определения толщины стен можно обратиться в строительную компанию. Ее специалисты выполнят все необходимые расчеты согласно требованиям нормативных документов.
Рассчет теплопроводности стен: таблица теплосопротивления материалов
Во многих случаях при выборе материала для строительства дома мы не вникаем, каково теплосопротивление строительных материалов, а полагаемся на «народные» методики. Самые популярные из них: «как у соседа», «как раньше», «смотри, какой толстый слой», и – венец искусства – «вроде, должно быть нормально». Что ж, ваш дом – вам и решать, какому методу отдать предпочтение. Но чтобы точно ответить на вопрос, достаточно ли тепло будет в вашем доме зимой (и достаточно ли прохладно в летний зной), нужно знать теплосопротивление стены. Откуда его можно узнать, как считать теплопроводность стены и как это поможет при ответе на ваш вопрос? Давайте разберемся по порядку.
Итак, немного теории, чтобы определиться с терминами и понять, как рассчитать теплосопротивление стены.
Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью.
Итак, теплопроводность – это количественная оценка способности конкретного вещества проводить тепло.
Теплосопротивление – величина обратная теплопроводности. (Хорошо проводит тепло – значит, слабо теплу сопротивляется. Следовательно, обладает высокой теплопроводностью и низким теплосопротивлением).
То есть, при строительстве лучше использовать материалы с низкой теплопроводностью (высоким теплосопротивлением) для лучшего сохранения тепла.
Как рассчитать теплопроводность стены?
Чтобы рассчитать теплосопротивление слоя нужно его толщину в метрах разделить на коэффициент теплосопротивления материалов, из которых он выполнен.
Как рассчитать коэффициент теплопроводности? Эти расчеты делаются в лабораторных условиях. Тем не менее, узнать его несложно: нормальный производитель всегда предоставляет эти данные, указан он и в СНиПе в разделе «Строительная теплотехника», правда, там представлены не все современные материалы. Если вы хотите знать теплосопротивление материалов, таблица с некоторыми из них представлена на данной странице.
Как пользоваться коэффициентом теплопроводности? В СНИПе указано два режима эксплуатации А и Б. Режим А подходит для сухих помещений (влажность меньше 50%) и для районов, удаленных от морских берегов. Для московского региона, например, подходит режим А. Таким образом, теплосопротивление стен по регионам может отличаться.
Теплосопротивление слоя = | толщина слоя (м) |
Коэффициент теплопроводности материала ( |
Теплосопротивление многослойной конструкции считается как сумма теплосопротивлений каждого слоя. (В случае с одним слоем все просто – его теплосопротивление и будет теплосопротивлением всей конструкции.)
Теплосопротивление конструкции = теплососпротивление слоя 1 + теплосоротивление слоя 2 + и т.д.
Рассмотрим, как рассчитать толщину стены по теплопроводности на конкретных примерах.
Пример 1
Стена толщиной в полтора кирпича, или, если перевести в международную систему измерения, 0,37 метра (37 сантиметров). Как посчитать теплопроводность стены?
Все, кто имел опыт работы с кирпичом, знают, что кирпич может быть разным. И коэффициент теплопроводности кирпичной кладки, соответственно, тоже разный. Кроме того, теплопроводность кирпичной стены на обычном цементно-песчаном растворе будет ниже, чем коэффициент отдельного кирпича. Как посчитать коэффициент теплопроводности стены в таком случае? Для расчетов будет правильно использовать именно значение для кладки.
Вид кирпича | Коэффициент теплопро- водности*, | Кирпичная кладка на цементно-песчаном растворе, плотность 1800 кг/м³* | Теплосопроти- вление стены толщи- ной 0,37 м, |
Красный глиняный (плотность 1800 кг/м³) | 0,56 | 0,70 | 0,53 |
Силикатный, белый | 0,70 | 0,85 | 0,44 |
Керамический пустотелый (плотность 1400 кг/м³) | 0,41 | 0,49 | 0,76 |
Керамический пустотелый (плотность 1000 кг/м³) | 0,31 | 0,35 | 1,06 |
(*из межгосударственного стандарта ГОСТ 530-2007)
Итак, мы убедились, что не все кирпичи одинаковы. И теплопроводность кирпичной кладки в зависимости от вида кирпича может отличаться в 2 раза. Ваш дом из какого кирпича? А мы рассмотрим самый лучший результат (плотность кирпичной кладки полтора керамических пустотелых кирпича). В данном случае теплосопротивление кирпича 1,06 . Запомним результат и перейдем к следующему примеру.
Пример 2
Допустим, мы хотим построить дачный домик из бруса сечением 15 см. Снаружи и изнутри отделаем вагонкой. Что получим? Коэффициент теплосопротивления дерева поперек волокон (данные из СНиПов) составляет 0,14
. Теперь делаем расчет теплосопротивления стены: толщину материала разделим на коэффициент теплопроводности.
Для бруса (это 0,15 м дерева) теплосопротивление составит (0,15/0,14) 1,07 .
Для вагонки (толщина 20 мм или 0,02 м) – 0,143 . Да, вагонка с двух сторон, значит 0.143 х 2 = 0,286
. Справедливости ради заметим, что на практике теплосопротивлением вагонки чаще всего пренебрегают, так как на стыках она имеет еще меньшую толщину, следовательно, меньшее теплосопротивление материала.
Запомним общее расчетное теплосопротивление стены из 15-исантиметрового бруса, обшитого изнутри и снаружи вагонкой, –
1,356 .
Чтобы не было необходимости делать расчёт теплосопротивления стены для каждого материала, в приведенной здесь таблице мы собрали данные по теплосопротивлению материалов, часто используемых при строительстве домов.
Таблица теплосопротивления материалов
Материал | Толщина материала (мм) | Расчетное теплосо- противлениеа (м² * °С / Вт) |
Брус | 100 | 0,71 |
Брус | 150 | 1,07 |
Кладка из красного кирпича (плотность 1800 кг/м³) | 380 (полтора кирпича) | 0,53 |
Кладка из белого силикатного кирпича | 380 (полтора кирпича) | 0,44 |
Кладка из керамического пустотелого кирпича (плотность 1400 кг/м³) | 380 (полтора кирпича) | 0,76 |
Кладка из керамического пустотелого кирпича (плотность 1000 кг/м³) | 380 (полтора кирпича) | 1,06 |
Кладка из красного кирпича (плотность 1800 кг/м³) | 510 (два кирпича) | 0,72 |
Кладка из белого силикатного кирпича | 510 (два кирпича) | 0,6 |
Кладка из керамического пустотелого кирпича (плотность 1400 кг/м³) | 510 (два кирпича) | 1,04 |
Кладка из керамического пустотелого кирпича (плотность 1000 кг/м³) | 510 (два кирпича) | 1,46 |
Кладка на клей из газо- пенобетонных блоков (плотность 400 кг/м³) | 200 | 1,11 |
Кладка на клей из газо- пенобетонных блоков (плотность 600 кг/м³) | 200 | 0,69 |
Кладка на клей керамзитобетонных блоков на керамзитовом песке и керамзитобетоне (плотность 800 кг/м³) | 200 | 0,65 |
Теплоизоляционные материалы | ||
Плиты из каменной ваты ROCKWOOL ФАСАД БАТТС | 50 | 1,25 |
Ветрозащитные плиты Изоплат | 25 | 0,45 |
Теплозащитные плиты Изоплат | 12 | 0,27 |
Теплотехнический расчет стены.
Мы уже ознакомились в статье «Материал стен. Как выбрать.» с различными материалами для возведения стен, в данной статье мы поговорим о теплотехническом расчете для определения параметров стены.
Необходимые для расчета нормативные документы:
Исходные данные для расчета:
Основных слоев в многослойной стене минимум три:
Рассмотрим для нашего примера следующий состав стены:
Теплотехнический расчет.
Выполняем расчет:
получили сопротивление теплопередачи из санитарных норм Rreq = 1.437 м2*℃/Вт;
Во вторую очередь, определяем сопротивление теплопередачи из условий энергосбережения.
Определяем градусо-сутки отопительного периода, для этого воспользуемся формулой, согласно пункта 5.3 в СНиП 23-02-2003″Тепловая защита зданий»:
Далее, согласно СНиП 23-02-2003 «Тепловая защита зданий» в зависимости от градусо-суток района строительства, рассчитываем нормативное значение приведенного сопротивления теплопередаче по формуле:
Rreq= a*Dd + b = 0,00035 × 5136 + 1,4 = 3,1976м2×°С/Вт,
Для дальнейшего расчета стены, мы принимаем наибольшее значение из двух рассчитанных нами показателей Rreq (1,437 и 3,198), и обозначим его как Rтреб = 3,198 м2*℃/Вт;
Определение толщины утеплителя
Для каждого слоя нашей многослойной стены необходимо рассчитать термическое сопротивление по формуле:
Рассчитываем термическое сопротивление для каждого слоя
1 слой (газобетонные блоки): R1 = 0,4/0,29 = 0,116 м2×°С/Вт.
3 слой (облицовочный силикатный кирпич): R3 = 0,12/0,87 = 0,104 м2×°С/Вт.
4 слой (штукатурка): R4 = 0,02/0,87 = 0,023 м2×°С/Вт.
Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала:
αext принимается по таблице 14 [5] для наружных стен;
Толщина утеплителя равна:
Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм:
Из полученного результата можно сделать вывод, что
R0 = 3,343м2×°С/Вт > Rтр0 = 3,198м2×°С/Вт → следовательно, толщина утеплителя подобрана правильно.
Вот мы и выполнили теплотехнический расчет стены и нам известны толщины всех слоёв, входящих в её состав. Для того, чтобы долго не разбираться с нормативной документацией и самому считать на калькуляторе все эти сложные формулы, можно воспользоваться калькулятором «Теплотехнический расчет стены», где Вам достаточно просто выбрать исходные данные, а сам расчет произведется автоматически.
Расчет толщины стены по теплопроводности калькулятор. Обустройство теплоизоляции дома: расчет теплопроводности стен, выбор материала
Как рассчитать толщину стены по теплопроводности
Методический материал для самостоятельного расчета толщины стен дома с примерами и теоретической частью.
Чтобы определится с толщиной стены, которая необходима для соответствия нормам энергоэффективности, рассчитывают сопротивление теплопередаче проектируемой конструкции, согласно раздела 9 «Методика проектирования тепловой защиты зданий» СП 23-101-2004.
Сопротивление теплопередаче – это свойство материала, которое показывает, насколько способен удерживать тепло данный материал. Это удельная величина, которая показывает насколько медленно теряется тепло в ваттах при прохождении теплового потока через единичный объем при перепаде температур на стенках в 1°С. Чем выше значение данного коэффициента – тем «теплее» материал.
Все стены (несветопрозрачные ограждающие конструкции) считаются на термоспротивление по формуле:
δ – толщина материала, м;
λ — удельная теплопроводность, Вт/(м ·°С) (можно взять из паспортных данных материала либо из таблиц).
Полученную величину Rобщ сравнивают с табличным значением в СП 23-101-2004.
Чтобы ориентироваться на нормативный документ необходимо выполнить расчет количества тепла, необходимого для обогрева здания. Он выполняется по СП 23-101-2004, получаемая величина «градусо·сутки». Правила рекомендуют следующие соотношения.
Таблица 1. Уровни теплозащиты рекомендуемых ограждающих конструкций наружных стен
Материал стены | Сопротивление теплопередаче (м2·°С/Вт) / область применения (°С·сут) | ||||
конструкционный | теплоизоляционный | Двухслойные с наружной теплоизоляцией | Трехслойные с изоляцией в середине | С невентили- руемой атмосферной прослойкой | С вентилируемой атмосферной прослойкой |
Кирпичная кладка | Пенополистирол | 5,2/10850 | 4,3/8300 | 4,5/8850 | 4,15/7850 |
Минеральная вата | 4,7/9430 | 3,9/7150 | 4,1/7700 | 3,75/6700 | |
Керамзитобетон (гибкие связи, шпонки) | Пенополистирол | 5,2/10850 | 4,0/7300 | 4,2/8000 | 3,85/7000 |
Минеральная вата | 4,7/9430 | 3,6/6300 | 3,8/6850 | 3,45/5850 | |
Блоки из ячеистого бетона с кирпичной облицовкой | Ячеистый бетон | 2,4/2850 | — | 2,6/3430 | 2,25/2430 |
Примечание. В числителе (перед чертой) – ориентировочные значения приведенного сопротивления теплопередаче наружной стены, в знаменателе (за чертой) — предельные значения градусо-суток отопительного периода, при которых может быть применена данная конструкция стены. |
Полученные результаты необходимо сверить с нормами п. 5. СНиП 23-02-2003 «Тепловая защита зданий».
Также следует учитывать климатические условия зоны, где возводится здание: для разных регионов разные требования из-за разных температурных и влажностных режимов. Т.е. толщина стены из газоблока не должна быть одинаковой для приморского района, средней полосы России и крайнего севера.
В первом случае необходимо будет скорректировать теплопроводность с учетом влажности (в большую сторону: повышенная влажность снижает термосопротивление), во втором – можно оставить «как есть», в третьем – обязательно учитывать, что теплопроводность материала вырастет из-за большего перепада температур.
Часть 2. Коэффициент теплопроводности материалов стен
Коэффициент теплопроводности материалов стен – эта величина, которая показывает удельную теплопроводность материала стены, т.е.
сколько теряется тепла при прохождении теплового потока через условный единичный объем с разницей температур на его противоположных поверхностях в 1°С.
Чем ниже значение коэффициента теплопроводности стен – тем здание получится теплее, чем выше значение – тем больше придется заложить мощности в систему отопления.
По сути, это величина обратная термическому сопротивлению, рассмотренному в части 1 настоящей статьи. Но это касается только удельных величин для идеальных условий.
На реальный коэффициент теплопроводности для конкретного материала влияет ряд условий: перепад температур на стенках материала, внутренняя неоднородная структура, уровень влажности (который увеличивает уровень плотности материала, и, соответственно, повышает его теплопроводность) и многие другие факторы.
Как правило, табличную теплопроводность необходимо уменьшать минимум на 24% для получения оптимальной конструкции для умеренных климатических зон.
Часть 3. Минимально допустимое значение сопротивления стен для различных климатических зон
Минимально допустимое термосопротивление рассчитывается для анализа теплотехнических свойств проектируемой стены для различных климатических зон. Это нормируемая (базовая) величина, которая показывает, каким должно быть термосопротивление стены в зависимости от региона.
Сначала вы выбираете материал для конструкции, просчитываете термосопротивление своей стены (часть 1), а потом сравниваете с табличными данными, содержащимися в СНиП 23-02-2003.
В случае, если полученное значение окажется меньше установленного правилами, то необходимо либо увеличить толщину стены, либо утеплить стену теплоизоляционным слоем (например, минеральной ватой).
Согласно п. 9.1.2 СП 23-101-2004, минимально допустимое сопротивление теплопередаче Rо (м2·°С/Вт) ограждающей конструкции рассчитывается как
R1=1/αвн, где αвн – коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м2 × °С), принимаемый по таблице 7 СНиП 23-02-2003;
R2 = 1/αвнеш, где αвнеш — коэффициент теплоотдачи наружной поверхности ограждающей конструкции для условий холодного периода, Вт/(м2 × °С), принимаемый по таблице 8 СП 23-101-2004;
R3 – общее термосопротивление, расчет которого описан в части 1 настоящей статьи.
При наличии в ограждающей конструкции прослойки, вентилируемой наружным воздухом, слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью, в этом расчете не учитываются. А на поверхности конструкции, обращенной в сторону вентилируемой воздухом снаружи прослойки, следует принимать коэффициент теплоотдачи αвнеш равным 10,8 Вт/(м2·°С).
Таблица 2. Нормируемые значения термосопротивления для стен по СНиП 23-02-2003.
Уточненные значения градусо-суток отопительного периода, указаны в таблице 4.1 справочного пособия к СНиП 23-01-99* Москва, 2006.
Часть 4. Расчет минимально допустимой толщины стены на примере газобетона для Московской области
Рассчитывая толщину стеновой конструкции, берем те же данные, что указаны в Части 1 настоящей статьи, но перестраиваем основную формулу: δ = λ·R, где δ – толщина стены, λ – теплопроводность материала, а R – норма теплосопротивления по СНиП.
Пример расчета минимальной толщины стены из газобетона с теплопроводностью 0,12 Вт/м°С в Московской области со средней температурой внутри дома в отопительный период +22°С.
Таблица 3. Минимальная толщина стен, возводимых из различных материалов, соответствующих нормам теплового сопротивления согласно СНиП.
Материал | Толщина стены, м | Тепло-проводность, Вт/м∙°С | Прим. |
Керамзитоблоки | 0,46 | 0,14 | Для строительства несущих стен используют марку не менее D400. |
Шлакоблоки | 0,95 | 0,3-0,5 | |
Силикатный кирпич | 1,25 | 0,38-0,87 | |
Газосиликатные блоки d500 | 0,40 | 0,12-0,24 | Использую марку от D400 и выше для домостроения |
Пеноблок | 0,20-0.40 | 0,06-0,12 | строительство только каркасным способом |
Ячеистый бетон | От 0,40 | 0,11-0,16 | Теплопроводность ячеистого бетона прямо пропорциональна его плотности: чем «теплее» камень, тем он менее прочен. |
Арболит | 0,23 | 0,07 – 0,17 | Минимальный размер стен для каркасных сооружений |
Кирпич керамический полнотелый | 1,97 | 0,6 – 0,7 | |
Песко-бетонные блоки | 4,97 | 1,51 | При 2400 кг/м³ в условиях нормальной температуры и влажности воздуха. |
Часть 3. Минимально допустимое значение сопротивления стен для различных климатических зон.
Минимально допустимое термосопротивление рассчитывается для анализа теплотехнических свойств проектируемой стены для различных климатических зон. Это нормируемая (базовая) величина, которая показывает, каким должно быть термосопротивление стены в зависимости от региона. Сначала вы выбираете материал для конструкции, просчитываете термосопротивление своей стены (часть 1), а потом сравниваете с табличными данными, содержащимися в СНиП 23-02-2003. В случае, если полученное значение окажется меньше установленного правилами, то необходимо либо увеличить толщину стены, либо утеплить стену теплоизоляционным слоем (например, минеральной ватой).
Согласно п. 9.1.2 СП 23-101-2004, минимально допустимое сопротивление теплопередаче R о (м 2 ·°С/Вт) ограждающей конструкции рассчитывается как
R 1 =1/α вн, где α вн — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м 2 × °С), принимаемый по таблице 7 СНиП 23-02-2003;
R 2 = 1/α внеш, где α внеш — коэффициент теплоотдачи наружной поверхности ограждающей конструкции для условий холодного периода, Вт/(м 2 × °С), принимаемый по таблице 8 СП 23-101-2004;
R 3 — общее термосопротивление, расчет которого описан в части 1 настоящей статьи.
При наличии в ограждающей конструкции прослойки, вентилируемой наружным воздухом, слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью, в этом расчете не учитываются. А на поверхности конструкции, обращенной в сторону вентилируемой воздухом снаружи прослойки, следует принимать коэффициент теплоотдачи α внеш равным 10,8 Вт/(м 2 ·°С).
Таблица 2. Нормируемые значения термосопротивления для стен по СНиП 23-02-2003.
Уточненные значения градусо-суток отопительного периода, указаны в таблице 4.1 справочного пособия к СНиП 23-01-99* Москва, 2006.
Расчет теплопроводности стены
Чтобы определить, какой толщины возводить стену при постройке дома, нужно научиться рассчитать теплопроводность стен. Этот показатель зависит от используемых строительных материалов, климатических условий.
Нормы толщины стен в южных и северных регионах будут различаться. Если не сделать расчет до начала строительства, то может оказаться так, что в доме зимой будет холодно и сыро, а летом слишком влажно.
Чтобы этого избежать, нужно высчитать коэффициент сопротивления теплопередачи материала для постройки стен и утеплителя.
Для чего нужен расчет
Толщина стен в южных и северных широтах должна отличаться
Чтобы сэкономить на отоплении и способствовать созданию здорового микроклимата в помещении, нужно правильно рассчитать толщину стен и утеплительных материалов, которые будем использовать при строительстве. По закону физики, когда на улице холодно, а в помещении тепло, то через стену и кровлю тепловая энергия выходит наружу.
Если неправильно рассчитать толщину стен, сделать их слишком тонкими и не утеплить, это приведет к негативным последствиям:
Чтобы избежать этих неприятностей, нужно перед началом строительства просчитать показатели теплопроводности материала и определиться, какой толщины возводить стену, и каким теплосберегающим материалом ее утеплять.
От чего зависит теплопроводность
Проводимость тепла во многом зависит от материала стен
Проводимость тепла рассчитывают исходя из количества тепловой энергии, проходящей через материал площадью 1 кв. м. и толщиной 1 м при разнице температур внутри и снаружи в один градус. Испытания проводят в течение 1 часа.
Проводимость тепловой энергии зависит от:
Теплосберегающими считаются материалы с показателем менее 17 ВТ/ (м·°С).
Выполняем расчеты
Сопротивление передаче тепла должно быть больше минимума, указанного в нормативах
Расчет толщины стен по теплопроводности является важным фактором в строительстве. При проектировании зданий архитектор рассчитывает толщину стен, но это стоит дополнительных денег. Чтобы сэкономить, можно разобраться, как рассчитать нужные показатели самостоятельно.
Скорость передачи тепла материалом зависит от компонентов, входящих в его состав. Сопротивление передачи тепла должно быть больше минимального значения, указанного в нормативном документе «Тепловая изоляция зданий».
Рассмотрим, как рассчитать толщину стены в зависимости от применяемых в строительстве материалов.
δ это толщина материала, используемого для строительства стены;
λ показатель удельной теплопроводности, рассчитывается в (м2·°С/Вт).
Когда приобретаете стройматериалы, в паспорте на них обязательно должен быть указан коэффициент теплопроводности.
Значения параметров для жилых домов указаны в СНиП II-3-79 и СНиП 23-02-2003.
Допустимые значения в зависимости от региона
Минимально допустимое значение проводимости тепла для различных регионов указано в таблице:
1 | 2 м2•°С/Вт | Крым |
2 | 2,1 м2•°С/Вт | Сочи |
3 | 2,75 м2•°С/Вт | Ростов—на—Дону |
4 | 3,14 м2•°С/Вт | Москва |
5 | 3,18 м2•°С/Вт | Санкт—Петербург |
У каждого материала есть свой показатель проводимости тепла. Чем он выше, тем больше тепла пропускает через себя этот материал.
Показатели теплопередачи для различных материалов
Величины проводимости тепла материалами и их плотность указаны в таблице:
Бетонные | 1,28—1,51 | 2300—2400 |
Древесина дуба | 0,23—0,1 | 700 |
Хвойная древесина | 0,10—0,18 | 500 |
Железобетонные плиты | 1,69 | 2500 |
Кирпич с пустотами керамический | 0,41—0,35 | 1200—1600 |
Теплопроводность строительных материалов зависит от их плотности и влажности. Одни и те же материалы, изготовленные разными производителями, могут отличаться по свойствам, поэтому коэффициент нужно смотреть в инструкции к ним.
Расчет многослойной конструкции
При расчете многослойной конструкции суммируйте показатели теплосопротивляемости всех материалов
Если стену будем строить из различных материалов, допустим, кирпич, минеральная вата, штукатурка, рассчитывать величины следует для каждого отдельного материала. Зачем полученные числа суммировать.
В этом случае стоит работать по формуле:
Rобщ= R1+ R2+…+ Rn+ Ra, где:
R1-Rn- термическое сопротивление слоев разных материалов;
Ra.l– термосопротивление закрытой воздушной прослойки. Величины можно узнать в таблице 7 п. 9 в СП 23-101-2004. Прослойка воздуха не всегда предусмотрена при постройке стен. Подробнее о расчетах смотрите в этом видео:
На основании этих подсчетов можно сделать вывод о том, можно ли применять выбранные стройматериалы, и какой они должны быть толщины.
Последовательность действий
Первым делом, нужно выбрать строительные материалы, которые будете использовать для постройки дома. После этого рассчитываем термическое сопротивление стены по описанной выше схеме. Полученные величины следует сравнивать с данными таблиц. Если они совпадают или оказываются выше, хорошо.
Если величина ниже, чем в таблице, тогда нужно увеличить толщину утеплителя или стены, и снова выполнить подсчет. Если в конструкции присутствует воздушная прослойка, которая вентилируется наружным воздухом, тогда в учет не следует брать слои, находящиеся между воздушной камерой и улицей.
Как выполнить подсчеты на онлайн калькуляторе
Чтобы получить нужные величины, стоит ввести в онлайн калькулятор регион, в котором будет эксплуатироваться постройка, выбранный материал и предполагаемую толщину стен.
В сервис занесены сведения по каждой отдельной климатической зоне:
Температура и влажность внутри помещения — одинаковы для каждого региона
Сведения, одинаковые для всех регионов:
Чтобы дом был теплым, и в нем сохранялся здоровый микроклимат, при выполнении строительных работ нужно обязательно выполнять расчет теплопроводности материалов стены. Это несложно сделать самостоятельно или воспользовавшись онлайн калькулятором в интернете. Подробнее о том, как пользоваться калькулятором, смотрите в этом видео:
Для гарантировано точного определения толщины стен можно обратиться в строительную компанию. Ее специалисты выполнят все необходимые расчеты согласно требованиям нормативных документов.
Вопросы и ответы по теме
По материалу пока еще не задан ни один вопрос, у вас есть возможность сделать это первым
Чтобы определить, какой толщины возводить стену при постройке дома, нужно научиться рассчитать теплопроводность стен. Этот показатель зависит от используемых строительных материалов, климатических условий.
Нормы толщины стен в южных и северных регионах будут различаться. Если не сделать расчет до начала строительства, то может оказаться так, что в доме зимой будет холодно и сыро, а летом слишком влажно.
Толщина стен в южных и северных широтах должна отличаться
Чтобы сэкономить на отоплении и способствовать созданию здорового микроклимата в помещении, нужно правильно рассчитать толщину стен и утеплительных материалов, которые будем использовать при строительстве. По закону физики, когда на улице холодно, а в помещении тепло, то через стену и кровлю тепловая энергия выходит наружу.
Чтобы избежать этих неприятностей, нужно перед началом строительства просчитать показатели теплопроводности материала и определиться, какой толщины возводить стену, и каким теплосберегающим материалом ее утеплять.
Теплопроводность стен дома. Какой дом теплее?
Из курса физики мы знаем, что любая система стремится к равновесию. Поэтому, если у нас есть перепады температур, тогда сразу же возникает перетекание тепла. Т.е. тепловая энергия перетекает из теплого в холодное.
Таким образом, наш дом будет отдавать свое тепло наружу через все, что только возможно, стены, крышу, пол, окна, двери, как видно на фото из-за разницы температур.
В итоге дом полностью остынет и приравняется к внешней температуре.
Поэтому чтобы восполнить эту теплопотерю необходимо постоянно в холодное время отапливать дом. То с какой скоростью перетекает тепло из горячей зоны в холодную и есть теплопроводность. Как мы понимаем, разные материалы имеют разную теплопроводность и можно померить это благодаря коэффициенту теплопроводности.
Посчитать это можно по данной формуле расчета коэффициента теплопроводности. То есть, сколько тепла за единицу времени протекает через 1 кв.м. материала при градиенте температур 1 градус на 1 метр (на рисунке это показано с одной стороны куба 20 градусов с другой 19 градусов)
Коэффициент теплопроводности кирпича, коэффициент теплопроводности дерева
Мы видим из подсчетов, что у дерева теплопроводность в 3 раза меньше. Это означает, что при прочих равных условиях (равная толщина материала и температур) протекаемость тепла в кирпиче в 3 раза быстрее, а в дереве в 3 раза медленнее относительно кирпича. Поэтому дерево более энергосберегающий материал.
Если мы хотим чтобы у кирпича была такая теплопотеря, как у дерева, значит, толщину кирпича нужно увеличить втрое. Простая арифметика! Теперь посмотрим, что будет в случае с каркасным домом. В каркасном доме 90% объема стены занимает утеплитель, в нашем случае возьмем самый экологичный материал – каменную вату на базальтовой основе.
На фото мы видим, что коэффициент теплопроводности 0,038, а это в 5 раз меньше теплопроводность, чем у дерева, а с кирпичом разница аж в 15 раз.
На одной из выставок, я увидел замечательный стенд, который наши расчеты и подтверждает.На этом стенде сравниваются: сверху дерево (клееный брус), пеноблок и каркасник.Все материалы равной толщины.
С одной стороны материал нагревается пленочным теплым полом, с другой стороны стоит термометр, который показывает уровень исходящего тепла. Конечно, качество фото оставляет желать лучшего.
Итак… смотрим на стенд с разных сторон
Смотрим на нижние показатели на градуснике, к сожалению практически не видно цифр на градуснике, поэтому я назову их сверху вниз:Дерево – 28° СПеноблок – почти 30° С
Каркасная стена – 25° С
Каркасная стена забирает победную золотую медаль, это не сложно объяснить, т.к. утеплитель имеет меньшую плотность и дает большую воздушность, а значит максимально удерживает тепло.
Расход энергии на отопление, расчет расходов на отопление
Меня так же интересовала, какой будет расход тепловой энергии и сколько нужно будет затрачивать в месяц на отопление дома, с помощью электричества, хотя Россия и богата газом, к сожалению, его еще далеко не везде провели.Давайте вместе научимся считать, сколько придется платить за электричество своего дома.
Возьмем, к примеру, дом 7*7 с высотой стен в 5 метров.
Расчет расхода тепла кирпичной стены
Итак, 0,56*21000 = 11760 (Вт), если перевести это в киловатты, то в час у нас будет уходить 11,76 кВт*ч. Считаем сколько придется платить за электричество в месяц при кирпичной стене в 20 см. и минус 10° за окном.
11,76кВт * 24часа * 30 дней * 5 (руб.\кВт*ч) = 42 336 руб.\мес.Ого, какая сумма! Но слава богу, что только из кирпича никто не строит, его еще нужно утеплить снаружи и изнутри.К примеру, стены у сталинских домов толщиной в 1 метр. При таком раскладе, нужно будет платить в 5 раз меньше – 8467 руб.\мес. И это тоже очень даже не мало.
Расчет расхода тепла деревянной стены
Если мы все перемножим, то получается 13680 рублей в месяц на электроэнергию. Мы, конечно, тут допускаем много недочетов в расчетах, но все это близко к нашим реалиям. Но мы точно выяснили, что кирпич отапливать в 3 раза дороже.
Расчет расхода тепла каркасной стены
Сейчас посмотрим, что происходит с показателями по расходам на отопление в каркасных домах.
Стена состоит на 90% из утеплителя, каменной ваты. Здесь уже расход очень даже радует, в месяц нужно затратить всего 2873 рубля. Меньше 1-го киловатта отдаем мощности. Это уже близко к расходам по квартплате.
Прошу вас никогда не использовать в своих жилых домах экструдированные пенополистирол — это ядовитый утеплитель, который активно рекламируют производители открыто обманывая нас.
О ядовитых свойствах этого утеплителя, я подробнее написал в предыдущем посте — Дома из СИП панелей.
Конечно, если топить газом, это будет в разы дешевле. Но история последних лет, говорит о том, что скорость увеличения цен на газ намного быстрее, чем у электричества. Но если у вас есть возможность провести газ, то конечно, лучше отапливать газом и не нести такие существенные расходы на отопление вашего загородного дома.
Теплоемкость кирпича, дерева и каркаса. За сколько времени прогреется кирпичный, деревянный и каркасный дом?
Теплоемкость – сколько нужно потратить тепловой энергии, чтобы нагреть 1 кг вещества на 1 градус.
При нагреве воды и воздуха, уходит различное количество энергии, так они имеет различную теплоемкость.
Возьмем 3-х киловаттный обогреватель и воздух в доме можно прогреть очень быстро, но почему тогда в результате дом все равно остается холодным?
Многие об этом даже не задумываются, хотя исходя из этого параметра теплоемкости и целей использования дома, вам и нужно выбирать материал стен вашего загородного дома.
Об этом показателе поговорим в моем следующем посте. Я расскажу подробно о теплоемкости материалов стен со всеми вытекающими вычислениями, точно как я рассказал вам сегодня.
Сделать расчеты количества материалов стен можно на калькуляторе наружных стен из пеноблока, кирпича, каркаса или бруса. Заходите и читайте! Поставьте лайк, займет всего секунду вашего времени, а мне будет приятно!
От чего зависит теплопроводность
Проводимость тепла во многом зависит от материала стен
Проводимость тепла рассчитывают исходя из количества тепловой энергии, проходящей через материал площадью 1 кв. м. и толщиной 1 м при разнице температур внутри и снаружи в один градус. Испытания проводят в течение 1 часа.
Проводимость тепловой энергии зависит от:
Теплосберегающими считаются материалы с показателем менее 17 ВТ/ (м·°С).
Расчет толщины для наружных стен жилого дома
Методический материал для самостоятельного расчета толщины стен дома с примерами и теоретической частью.
Чтобы определится с толщиной стены, которая необходима для соответствия нормам энергоэффективности, рассчитывают сопротивление теплопередаче проектируемой конструкции, согласно раздела 9 «Методика проектирования тепловой защиты зданий» СП 23-101-2004.
Сопротивление теплопередаче – это свойство материала, которое показывает, насколько способен удерживать тепло данный материал. Это удельная величина, которая показывает насколько медленно теряется тепло в ваттах при прохождении теплового потока через единичный объем при перепаде температур на стенках в 1°С. Чем выше значение данного коэффициента – тем «теплее» материал.
Все стены (несветопрозрачные ограждающие конструкции) считаются на термоспротивление по формуле:
δ – толщина материала, м;
λ – удельная теплопроводность, Вт/(м ·°С) (можно взять из паспортных данных материала либо из таблиц).
Полученную величину Rобщ сравнивают с табличным значением в СП 23-101-2004.
Чтобы ориентироваться на нормативный документ необходимо выполнить расчет количества тепла, необходимого для обогрева здания. Он выполняется по СП 23-101-2004, получаемая величина «градусо·сутки». Правила рекомендуют следующие соотношения.
Таблица 1. Уровни теплозащиты рекомендуемых ограждающих конструкций наружных стен
Материал стены | Сопротивление теплопередаче (м2·°С/Вт) / область применения (°С·сут) | ||||
конструкционный | теплоизоляционный | Двухслойные с наружной теплоизоляцией | Трехслойные с изоляцией в середине | С невентили- руемой атмосферной прослойкой | С вентилируемой атмосферной прослойкой |
Кирпичная кладка | Пенополистирол | 5,2/10850 | 4,3/8300 | 4,5/8850 | 4,15/7850 |
Минеральная вата | 4,7/9430 | 3,9/7150 | 4,1/7700 | 3,75/6700 | |
Керамзитобетон (гибкие связи, шпонки) | Пенополистирол | 5,2/10850 | 4,0/7300 | 4,2/8000 | 3,85/7000 |
Минеральная вата | 4,7/9430 | 3,6/6300 | 3,8/6850 | 3,45/5850 | |
Блоки из ячеистого бетона с кирпичной облицовкой | Ячеистый бетон | 2,4/2850 | – | 2,6/3430 | 2,25/2430 |
Примечание. В числителе (перед чертой) – ориентировочные значения приведенного сопротивления теплопередаче наружной стены, в знаменателе (за чертой) – предельные значения градусо-суток отопительного периода, при которых может быть применена данная конструкция стены. |
Полученные результаты необходимо сверить с нормами п. 5. СНиП 23-02-2003 «Тепловая защита зданий».
Также следует учитывать климатические условия зоны, где возводится здание: для разных регионов разные требования из-за разных температурных и влажностных режимов. Т.е. толщина стены из газоблока не должна быть одинаковой для приморского района, средней полосы России и крайнего севера.
В первом случае необходимо будет скорректировать теплопроводность с учетом влажности (в большую сторону: повышенная влажность снижает термосопротивление), во втором – можно оставить «как есть», в третьем – обязательно учитывать, что теплопроводность материала вырастет из-за большего перепада температур.
Часть 5. Принцип определения значения сопротивления теплопередачи в многослойной стене
Если вы планируете построить стену из нескольких видов материала (например, строительный камень+минеральный утеплитель+штукатурка), то R рассчитывается для каждого вида материала отдельно (по этой же формуле), а потом суммируется:
Rобщ= R1+ R2+…+ Rn+ Ra.l где:
R1-Rn – термосопротивления различных слоев
Ra.l – сопротивление замкнутой воздушной прослойки, если она присутствует в конструкции (табличные значения берутся в СП 23-101-2004, п. 9, табл. 7)
Rшлакоблок = δ/λ = 0,4/0,45 = 0,89 м2×°С/Вт
Rкирпич = δ/λ = 0,12/0,6 = 0,2 м2×°С/Вт
Rшлакоблок+Rкирпич=0,89+0,2 = 1,09 м2×°С/Вт (
Часть 5. Принцип определения значения сопротивления теплопередачи в многослойной стене.
Если вы планируете построить стену из нескольких видов материала (например, строительный камень+минеральный утеплитель+штукатурка), то R рассчитывается для каждого вида материала отдельно (по этой же формуле), а потом суммируется:
R общ = R 1 + R 2 +…+ R n + R a.l где:
R a.l — сопротивление замкнутой воздушной прослойки, если она присутствует в конструкции (табличные значения берутся в СП 23-101-2004, п. 9, табл. 7)
Rшлакоблок = δ/λ = 0,4/0,45 = 0,89 м 2 ×°С/Вт
Rкирпич = δ/λ = 0,12/0,6 = 0,2 м 2 ×°С/Вт
Rшлакоблок+Rкирпич=0,89+0,2 = 1,09 м 2 ×°С/Вт (
Rвата=R-(Rшлакоблок+Rкирпич) =3.4-1,09=2,31 м 2 ×°С/Вт
δвата=Rвата·λ=2,31*0,045=0,1 м=100 мм (принимаем λ=0,045 Вт/(м×°С) — среднее значение теплопроводности для минеральной ваты различных видов).
Вывод: для соблюдения требований по сопротивлению теплопередачи можно использовать керамзитобетонные блоки в качестве основной конструкции с облицовкой ее керамическим кирпичом и прослойкой из минеральной ваты теплопроводностью не менее 0,45 и толщиной от 100 мм.
Калькулятор теплопроводности стены онлайн: расчет ограждающих конструкций
При выборе котла и определении необходимости дополнительного утепления дома важно знать теплопотери его конструкций, в частности наружных стен. Калькулятор теплопроводности стены онлайн поможет произвести расчеты быстро и точно.
Допустимые значения
Выполняя теплотехнический расчет наружной стены, учитывают также и регион, в котором будет располагаться дом:
Важно! Наиболее точно рассчитывает термическое сопротивление стеновых конструкций калькулятор теплопотерь, в котором учитывается регион расположения дома.
Теплопередача различных материалов
Одним из основных факторов, влияющих на теплопроводность стены, является стройматериал, из которого она возведена. Такая зависимость объясняется его строением.
Так, наименьшей теплопроводностью обладают материалы с небольшой плотностью, у которых частицы располагаются достаточно рыхло и имеется большое количество пор и пустот, заполненных воздухом.
К ним относятся различные виды древесины, легких пористых бетонов – пено-, газо-, шлакобетоны, а также пустотные силикатные кирпичи.
К материалам с высокой теплопроводностью и низким термическим сопротивлениям относятся различные виды тяжелых бетонов, монолитный силикатный кирпич. Такая особенность объясняется тем, что частицы в них располагаются очень близко друг к другу, без пустот и пор. Это способствует более быстрой передаче тепла в толще стены и большой теплопотере.
Таблица. Коэффициенты теплопроводности строительных материалов (СНиП ІІ 03 79)
Материал | Коэффициент теплопроводности в сухом состоянии, Вт/м×0С |
Железобетон | 1,69 |
Бетон на основе гравия, щебня из природного камня | 1,51 |
Силикатный кирпич на песчано-цементном растворе | 0,70 |
Туфобетон | 0,64 |
Глиняный кирпич на песчано-цементном растворе | 0,56 |
Глиняный кирпич обыкновенный | 0,52 |
Пемзобетон | 0,52 |
Пустотный керамический кирпич с плотностью 1300 кг/м3 | 0,47 |
Пустотный керамический кирпич с плотностью 1400 кг/м3 | 0,41 |
Шлакобетон | 0,41 |
Газобетон и пенобетон | 0,29 |
Древесина | 0,09-0,1 |
Что такое теплопроводность и термическое сопротивление
При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.
Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).
Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.
Зависимость от типа обшиваемой конструкции
Часть производителей на этикетках плит указывает рекомендации относительно утепляемой зоны дома. Например, изготовители ваты ISOVER дают следующие советы:
По плотности ISOVER уступает другой известной марке — KNAUF. Немецкий производитель устанавливает максимально допустимую толщину плиты минваты, равную 150 мм для любых конструкций. Обусловлено это чуть большей плотностью материала.
Плиты минеральной ваты ROCKWOOL предполагают использование материала размером 150-200 мм только в фасадах вентилируемого типа. Также это распространяется на обшивку кровли. Минимальный слой утеплителя для фасада вентилируемого типа — 80, невентилируемого — 30 мм.
Длина и ширина не являются гарантами качества и долговечности плит минваты. Только грамотный выбор толщины слоя материала имеет значение. Толстый утеплитель легко заменяется на материал меньших габаритов, но с повышенной плотностью и весом. Главное при этом — учет типа конструкции. Не стоит забывать о местоположении постройки — чем холоднее климат региона, тем больше инвестиций придется сделать в утепление. Умный подход к выбору толщины плиты оправдает себя, когда холодной зимой дом одарит своих жильцов комфортом.
Виды поликарбонатного листа
Выпускается поликарбонат двух основных типов:
Самая простая структура у монолитного типа материала. Производится он с толщиной в пределах 2-12 мм, иногда она достигает 20 мм.
Свойства монолитного поликарбоната позволяют использовать его для создания конструкций со сложным рельефом поверхности. Его удобно формовать горячим способом, причем толщина материала после обработки сохраняется одинаковой по всей площади. Благодаря высокой плотности монолитного поликарбоната, он не нуждается в дополнительном каркасе.
Данная разновидность пластика отличается высокими прочностными характеристиками и антиударными свойствами. Можно приобрести материал любой расцветки, который остается прозрачным в любых климатических условиях. Кроме того, с таким поликарбонатом очень удобно работать, и он не утяжеляет конструкции благодаря небольшой массе.
Таблица теплопроводности теплоизоляционных материалов
Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.
При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.
Наименование материала | Коэффициент теплопроводности Вт/(м·°C) | ||
В сухом состоянии | При нормальной влажности | При повышенной влажности | |
Войлок шерстяной | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Каменная минеральная вата 25-50 кг/м3 | 0,036 | 0,042 | 0,045 |
Каменная минеральная вата 40-60 кг/м3 | 0,035 | 0,041 | 0,044 |
Каменная минеральная вата 80-125 кг/м3 | 0,036 | 0,042 | 0,045 |
Каменная минеральная вата 140-175 кг/м3 | 0,037 | 0,043 | 0,0456 |
Каменная минеральная вата 180 кг/м3 | 0,038 | 0,045 | 0,048 |
Стекловата 15 кг/м3 | 0,046 | 0,049 | 0,055 |
Стекловата 17 кг/м3 | 0,044 | 0,047 | 0,053 |
Стекловата 20 кг/м3 | 0,04 | 0,043 | 0,048 |
Стекловата 30 кг/м3 | 0,04 | 0,042 | 0,046 |
Стекловата 35 кг/м3 | 0,039 | 0,041 | 0,046 |
Стекловата 45 кг/м3 | 0,039 | 0,041 | 0,045 |
Стекловата 60 кг/м3 | 0,038 | 0,040 | 0,045 |
Стекловата 75 кг/м3 | 0,04 | 0,042 | 0,047 |
Стекловата 85 кг/м3 | 0,044 | 0,046 | 0,050 |
Пенополистирол (пенопласт, ППС) | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Экструдированный пенополистирол (ЭППС, XPS) | 0,029 | 0,030 | 0,031 |
Пенобетон, газобетон на цементном растворе, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон, газобетон на цементном растворе, 400 кг/м3 | 0,11 | 0,14 | 0,15 |
Пенобетон, газобетон на известковом растворе, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон, газобетон на известковом растворе, 400 кг/м3 | 0,13 | 0,22 | 0,28 |
Пеностекло, крошка, 100 — 150 кг/м3 | 0,043-0,06 | ||
Пеностекло, крошка, 151 — 200 кг/м3 | 0,06-0,063 | ||
Пеностекло, крошка, 201 — 250 кг/м3 | 0,066-0,073 | ||
Пеностекло, крошка, 251 — 400 кг/м3 | 0,085-0,1 | ||
Пеноблок 100 — 120 кг/м3 | 0,043-0,045 | ||
Пеноблок 121- 170 кг/м3 | 0,05-0,062 | ||
Пеноблок 171 — 220 кг/м3 | 0,057-0,063 | ||
Пеноблок 221 — 270 кг/м3 | 0,073 | ||
Эковата | 0,037-0,042 | ||
Пенополиуретан (ППУ) 40 кг/м3 | 0,029 | 0,031 | 0,05 |
Пенополиуретан (ППУ) 60 кг/м3 | 0,035 | 0,036 | 0,041 |
Пенополиуретан (ППУ) 80 кг/м3 | 0,041 | 0,042 | 0,04 |
Пенополиэтилен сшитый | 0,031-0,038 | ||
Вакуум | 0 | ||
Воздух +27°C. 1 атм | 0,026 | ||
Ксенон | 0,0057 | ||
Аргон | 0,0177 | ||
Аэрогель (Aspen aerogels) | 0,014-0,021 | ||
Шлаковата | 0,05 | ||
Вермикулит | 0,064-0,074 | ||
Вспененный каучук | 0,033 | ||
Пробка листы 220 кг/м3 | 0,035 | ||
Пробка листы 260 кг/м3 | 0,05 | ||
Базальтовые маты, холсты | 0,03-0,04 | ||
Пакля | 0,05 | ||
Перлит, 200 кг/м3 | 0,05 | ||
Перлит вспученный, 100 кг/м3 | 0,06 | ||
Плиты льняные изоляционные, 250 кг/м3 | 0,054 | ||
Полистиролбетон, 150-500 кг/м3 | 0,052-0,145 | ||
Пробка гранулированная, 45 кг/м3 | 0,038 | ||
Пробка минеральная на битумной основе, 270-350 кг/м3 | 0,076-0,096 | ||
Пробковое покрытие для пола, 540 кг/м3 | 0,078 | ||
Пробка техническая, 50 кг/м3 | 0,037 |
Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.
Выбор материала и расчет количества листов
В первую очередь нужно начертить план и схему будущей конструкции. Это даст возможность сделать корректный расчет необходимого материала. Если вы не сильны в чертежных работах, то этот этап лучше поручить профессионалам. Таким образом, вы не допустите в будущем неоправданных затрат и ошибок.
Даже если конструкция из поликарбоната будет максимально простой, без дополнительных материалов не обойтись. Правильный раскрой листов и их укладка повлияют на продолжительность службы конструкции.