какие есть электромагнитные волны
Виды электромагнитных волн
Какие бывают виды электромагнитных волн
Электромагнитная волна — распространяющееся в пространстве возмущение электромагнитного поля.
Первыми материалами о существовании предполагаемых электромагнитных волн поделился английский ученый-физик Фарадей в 1832 году. Позднее Дж.Максвелл выстроил теорию электромагнитного поля, обосновав ее математическим путем. Выводы Максвелла подтвердил практическим экспериментом Герц, хотя первоначально он стремился их опровергнуть.
Успешной в изучении электромагнитных волн была деятельность П.Н. Лебедева.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Электромагнитное поле распространяется в пространстве посредством электромагнитных волн (ЭМВ). Те из них, которые возникают вокруг электрического заряда и способны распространяться вдаль от самого движущегося заряда, относят к понятию «излучение». При этом его сила по мере увеличения расстояния постепенно затухает. Исключение составляет вакуумная среда, т.е. пространство, в котором нет прочих тел или веществ, способных поглотить существующие либо испустить новые волны.
В физике в зависимости от диапазона существует следующая классификация видов ЭМВ:
Для гамма-излучения существует параллельный термин «жесткое».
Скорость распространения ЭМВ зависит от ее длины. В вакууме она равна скорости света, в других средах имеет более низкие значения. Этим показателем определяется, будет ли излучение подчиняться законам геометрической оптики. Это происходит тогда, когда расстояние в несколько раз превышает длину волны.
Еще одной важной характеристикой является частота излучения, которая обозначается λ.
Частота излучения равна числу гребней, проходящих через регистрационное устройство за единицу времени — секунду.
С учетом положений теории колебаний и электродинамики, для ЭМВ характерно существование 3х векторов, располагающихся перпендикулярно друг к другу. Это вектора:
Классификация, частотные диапазоны
В основе классификации ЭМВ лежат характерные для каждой из подгрупп частотные диапазоны. Между ними не существует резких, четко очерченных границ, порой их значения могут перекрывать один другого. Скорость излучения постоянна только в вакууме, поэтому частота взаимосвязана с длиной ЭМВ в таких же условиях.
Радиоволны
Диапазон радиоволн занимает отрезок от низких до инфракрасных частот (до 3 ТГц). Их распространение происходит без волноводов, поэтому можно не учитывать атомистическое строение окружающей среды.
Радиоволны подразделяются на:
Источником являются атмосферные, а также магнитные природные явления. Второй источник — радиосвязь. Ультракороткие волны образуются при физических явлениях — грозах.
Ультракороткие радиоволны
Длина волны ультракоротких лучей — 10м-1мм, сверхдлинных — более 10км. При этом частота ультракоротких — 30 МГц-300 ГГц, ультрадлинных — менее 30 кГц.
Ультракороткие радиоволны можно зарегистрировать при прохождении тока переменной частоты, что используется в радиотехнике, например, при сооружении антенн.
Группа подразделяется на метровые, деци-, санти-, мили-, субмилли- и микрометровые. Если длина волны менее 1-го метра (при частоте сверх 300 МГц), то она относится к микроволнам или СВЧ (сверх высоких частот).
Инфракрасное излучение
Начиная от красного цвета видимого света (длина 0,74 мкм) до микроволны (1-2 мм) занимает инфракрасное излучение. Это самый большой промежуток спектра, который могут излучать твердые и жидкие тела, имеющие определенную температуру. В таком случае про них говорят, что происходит излучение энергии в инфракрасном диапазоне. Важно, что длина волн, которые такие тела излучают, прямо пропорциональна температуре.
Тепловое излучение тем интенсивнее, чем выше температура нагретого тела и короче длина ЭМВ.
В том свете, который видит человеческий глаз, содержится 7 основных цветов. При этом красные области спектра находятся после инфракрасных, а за фиолетовыми следуют ультрафиолетовые. Однако ни тот, ни другой край не способен видеть глаз человека.
Поверхность Солнца (фотосфера) имеет температуру 6000оС. Ее цвет — желтый, а источник излучения является оптическим. Наши органы чувств способны воспринимать такой участок спектра излучения.
Оптический диапазон излучения обусловлен тепловым движением молекул и атомов. При определенной скорости их движения тело нагревается и начинает светиться сначала красным светом, затем — желтым.
В окружающей среде чаще встречаются тела, которые излучают свет, состоящий из ЭВМ разной длины, сложного состава спектра. Их энергия воспринимается глазом человека и может ощущаться неоднозначно. Происходит это по причине различной чувствительности глаза к волнам неодинаковой длины.
Наряду с тепловым излучением, излучать оптическую энергию могут химические и биологические процессы. В качестве примера приема оптического излучения можно привести фотографирование.
Жесткие лучи
К данной группе относятся рентгеновское излучение. В естественных условиях оно образуется в ходе ионизации атомов, сопровождающей радиоактивный распад. Еще одной причиной образования является космическое излучение.
Область рентгеновского излучения отделена от гамма-диапазона условно. Ориентировочно его энергия заключена в диапазоне 20 эВ-0,1 МэВ, в отличие от гамма-энергии, диапазон которой более 0,1 МэВ.
УФ лучи
«По соседству» с рентген-излучением находятся UV лучи. Их диапазон делится на ближний и дальний (вакуумный). Ближний занимает нишу 380-200 нм, дальний — 200-10 нм. Дальний также может называться вакуумным. Он интенсивно поглощается атмосферными массами и подвергается исследованиям в использованием вакуумного оборудования.
История открытия УФО связана с именем И.В. Риттера. который в 1801 году сделал вывод, что хлорид серебра под воздействием невидимого излучения с длиной волны, находящейся за пределами фиолетового света, разлагается быстрее.
УФ излучение с длинными волнами
Данный поддиапазон содержит волны не интенсивной активности. Однако они также вызывают пигментацию кожи и в небольших дозах оздоравливают человеческий организм.
Длинноволновое УФ излучение характеризуется свечением определенных веществ, благодаря чему оно находит применение в изготовлении люминесцентных предметов, а также в качестве маркера в некоторых химических реакциях.
УФ излучение со средней длиной волн
Под действием таких ЭМВ витамин D в организме человека превращается в физиологическую форму и служит для профилактики рахита. Средневолновое УФ излучение тонизирует системы организма, вызывает выработку мелатонина, однако губительно для растений.
УФ излучение с короткой длиной волн
Обладает бактерицидным эффектом, благодаря чему используется в обеззараживающих установках. С его участием идет дезинфекция и стерилизация медицинского оборудования и предметов быта.
УФ облучение поступает на землю от Солнца. Удельный вес различных вариантов данного излучения непостоянен, он зависит от многих факторов окружающей среды.
Существуют и искусственные доноры УФ излучения. Такие источники нашли применение в медицинских приборах, оборудовании санитарно-гигиенического профиля, а также в борьбе с вредителями сельского хозяйства.
Гамма-излучение
Относится к коротковолновым ЭМИ. Характеризуются корпускулярными свойствами и обладают значительным травмирующим воздействием на человеческий организм. Его нельзя почувствовать или ощутить. Это ионизирующее излучение, при котором устойчивые атомы превращаются в ионы. Скорость лучей находится в световом диапазоне.
Среди источников гамма-излучения можно назвать квазары и пульсары. Когда звезда преобразуется в сверхновую, наблюдается выделение энергии и гамма-излучение.
Что является источником электромагнитных волн
Синтезировать ЭМВ может электрический колебательный контур (проводник). Примером являются лампы, магнетроны, транзисторы. Наиболее простой источник — точечного характера. Его размеры намного меньше того расстояния, на протяжении которого действуют излучаемые им ЭМВ. Причем излучение происходит равномерно интенсивное во всех направлениях.
Самое коротковолновое излучение осуществляют атомные ядра, хотя большого различия между соседними по классификации группами нет. Обнаружение ЭМВ происходит по результатам воздействия на заряженные частицы.
Ученым удалось установить естественный волновой фон, в котором человек адаптировался. В то же время существование на Земле двух полюсов ведет к тому, что на человека постоянно оказывается излучение определенного спектра. Когда электромагнитное поле у живого индивидуума претерпевает изменения, у него могут возникнуть довольно серьезные проблемы со здоровьем.
Исторически доказаны факты, что во время и после вспышек на Солнце часты катаклизмы и войны. Это результат сдвига в магнитном поле Земли.
Шкала и сфера применения
Расположение ЭМВ в порядке возрастания частоты (либо уменьшения λ) возникает система, которая называется шкалой электромагнитных волн. По сути, это — непрерывный ряд частот ЭМИ, который носит условный характер.
Широко распространены приборы ночного видения, в основе работы которых лежит инфракрасное излучение. Разработаны и выпускаются специальные детекторы ИК лучей, которые помогают спасательным службам искать живые существа под завалами (в результате завалов при землетрясениях или прочих стихийных бедствиях). Сегодняшнее применение ЭМВ широко и разнообразно. Без них не обходится работа электротехнических приборов, например, сотовая связь, бескабельный интернет, радио и телевизионные приборы с пультом управления. Мы разогреваем пищу в микроволновой печи, а автомобилисты учитывают работу на трассе радаров.
ЭМВ появляются в окололампочном пространстве, а также рядом с работающими телевизорами и мониторами.
Широкая сфера применения у УФ лучей. В определенном диапазоне они обладают антисептическим и дезинфицирующим действием, что используется в борьбе с инфекциями. В банковских структурах, опираясь на механизм их действия, проверяют подлинность денежных купюр.
Поскольку УФ лучи оказывают губительное действие на любую живую клетку, в т.ч. бактерии и вирусы, то механизм УФ облучения используется для стерилизации медицинских изделий, оборудования, рабочих поверхностей.
Если бы над земной корой отсутствовала атмосфера, жесткие УФ лучи убили бы все живое на Земле. Однако озоновый слой атмосферы способен поглощать эти лучи, выбирая их из спектра радиации Солнца. Несмотря на это, часть жестких УФ лучей все-таки проникает на поверхность Земли и способна вызвать ожоги, а также озлокачествление клеток кожи.
Велико значение в медицине рентгеновских лучей. Проникая через мягкие ткани, они дают врачу представление о костной патологии, помогают диагностировать переломы и искривления.
Рентгеновские лучи проникают сквозь мягкие ткани организма и поэтому незаменимы в медицинской диагностике. Как и в случае с радиоволнами временной разрыв между их открытием в 1895 году и началом практического применения, ознаменовавшимся получением в одной из парижских больниц первого рентгеновского снимка, составил считанные годы.
Космическая аппаратура использует устройства гамма-телескопы.
Электромагнитные волны: что это, влияние и сферы применения
Одно из ключевых понятий физики — электромагнитные волны. Человек не может их увидеть, но активно использует. Радио и радары, рентгены и лазеры — все это работает благодаря существованию электромагнитного поля.
Что такое электромагнитные волны
Характеристика и история изучения
Талантливый физик предсказал возможность существования электромагнитных волн как способа, с помощью которого электромагнитное поле распространяется в пространстве и во времени. Источником этого явления ученый назвал электрические заряды, которые движутся с ускорением.
Его теорию продолжили исследовать на практике такие ученые, как:
С тех пор электромагнитное излучение определяют как одноименные волны, которые приводят в возбуждение различные объекты излучения (молекулярные, атомные и заряженные частицы).
Каждая электромагнитная волна является излучением, которое имеет три основные характеристики:
Электромагнитное излучение интересно тем, что распространяется в любой среде — и в плотных веществах, и в вакууме. При этом в последнем скорость распространения волн составляет около 300 тысяч км/с. А вот, например, звуковые волны в вакууме распространяться не могут.
Каков принцип действия электромагнитного излучения
Оно обладает энергией, которой присуща напряженность. Поле электромагнитных волн может быть постоянным и переменным:
У такого распространения есть три зоны:
В своей теории Максвелл описал определенные свойства электромагнитных волн, которые обусловлены их различиями и зависят от длины волны. Согласно этому параметру, волны электромагнитного поля разделяют на диапазоны. Для последних разработана условная шкала, так как близкие частоты часто совмещают такие свойства:
Электромагнитные волны довольно быстро стали явлением, которое используют на практике. Знаем о них или нет, они нас окружают повсюду.
Виды электромагнитных волн и их применение
Электромагнитные волны различаются по частоте, поляризации и длине. Последний показатель был взят за основу самой распространенной классификации.
По показателю длины выделяют:
Где применяют и как влияет на человека
Широко применять электромагнитное излучение начали с конца XIX века. В это время началось развитие радиосвязи, с помощью которой реальным стало общение на больших расстояниях. Главными электромагнитными источниками были крупные объекты промышленного масштаба, а также электрические линии передач.
Кроме того, этим видом излучения заинтересовалась военная сфера. Так началась эпоха радаров и других подобных электрических приборов.
В сфере медицины для лечения различных болезней начали использовать инфракрасное излучение. Благодаря рентгеновским исследованиям появилась возможность выявлять внутренние повреждения в организме человека. На современном этапе с помощью лазеров проводят операции, требующие ювелирной точности.
Наряду с перечисленной выше пользой электромагнитного излучения, известны и некоторые негативные для человека последствия его воздействия:
Ученые-исследователи Н. И. Бурлака и С. С. Гоженко установили, что чрезмерное действие электромагнитного излучения повреждает внутренние органы, нарушает работу центральной нервной системы, что может привести к возникновению психических расстройств. Известен накопительный эффект биологических воздействий излучения: чем оно длительнее, тем более отрицательные результаты.
Воздействие, длящееся годами, приводит к:
Чтобы избежать таких негативных влияний, внедряют определенные стандарты, регулирующие вопросы безопасности электромагнитного воздействия. Так, для использования всех разновидностей электромагнитного излучения разрабатывают гигиенические нормы и радиационные стандарты.
На современном этапе продолжается изучение электромагнитного излучения и его воздействия на организм человека. Многие стараются свести его к минимуму, так как нет окончательного вердикта относительно вреда излучения. Нас окружает великое разнообразие электромагнитных волн, многие из которых приносят человеку пользу.
На какие виды делятся электромагнитные волны
Электромагнитное излучение представлено одноименными волнами, которые приводятся в возбуждение под воздействием различных объектов излучения в виде молекулярных, атомных и заряженных частиц.
Существует несколько его разновидностей:
Устройство
Характеристику любой электромагнитной волны составляют три основных параметра:
Распространение электромагнитного излучения возможно в любой среде, начиная плотным веществом и заканчивая вакуумом. При этом скорость распространения волны в вакуумном пространстве достигает 300 тысяч км в секунду. К примеру звуковые волны, в вакууме не распространяются.
Принцип действия
Электромагнитное излучение имеет энергию, основной характеристикой которой является ее напряженность. Существует постоянное и переменное поле электромагнитных волн.
Первое — характеризуется напряженностью, которая обуславливается силой, оказывающей каталитическое действие на токовый проводник. В качестве единицы напряжения выступает ампер. Переменная разновидность совмещает в себе магнитную и электрическую разновидности магнитных полей, которые расширяются в пространстве в виде волн.
Область распространения включает в себя три зоны:
Свойства
Известно, что для электромагнитных волн характерны определенные свойства, о которых впервые заговорил Максвелл. Эти свойства обуславливаются различиями и зависимостью от параметра длины. Именно в соответствии с этими параметрами волны электромагнитных полей подразделяются на диапазоны, которые, в свою очередь, имеют достаточно условную шкалу, поскольку расположенные рядом частоты накладывают свои свойства друг на друга.
К таковым — относятся:
Применение и влияние
Свое широкое применение электромагнитное излучение получило только в конце 19-го века, когда активно развивалась радиосвязь, посредством которой стало возможно общение на далеком расстоянии.
В качестве главных электромагнитных источников выступают крупные объекты промышленного масштаба, а также различные электрические линии передач. Помимо этого, рассматриваемый вид излучения получил активное применение в военной сфере. Там они представлены радарами и другими электрическими приборами, имеющих сложное устройство.
В медицинской области для лечения разнообразных болезней применяется инфракрасное излучение. Кроме этого:
Однако, несмотря на перечисленную выше пользу, электромагнитное излучение может спровоцировать возникновение ряда негативных признаков:
Повышенное воздействие определенных видов электромагнитных волн способно привести к повреждениям органов, расположенных внутри, и мозговой центральной нервной системы, что впоследствии чревато психическими расстройствами.
Во избежание столь отрицательных влияний существуют определенные стандарты, которые регулируют безопасность электромагнитного воздействия. Так, для каждого из видов электромагнитного излучения разработаны конкретные документы регулирующего характера в виде гигиенических норм и радиационных стандартов.
Электромагнитное излучение влияет на человеческий организм и остается до конца неизученным, по причине чего рекомендуется свести к минимуму его воздействие.
Достоинства и недостатки
Главным преимуществом ЭМИ является его активное применение в медицинской сфере. Посредством рентгеновского и инфракрасного излучений становится возможным обследование внутренних органов с последующим выявлением возможных заболеваний.
К недостатку же электромагнитного излучения следует отнести негативное воздействие на организм человека в случаях, когда это влияние превышает нормы. По возможности его необходимо избегать. Более того, известен накопительный эффект биологического влияния излучения: чем он длительней, тем более негативнее последствия.
Многолетнее воздействие способно привести к:
Особенности
Простым обывателям может быть непонятна схожесть между разными, на первый взгляд, объектами электромагнитного излучения, к примеру:
Первые объекты — электромагнитные источники, вторые — представлены приемниками. Также отличается и влияние определенных видов излучения на живой организм, к примеру:
Однако перечисленные выше отличия выступают различными аспектами одного явления. Электромагнитное излучение обладает волнами, которые имеют схожую распространительную скорость в пространстве. При этом количество колебаний в течение временной единицы может измеряться в широких диапазонных значениях. Окружающее нас пространство насыщено электромагнитным излучением, которое связано не только с радиоволнами, но и с окружающими телами.
Существование электромагнитных волн переменного электромагнитного поля, распространяющегося в пространстве с конечной скоростью,— вытекает из уравнений Максвелла (см. §139). Уравнения Максвелла сформулированы в 1865 г. на основе обобщения эмпирических законов электрических и магнитных явлений. Как уже указывалось, решающую роль для утверждения максвелловской теории сыграли опыты Герца (1888), доказавшие, что электрические и магнитные поля действительно распространяются в виде волн, поведение которых полностью описывается уравнениями Максвелла.
Источником электромагнитных волн в действительности может быть любой электрический колебательный контур или проводник, по которому течет переменный электрический ток, так как для возбуждения электромагнитных волн необходимо создать в пространстве переменное электрическое поле (ток смещения) или соответственно переменное магнитное поле. Однако излучающая способность источника определяется его формой, размерами и частотой колебаний. Чтобы излучение играло заметную роль, необходимо увеличить объем пространства, в котором переменное электромагнитное поле создается.
Поэтому для получения электромагнитных волн непригодны закрытые колебательные контуры, так как в них электрическое поле сосредоточено между обкладками конденсатора, а магнитное — внутри катушки индуктивности.
Герц в своих опытах, уменьшая число витков катушки и площадь пластин конденсатора, а также раздвигая их (рис. 225, а, б), совершил переход от закрытого колебательного контура к открытому колебательному контуру (вибратору Герца), представляющему собой два стержня, разделенных искровым промежутком (рис. 225, в). Если в закрытом колебательном контуре переменное электрическое поле сосредоточено внутри конденсатора (рис. 225, а), то в открытом оно заполняет окружающее контур пространство (рис. 225, в), что существенно повышает интенсивность электромагнитного излучения. Колебания в такой системе поддерживаются за счет источника э.д.с., подключенного к обкладкам конденсатора, а искровой промежуток применяется для того, чтобы увеличить разность потенциалов, до которой первоначально заряжаются обкладки.
Для возбуждения электромагнитных волн вибратор ГерцаВ подключался к индуктору И (рис.226). Когда напряжение на искровом промежутке достигало пробивного значения, возникала искра, закорачивающая обе половины вибратора, и в нем возникали свободные затухающие колебания. При исчезновении искры контур размыкался и колебания прекращались. Затем индуктор снова заряжал конденсатор, возникала искра и в контуре опять наблюдались колебания и т. д. Для регистрации электромагнитных волн Герц пользовался вторым вибратором, называемым резонатором Р, имеющим такую же частоту собственных колебаний, что и излучающий вибратор, т. е. настроенным в резонанс с вибратором. Когда электромагнитные волны достигали резонатора, то в его зазоре проскакивала электрическая искра.
Виды электромагнитных волн. Электромагнитные волны, обладая широким диапазоном частот (или длин волн =c/v, где с — скорость электромагнитных волн в вакууме), отличаются друг от друга по способам их генерации и регистрации, а также по своим свойствам. Поэтому электромагнитные волны делятся на несколько видов: радиоволны, световые волны, рентгеновское и -излучения (табл.5). Следует отметить, что границы между различными видами электромагнитных волн довольно условны.
§ Энергия электромагнитных волн. Возможность обнаружения электромагнитных волн указывает на то, что они переносят энергию. Объемная плотность w энергии электромагнитной волны складывается из объемных плотностей wэл (см. (95.8)) и wм (см. (130.3)) электрического и магнитного полей:
Учитывая выражение (162.4), получим, что плотность энергии электрического и магнитного полей в каждый момент времени одинакова, т. е. wэл = wм. Поэтому
Умножив плотность энергии w на скорость v распространения волны в среде (см. (162.3)), получим модуль плотности потока энергии:
Так как векторы Е и Н взаимно перпендикулярны и образуют с направлением распространения волны правовинтовую
систему, то направление вектора [ЕН] совпадает с направлением переноса энергии, а модуль этого вектора равен ЕН. Вектор плотности потока электромагнитной энергии называется вектором Умова— Пойнтинга:
Вектор S направлен в сторону распространения электромагнитной волны, а его модуль равен энергии, переносимой электромагнитной волной за единицу времени через единичную площадку, перпендикулярную направлению распространения волны.
Если электромагнитные волны поглощаются или отражаются телами (эти явления подтверждены опытами Г. Герца), то из теории Максвелла следует, что электромагнитные волны должны оказывать на тела давление. Давление электромагнитных волн объясняется тем, что под действием электрического поля волны заряженные частицы вещества начинают упорядоченно двигаться и подвергаются со стороны магнитного поля волны действию сил Лоренца. Однако значение этого давления ничтожно. Можно оценить, что при средней мощности солнечного излучения, приходящего на Землю, давление для абсолютно поглощающей поверхности составляет примерно 5 мкПа. В исключительно тонких экспериментах, ставших классическими, П. Н. Лебедев в 1899 г. доказал существование светового давления на твердые тела, а в 1910г.— на газы. Опыты Лебедева имели огромное значение для утверждения выводов теории Максвелла о том, что свет представляет собой электромагнитные волны.
Существование давления электромагнитных волн приводит к выводу о том, что электромагнитному полю присущ механический импульс. Импульс электромагнитного поля
где W — энергия электромагнитного поля. Выражая импульс как р=mc (поле в вакууме распространяется со скоростью с), получим p = mc=W/c, откуда
Это соотношение между массой и энергией свободного электромагнитного поля является универсальным законом природы (см. также §40). Согласно специальной теории относительности, выражение (163.1) имеет общее значение и справедливо для любых тел независимо от их внутреннего строения.
Таким образом, рассмотренные свойства электромагнитных волн, определяемые теорией Максвелла, полностью подтверждаются опытами Герца, Лебедева и выводами специальной теории относительности, сыгравшими решающую роль для подтверждения и быстрого признания этой теории.
Скорость электромагнитных волн Как уже указывалось (см. §161), одним из важнейших следствий уравнений Максвелла (см. § 139) является существование электромагнитных волн. Можно показать, что для однородной и изотропной среды вдали от зарядов и токов, создающих электромагнитное поле, из уравнений Максвелла следует, что векторы напряженностей Е и Н переменного электромагнитного поля удовлетворяют волновому уравнению типа (154.9):
— оператор Лапласа, v — фазовая скорость.
Всякая функция, удовлетворяющая уравнениям (162.1) и (162.2), описывает некоторую волну. Следовательно, электромагнитные поля действительно могут существовать в виде электромагнитных волн. Фазовая скорость электромагнитных волн определяется выражением
электрическая и магнитная постоянные, и — соответственно электрическая и магнитная проницаемости среды.
В вакууме (при =1 и =1) скорость распространения электромагнитных волн совпадает со скоростью с. Так как > 1, то скорость распространения электромагнитных волн в веществе всегда меньше, чем в вакууме.
При вычислении скорости распространения электромагнитного поля по формуле (162.3) получается результат, достаточно хорошо совпадающий с экспериментальными данными, если учитывать зависимость и , от частоты. Совпадение же размерного коэффициента в (162.3) со скоростью распространения света в вакууме указывает на глубокую связь между электромагнитными и оптическими явлениями, позволившую Максвеллу создать электромагнитную теорию света, согласно которой свет представляет собой электромагнитные волны.
Электромагнитное излучение существует ровно столько, сколько живет наша Вселенная. Оно сыграло ключевую роль в процессе эволюции жизни на Земле. По факту, это возмущение состояние электромагнитное поля, распространяемого в пространстве.
Характеристики электромагнитного излучения
Любую электромагнитную волну описывают с помощью трех характеристик.
Поляризация – одна из основных волновых атрибутов. Описывает поперечную анизотропию электромагнитных волн. Излучение считается поляризованным тогда, когда все волновые колебания происходят в одной плоскости.
Это явление активно используют на практике. Например, в кино при показе 3D фильмов.
С помощью поляризации очки IMAX разделяют изображение, которое предназначено для разных глаз.
Частота – число гребней волны, которые проходят мимо наблюдателя (в данном случае – детектора) за одну секунду. Измеряется в герцах.
Длина волны – конкретное расстояние между ближайшими точками электромагнитного излучения, колебания которых происходят в одной фазе.
Электромагнитное излучение может распространяться практически в любой среде: от плотного вещества до вакуума.
Скорость распространения в вакууме равна 300 тыс. км за секунду.
Интересное видео о природе и свойствах ЭМ волн смотрите в видео ниже:
Виды электромагнитных волн
Все электромагнитное излучение делят по частоте.
1. Радиоволны. Бывают короткими, ультракороткими, сверхдлинными, длинными, средними.
Длина радиоволн колеблется от 10 км до 1 мм, а частота от 30 кГц до 300 ГГц.
Их источниками может быть как деятельность человека, так и различные естественные атмосферные явления.
2. Инфракрасное излучение. Длина волны лежит в пределах 1мм — 780нм, а частота может доходить до 429 ТГц. Инфракрасное излучение еще называют тепловым. Основа всей жизни на нашей планете.
3. Видимый свет. Длина 400 — 760/780нм. Соответственно частота колеблется в пределах 790-385 ТГц. Сюда относят весь спектр излучения, которое можно увидеть человеческим глазом.
4. Ультрафиолет. Длина волны меньше, чем в инфракрасного излучения.
Может доходить до 10 нм. Частота таких волн очень большая – порядка 3х10^16 Гц.
5. Рентгеновские лучи. частота волны 6х10^19 Гц, а длина порядка 10нм — 5пм.
6. Гамма волны. Сюда относят любое излучение, частота которого больше, чем в рентгеновских лучах, а длина – меньше. Источником таких электромагнитных волн являются космические, ядерные процессы.
Сфера применения
Где-то начиная с конца XIX столетия, весь человеческий прогресс был связан с практическим применением электромагнитных волн.
Первое о чем стоит упомянуть – радиосвязь. Она дала возможность людям общаться, даже если они находились далеко друг от друга.
Спутниковое вещание, телекоммуникации – являются дальнейшим развитием примитивной радиосвязи.
Именно эти технологии сформировали информационный облик современного общества.
Источниками электромагнитного излучения следует рассматривать как крупные промышленные объекты, так и различные линии электропередач.
Электромагнитные волны активно используются в военном деле (радары, сложные электрические устройства). Также без их применения не обошлась и медицина. Для лечения многих болезней могут использовать инфракрасное излучение.
Рентгеновские снимки помогают определить повреждения внутренних тканей человека.
С помощью лазеров проводят ряд операций, требующих ювелирной точности.
Важность электромагнитного излучения в практической жизни человека сложно переоценить.
Советское видео о электромагнитном поле:
Возможное негативное влияние на человека
Несмотря на свою полезность, сильные источники электромагнитного излучения могут вызывать такие симптомы:
Чрезмерное воздействие некоторых видов волн вызывают повреждения внутренних органов, центральной нервной системы, мозга. Возможны изменения в психике человека.
Интересное виде о влиянии ЭМ волн на человека:
Чтобы избежать таких последствий практически во всех странах мира действуют стандарты, регулирующие электромагнитную безопасность. Для каждого типа излучений существуют свои регулирующие документы (гигиенические нормы, нормы радиационной безопасности). Влияние электромагнитных волн на человека до конца не изучено, поэтому ВОЗ рекомендует минимизировать их воздействие.