какие изоляторы должны подвергаться акустико эмиссионному контролю

Приложение Е (обязательное). Методика акустико-эмиссионного контроля опорных стержневых изоляторов (основные положения)

Методика
акустико-эмиссионного контроля опорных стержневых изоляторов (основные положения)

Е.1 Метод акустико-эмиссионного (АЭ) контроля опорных стержневых изоляторов (ОСИ), изготовленных из электротехнического фарфора, позволяет обнаружить наличие и степень развития дефектов, проявляющихся в изоляторе при его нагружении в ходе механических испытаний, путем регистрации и анализа генерируемых при этом акустических сигналов.

Применяемый вариант АЭ контроля ОСИ основан на регистрации нарушения так называемого «эффекта Кайзера» в бракуемых изделиях.

Е.2 Воздействие на изолятор внешней нагрузки приводит к появлению в нем дополнительных механических напряжений, разрушению элементов микроструктуры фарфора и росту микротрещин. При этом часть высвобождаемой энергии трансформируется в акустические импульсы (АЭ сигналы), количество которых зависит от характера распределения их прочности и от уровня приложенной нагрузки.

В случае снятия нагрузки и повторного нагружения изолятора в том же направлении в доброкачественном фарфоре имеет место известный «эффект Кайзера», заключающийся в том, что при повторном нагружении АЭ сигналов не будет до тех пор, пока нагрузка не превысит величины, которой она достигла в первом цикле нагружения (т. е. пока не начнут растрескиваться частицы, имеющие большую прочность, чем разрушенные при первом цикле нагружения).

Е.4 Производственный АЭ контроль фарфоровых ОСИ должен осуществляться следующим образом.

Е.4.1 АЭ контроль выполняют с помощью прибора АЭ и нагружающего устройства.

В качества прибора АЭ может быть рекомендован прибор ПАК-ЗМ, разработанный АО ВНИИ Электроэнергетики (Москва) специально для контроля высоковольтных фарфоровых изоляторов методом АЭ (путем нарушения «эффекта Кайзера»).

В качестве нагружающего устройства могут быть использованы как обычные стенды для испытаний ОСИ на механическую нагрузку (изгиб, кручение, растяжение), так и специальные устройства, например нагружающее устройство УКИ-1, разработанное ВНИИЭ, а также стенд для испытаний изоляторов на всесторонний изгиб путем вращения испытуемого изделия под нагрузкой.

Е.4.3 Перед началом испытаний изолятор крепят на раму (держатель) испытательного стенда за один из его фланцев.

На изолятор устанавливают АЭ датчик (как правило, на поверхность «опасного» сечения, прилегающего к закрепленному на раме фланцу).

Предварительно на рабочую поверхность датчика для обеспечения акустического контакта наносят слой густой смазки типа солидола толщиной 1-2 мм. Рабочая поверхность АЭ датчика должна быть плотно прижата к фарфору (например, с помощью резинового жгута).

В соответствии с инструкцией по эксплуатации прибора АЭ контроля производят его включение и апробирование работоспособности.

Е.4.4 Проводят первый цикл нагружения изолятора в данном направлении в соответствии с Е.4.2. По окончании выдержки снижают нагрузку примерно вдвое. Затем проводят второй цикл нагружения в соответствии с Е.4.2. По прибору АЭ контроля проверяют наличие АЭ сигнала во втором цикле нагружения. Превышение АЭ сигнала порогового значения, определяемого по индикатору прибора, свидетельствует о непригодности контролируемого изделия по результатам АЭ контроля при нагружении в данном направлении.

Е.4.5 В случае, если превышение порогового сигнала АЭ при втором цикле нагружения в соответствия с Е.4.4 не выявлено, проводят дальнейшие механические испытания изолятора с регистрацией уровней АЭ сигналов согласно Е.4.2 и Е.4.4.

Е.4.6 Изолятор считают выдержавшим испытания, если он признан годным на всех этапах контроля по Е.4.5. В противном случае изолятор бракуют.

Е.4.7 По окончании контроля установленное на изоляторе оборудование снимают, изолятор удаляют с испытательного стенда и в протоколе испытаний делают отметку о пригодности или непригодности изолятора по результатам испытаний.

Откройте актуальную версию документа прямо сейчас или получите полный доступ к системе ГАРАНТ на 3 дня бесплатно!

Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.

Источник

Какие изоляторы должны подвергаться акустико эмиссионному контролю

РУКОВОДЯЩИЙ ДОКУМЕНТ ГОСРОГТЕХНАДЗОРА РОССИИ

ТРЕБОВАНИЯ К АКУСТИКО-ЭМИССИОННОЙ АППАРАТУРЕ,
ИСПОЛЬЗУЕМОЙ ДЛЯ КОНТРОЛЯ ОПАСНЫХ ПРОИЗВОДСТВЕННЫХ ОБЪЕКТОВ*

Дата введения 1999-10-01

* ПОДГОТОВЛЕНЫ Самарским филиалом АООТ «Оргэнергонефть» и Российским научным центром «Курчатовский институт» при участии специалистов Госгортехнадзора России.

Редакционная комиссия: А.А.Шаталов, Н.А.Хапонен, В.А.Баранов, Ю.А.Семенов, И.П.Песоцкий, Г.М.Селезнев.

1. ОБЩИЕ ПОЛОЖЕНИЯ

Аппаратура (аппаратные средства) акустической эмиссии (АЭ) представляет собой акустико-электронные устройства, которые используются при выполнении акустико-эмиссионного неразрушающего контроля процесса образования, наличия и процесса развития дефектов в контролируемом объекте. Метод акустической эмиссии относится к акустическому виду контроля и является пассивным методом в соответствии со схемой получения информации. Это определяет структуру аппаратуры, основными задачами которой являются прием и идентификация сигналов АЭ, их усиление, обработка, выделение и определение значений параметров сигналов, регистрация и предоставление информации.

Акустико-эмиссионный процесс при пластической деформации и разрушении материалов является стохастическим импульсным процессом. Трение и истечение рабочего тела сопровождается непрерывной АЭ. Вид АЭ определяет приемы обработки сигналов, выделяемые параметры и структуру приборов.

Характерной особенностью аппаратуры АЭ является необходимость работы в относительно большом динамическом диапазоне, что обусловлено важностью обнаружения единичных сигналов АЭ малой амплитуды, а также необходимостью регистрировать сигналы АЭ при ускоренном развитии трещин, для которых характерны интенсивный поток импульсов относительно больших амплитуд. Динамический диапазон сигналов АЭ при выполнении контроля может достигать 100 дБ и более.

Технические средства АЭ-метода являются средствами контроля объектов и определения значений параметров сигналов АЭ. Они имеют параметры и технические характеристики, которые должны быть определены для каждой системы (прибора) АЭ в процессе сертификационных испытаний.

2. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ ДОКУМЕНТА

2.1. Настоящий документ предназначен для руководства при определении технических характеристик и параметров аппаратуры АЭ в процессе испытаний. Данный документ определяет методы и средства определения параметров и технических характеристик аппаратуры АЭ в процессе испытаний. Документ следует использовать при первичных и периодических испытаниях аппаратуры АЭ или после устранения отказа в работе аппаратуры.

2.2. В случае если в технической документации на прибор АЭ изготовитель предусмотрел определение значений параметров прибора, должна быть использована методика изготовителя совместно с методами, описанными в данном документе.

2.3. Методики контроля и определения значений параметров и технических характеристик блоков или компонентов приборов АЭ и результаты выполненных операций должны быть оформлены документально.

3. КЛАССИФИКАЦИЯ СРЕДСТВ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ

3.1. Средства АЭ-контроля по их сложности разделяются на приборы и системы. Приборы АЭ подразделяются на:

3.2. По месту использования аппаратных средств они делятся на:

3.3. По способу использования подразделяются на:

3.3.2. Мобильные (установленные на технических средствах перемещения).

3.4. По области применения подразделяются на:

3.5. По классу аппаратные средства АЭ-контроля разделяются на четыре класса, в соответствии с объемом получаемой при АЭ-контроле информации.

3.5.1. Аппаратура I класса обеспечивает выделение, обработку, представление и классификацию источников АЭ в полном соответствии с Правилами организации и проведения акустико-эмиссионного контроля сосудов, аппаратов, котлов и технологических трубопроводов (РД 03-131-97). К аппаратуре I класса относятся универсальные АЭ-системы.

Все перечисленные в данном документе требования относятся к аппаратуре I и II класса.

4. СОСТАВ АППАРАТУРЫ АКУСТИЧЕСКОЙ ЭМИССИИ

В состав аппаратуры АЭ входят, как правило, следующие блоки:

преобразователи АЭ (ПАЭ);

предварительные и основные усилители;

средства идентификации и обработки сигналов, включая пороговые устройства, устройства выделения и измерений параметров сигналов АЭ, устройства регистрации и представления информации;

средства измерения вспомогательных параметров;

В состав аппаратуры АЭ по согласованию с заказчиком могут входить также ЭВМ, устройства крепления акустических преобразователей, кабельные линии, датчики регистрации вспомогательных физических величин и другое оборудование, с учетом особенностей использования. Требования к преобразователям АЭ и методы их калибровки приведены в Требованиях к преобразователям акустической эмиссии, применяемым для контроля опасных производственных объектов (РД 03-300-99).

5. ПАРАМЕТРЫ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ АППАРАТУРЫ АКУСТИЧЕСКОЙ ЭМИССИИ

Технические данные, характеризующие работу аппаратуры АЭ, подразделяются на основные (параметры и технические характеристики) и общие (параметры и технические характеристики).

5.1. Основные параметры и технические характеристики

К основным параметрам и техническим характеристикам аппаратуры АЭ относятся:

5.1.2. Динамический диапазон усилительного тракта.

5.1.3. Диапазон рабочих частот.

5.1.4. Амплитудно-частотная характеристика (АЧХ).

5.1.5. Максимальная скорость обработки импульсов АЭ.

5.1.6. Число каналов аппаратуры.

5.1.7. Перечень измеряемых параметров сигнала АЭ.

5.1.8. Перечень устанавливаемых параметров аппаратуры АЭ.

5.2. Общие параметры и технические характеристики

5.2.1. Напряжение электрического питания.

5.2.2. Потребляемая мощность.

5.2.3. Климатические и технические условия работы аппаратуры (влажность, температура и др.).

5.2.4. Масса аппаратуры.

5.2.5. Габаритные размеры аппаратуры и отдельных блоков.

5.2.6. Число блоков аппаратуры.

6. ТРЕБОВАНИЯ К ПАРАМЕТРАМ И ТЕХНИЧЕСКИМ ХАРАКТЕРИСТИКАМ АППАРАТУРЫ АКУСТИЧЕСКОЙ ЭМИССИИ (АЭ)

К параметрам и техническим характеристикам аппаратуры АЭ, используемой для контроля объектов, подконтрольных Госгортехнадзору России, предъявляются следующие требования:

6.1. Эффективное значение напряжения собственных шумов усилительного тракта (в режиме короткого замыкания его входа), приведенное к входу усилительного тракта, не должно превышать 5 мкВ.

6.2. Динамический диапазон измерения амплитуды сигнала АЭ должен быть не менее 60 дБ.

6.3. Диапазон рабочих частот аппаратуры должен входить в диапазон 10,0 кГц-1,0 МГц. Максимальные отклонения частот среза не должны превышать 10% номинальных значений частот среза.

Ослабление за пределами рабочего диапазона при расстройке относительно частот среза на октаву (в 2 раза) по каждому каналу АЭ-аппаратуры должно быть, как правило, не менее 30 дБ. Неравномерность амплитудно-частотной характеристики не должна превышать ±3 дБ.

6.4. Погрешность измерения амплитуды сигнала АЭ не должна превышать ±2 дБ при измерении на среднегеометрической частоте рабочего диапазона частот.

6.5. Диапазон регулировки порогового напряжения, приведенного к входу, 20-80 дБ (относительно 1 мкВ на входе усилительного тракта), разрешение 1 дБ.

6.6. Наряду с фиксированным порогом допускается применение «плавающего порога». Превышение уровня порога над среднеквадратичным значением уровня шума должно регулироваться в пределах 10-20 дБ.

6.7. В аппаратуре должен быть блок расчета энергии (энергетических параметров) импульсов АЭ.

6.9. Наличие в аппаратуре световой и (или) звуковой сигнализации, которая включается при превышении установленного порога.

6.10. При регистрации времени поступления сигнала АЭ разрешение не более 1 мкс.

6.11. Диапазон измерения длительности сигнала не менее 65 мс, разрешение не более 1 мкс.

6.12. Диапазон измерения числа выбросов (в импульсе) не менее 65000, разрешение 1.

6.13. Диапазон измерения времени нарастания сигнала (достижения максимального значения) не менее 65 мс, разрешение не более 1 мкс.

6.14. Скорость обработки импульсов АЭ при работе в одноканальном режиме не менее 1000 1/с.

6.15. Аппаратура должна обеспечивать регистрацию и архивирование первичных параметров сигналов АЭ и их зависимостей на срок не менее 10 лет.

Источник

Какие изоляторы должны подвергаться акустико эмиссионному контролю

РУКОВОДЯЩИЕ ДОКУМЕНТЫ ГОСГОРТЕХНАДЗОРА РОССИИ

ПРАВИЛА ОРГАНИЗАЦИИ И ПРОВЕДЕНИЯ АКУСТИКО-ЭМИССИОННОГО
КОНТРОЛЯ СОСУДОВ, АППАРАТОВ, КОТЛОВ
И ТЕХНОЛОГИЧЕСКИХ ТРУБОПРОВОДОВ

Дата введения 1997-01-01

УТВЕРЖДЕНЫ постановлением Госгортехнадзора России от 11.11.96 N 44

ВНЕСЕНО Изменение N 1, принятое и введенное в действие постановлением Госгортехнадзора России от 21.11.2002 N 66 и опубликованное в официальном издании

Изменение N 1 внесено изготовителем базы данных по тексту официального издания

Разделы, пункты, таблицы, в которые внесены изменения, отмечены в настоящем документе (К)

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Назначение и область применения

Правила организации и проведения акустико-эмиссионного контроля сосудов, аппаратов, котлов и технологических трубопроводов* устанавливают требования, обеспечивающие организацию и проведение акустико-эмиссионного контроля объектов, подконтрольных Госгортехнадзору России, и распространяются на проведение акустико-эмиссионного контроля сосудов, аппаратов, котлов и технологических трубопроводов, работающих при избыточном давлении. Использование настоящего документа для других объектов допускается только по согласованию с органами, осуществляющими надзор за их безопасной эксплуатацией.

1.1.1. Основные положения по применению акустико-эмиссионного метода контроля сосудов, котлов,
аппаратов и технологических трубопроводов

Метод акустической эмиссии (АЭ) обеспечивает выявление развивающихся дефектов посредством регистрации и анализа акустических волн, возникающих в процессе пластической деформации и роста трещин в контролируемых объектах. Кроме того, метод АЭ позволяет выявить истечение рабочего тела (жидкости или газа) через сквозные отверстия в контролируемом объекте. Указанные свойства метода АЭ дают возможность формировать адекватную систему классификации дефектов и критерии оценки технического состояния, объекта, основанные на реальном влиянии дефекта на объект.

Характерными особенностями метода АЭ, определяющими его возможности, параметры и области применения, являются следующие:

Метод АЭ обеспечивает обнаружение и регистрацию только развивающихся дефектов, что позволяет классифицировать дефекты не по размерам, а по степени их опасности.

Свойство интегральности метода АЭ обеспечивает контроль всего объекта с использованием одного или нескольких преобразователей АЭ, неподвижно установленных на поверхности объекта.

Метод АЭ позволяет проводить контроль различных технологических процессов и процессов изменения свойств и состояния материалов.

Положение и ориентация дефекта не влияют на выявляемость дефектов.

Метод АЭ имеет меньше ограничений, связанных со свойствами и структурой конструкционных материалов, чем другие методы неразрушающего контроля.

Особенностью метода АЭ, ограничивающей его применение, является в ряде случаев трудность выделения сигналов АЭ из помех. Это связано с тем, что сигналы АЭ являются шумоподобными, поскольку АЭ является случайным импульсным процессом. Поэтому, когда сигналы АЭ малы по амплитуде, выделение полезного сигнала из помех представляет собой сложную задачу. При развитии дефекта, когда его размеры приближаются к критическому значению, амплитуда сигналов АЭ и темп их генерации резко увеличиваются, что приводит к значительному возрастанию вероятности обнаружения такого источника АЭ.

Целью акустико-эмиссионного контроля является обнаружение, определение координат и слежение (мониторинг) за источниками АЭ, связанными с несплошностями на поверхности или в объеме стенки сосуда, сварного соединения и изготовленных частей и компонентов. Источники АЭ рекомендуется при наличии технической возможности оценить другими методами неразрушающими контроля. Метод АЭ может быть использован также для оценки скорости развития дефекта в целях заблаговременного прекращения испытаний и предотвращения разрушения изделия. Регистрация АЭ позволяет определить образование свищей, сквозных трещин, протечек в уплотнениях, заглушках, арматуре и фланцевых соединениях.

Акустико-эмиссионный контроль технического состояния обследуемых объектов проводится только при создании в конструкции напряженного состояния, инициирующего в материале объекта работу источников АЭ. Для этого объект подвергается нагружению силой, давлением, температурным полем и т.д. Выбор вида нагрузки определяется конструкцией объекта и условиями его работы, характером испытаний.

1.1.2. Схемы применения акустико-эмиссионного метода контроля

Метод АЭ рекомендуется использовать для контроля промышленных объектов по следующим схемам, включающим в ряде случаев использование других методов неразрушающего контроля:

1.1.2.2. Проводят контроль одним или несколькими методами неразрушающего контроля. При обнаружении недопустимых (по нормам традиционных методов контроля) дефектов или при возникновении сомнения в достоверности применяемых методов неразрушающего контроля проводят контроль объекта с использованием метода АЭ. Окончательное решение о допуске объекта в эксплуатацию или ремонте обнаруженных дефектов принимают по результатам проведенного акустико-эмиссионного контроля.

1.1.2.3. В случае наличия в объекте дефекта, выявленного одним из методов неразрушающего контроля, метод АЭ используют для слежения за развитием этого дефекта. При этом может быть использован экономный вариант системы контроля, с применением одноканальной или малоканальной конфигурации акустико-эмиссионной аппаратуры.

1.1.2.4. Метод АЭ в соответствии с Правилами устройства и безопасной эксплуатации сосудов, работающих под давлением, применяют при пневмоиспытании объекта в качестве сопровождающего метода, повышающего безопасность проведения испытаний. В этом случае целью применения акустико-эмиссионного контроля служит обеспечение предупреждения возможности катастрофического разрушения. Рекомендуется использовать метод АЭ в качестве сопровождающего метода при гидроиспытании объектов.

1.1.2.5. Метод АЭ может быть использован для оценки остаточного ресурса и решения вопроса относительно возможности дальнейшей эксплуатации объекта. Оценка ресурса производится с использованием специально разработанной методики, согласованной с Госгортехнадзором России. При этом достоверность результатов зависит от объема и качества априорной информации о моделях развития повреждений и состояния материала контролируемого объекта.

1.1.3. Порядок применения метода акустической эмиссии

1.1.3.1. Акустико-эмиссионный контроль проводят во всех случаях, когда он предусмотрен правилами безопасности или технической документацией на объект.

1.1.3.2. Акустико-эмиссионный контроль проводят во всех случаях, когда нормативно-техническими документами на объект предусмотрено проведение неразрушающего контроля (ультразвуковой контроль, радиография, МПД, КД и другими методами неразрушающего контроля), но по техническим или другим причинам проведение неразрушающего контроля указанными методами затруднительно или невозможно.

1.1.3.3. Допускается использование акустико-эмиссионного контроля самостоятельно, а также вместо перечисленных в п.1.1.3.2. методов неразрушающего контроля по согласованию с Госгортехнадзором России.

1.2. Объекты контроля

Настоящий документ распространяется на емкостное, колонное, реакторное, теплообменное оборудование химических, нефтехимических и нефтеперерабатывающих производств, изотермические хранилища, хранилища сжиженных углеводородных газов под давлением, резервуары нефтепродуктов и агрессивных жидкостей, оборудование аммиачных холодильных установок, сосуды, котлы, аппараты, технологические трубопроводы пара и горячей воды и их элементы.

2. ТРЕБОВАНИЯ К ОРГАНИЗАЦИИ РАБОТ, ИСПОЛНИТЕЛЯМ И ПОРЯДОК ПОДГОТОВКИ К ВЫПОЛНЕНИЮ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ

2.1. Организация контроля

В подготовке и проведении акустико-эмиссионного контроля участвуют как исполнитель, так и заказчик. Существенным фактором, влияющим на результаты акустико-эмиссионного контроля, являются меры, предшествующие непосредственно его проведению. Выполняются следующие действия:

2.1.1. После получения официальной заявки от заказчика представитель исполнителя проводит предварительное ознакомление с объектом контроля с целью изучения технической возможности проведения контроля. На данной стадии решается вопрос о виде контроля: акустико-эмиссионный контроль объекта может быть разовым, постоянно-периодическим с использованием переносных приборов и постоянным с использованием стационарных приборов (мониторинг).

2.1.2. После оформления договора на проведение акустико-эмиссионного контроля заказчик представляет исполнителю всю необходимую для проведения контроля проектную и техническую документацию на объект контроля с фактическими условиями и режимами эксплуатации.

2.1.3. После ознакомления с документацией на объект исполнитель составляет Программу работ по акустико-эмиссионному контролю объекта*. Программа работ утверждается ответственным должностным лицом предприятия-заказчика. Это должны быть главный инженер (технический директор) предприятия либо лицо его замещающее.

В Программе работ должны быть отражены мероприятия, проводимые предприятием-заказчиком по подготовке к выполнению акустико-эмиссионного контроля, порядок проведения работ с выделением обязанностей каждого участника работ как со стороны исполнителя, так и со стороны заказчика. Программа работ должна включать организационно-технические мероприятия, обеспечивающие успешное выполнение акустико-эмиссионного контроля. В Программу работ должны входить следующие мероприятия:

предоставление помещения для размещения акустико-эмиссионной аппаратуры (при необходимости). Температура в помещении должна быть не ниже 18 °С, оно должно быть обеспечено электропитанием напряжением 220 В и мощностью не ниже 10 кВт;

обеспечение доступа к местам установки преобразователей АЭ на объекте контроля. Заказчик, при необходимости, должен обеспечить подъемные механизмы, установить леса, изготовить и установить заглушки, выделить персонал для вспомогательных работ, включая вырезку окон в теплоизоляции и зачистку поверхности в местах установки преобразователей АЭ (чистота поверхностей должна быть не хуже Rz40); исполнитель должен отвести всех ремонтных рабочих на период акустико-эмиссионного контроля от контролируемого объекта, прекратить работы на близко расположенных объектах и т.д.;

обеспечение изменения нагрузки на объект согласно графику нагружения, разработанному исполнителем;

обеспечение двусторонней связи между персоналом, выполняющим контроль, и эксплуатационным персоналом, осуществляющим изменение нагрузки;

проведение инструктажа по технике безопасности и обеспечение специалистов, проводящих акустико-эмиссионный контроль, индивидуальными средствами защиты и спецодеждой.

Мероприятия по безопасному ведению работ выполняются предприятием-заказчиком.

2.2. Предварительное изучение объекта контроля

Перед проведением акустико-эмиссионного контроля исполнитель должен тщательно изучить объект контроля с целью получения данных для разработки конкретной технологии акустико-эмиссионного контроля данного объекта. «Технология контроля объекта»*, являющаяся частью Программы работ, должна быть разработана на основании настоящего документа и данных, полученных при изучении объекта контроля. Технология контроля должна быть приведена в отчетной документации по контролю.

При разработке Технологии контроля необходимо иметь следующие данные:

2.2.1. Акустические свойства материала и контролируемого объекта, включая необходимые для выполнения акустико-эмиссионного контроля скорости и коэффициенты затухания волн, импедансы материалов.

2.2.2. Требуемые для акустико-эмиссионного контроля свойства материала объекта.

2.2.3. Параметры объекта как акустического канала. Акустические и акустико-эмиссионные параметры получают при предварительном изучении объекта контроля либо используют известные из технической и научной литературы данные.

На основании полученных данных разрабатывают методические приемы контроля объекта, а также разрабатывают систему (либо выбирают из уже существующих систем и критериев) классификации источников АЭ и критериев оценки результатов контроля. Выбор системы классификации источников АЭ и критериев оценки рекомендуется согласовывать со специализированной экспертной организацией из числа аккредитованных Госгортехнадзором России.

2.2.4. Технология контроля согласовывается с заказчиком до проведения контроля с целью выполнения заказчиком необходимых подготовительных работ.

В Технологии контроля должна содержаться следующая информация:

а) материал и конструкция контролируемого объекта, включая размеры и форму, тип хранимого (рабочего) продукта;

б) данные о параметрах шумов;

в) тип и параметры преобразователей АЭ, их изготовитель, сведения о калибровке;

г) метод крепления преобразователей АЭ;

д) контактная среда;

е) очистка объекта после контроля;

ж) схема расположения преобразователей АЭ;

з) тип прибора АЭ, его параметры;

и) описание системы и результатов калибровки акустико-эмиссионной аппаратуры;

к) регистрируемые данные и методы регистрации;

л) система классификации источников АЭ и критерии оценки состояния контролируемого объекта по результатам контроля;

м) квалификация операторов.

Данные об объекте контроля и основных параметрах контроля заносят в протокол по результатам акустико-эмиссионного контроля (приложение 4).

Полностью описывают процедуру гидро-(пневмо-)испытания; приводят графики изменения нагрузки и температуры во времени.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *