ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

ВсС ΠΏΡ€ΠΎ арксинус, арккосинус, арктангСнс, арккотангСнс

Π€ΡƒΠ½ΠΊΡ†ΠΈΠΈ sin, cos, tg ΠΈ ctg всСгда ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°ΡŽΡ‚ΡΡ арксинусом, арккосинусом, арктангСнсом ΠΈ арккотангСнсом. Одно являСтся слСдствиСм Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ, Π° ΠΏΠ°Ρ€Ρ‹ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ Π²Π°ΠΆΠ½Ρ‹ для Ρ€Π°Π±ΠΎΡ‚Ρ‹ с тригономСтричСскими выраТСниями.

Рассмотрим рисунок Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ окруТности, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ графичСски ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Если Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ arcs OA, arcos OC, arctg DE ΠΈ arcctg MK, Ρ‚ΠΎ всС ΠΎΠ½ΠΈ Π±ΡƒΠ΄ΡƒΡ‚ Ρ€Π°Π²Π½Ρ‹ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ ΡƒΠ³Π»Π° Ξ±. Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹, ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ Π½ΠΈΠΆΠ΅, ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‚ взаимосвязь основных тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΈΠΌ Π°Ρ€ΠΊΠΎΠ².

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Арксинус

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Π§Ρ‚ΠΎΠ±Ρ‹ большС ΠΏΠΎΠ½ΡΡ‚ΡŒ ΠΎ свойствах арксинуса, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π΅Π³ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ. Π“Ρ€Π°Ρ„ΠΈΠΊ y = arcsin x ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ асиммСтричной ΠΊΡ€ΠΈΠ²ΠΎΠΉ, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ†Π΅Π½Ρ‚Ρ€ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Если ΡΠΎΠΏΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ sin ΠΈ arcsin, Ρƒ Π΄Π²ΡƒΡ… тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΎΠ±Ρ‰ΠΈΠ΅ закономСрности.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Арккосинус

Arccos числа Π° – это Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΡƒΠ³Π»Π° Ξ±, косинус ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€Π°Π²Π΅Π½ Π°.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

ΠšΡ€ΠΈΠ²Π°Ρ y = arcos x Π·Π΅Ρ€ΠΊΠ°Π»ΡŒΠ½ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ°Π΅Ρ‚ Π³Ρ€Π°Ρ„ΠΈΠΊ arcsin x, с Ρ‚ΠΎΠΉ лишь Ρ€Π°Π·Π½ΠΈΡ†Π΅ΠΉ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ Ο€/2 Π½Π° оси OY.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Рассмотрим Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ арккосинуса Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ:

НСкоторыС свойства арккосинуса ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚ с Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ косинуса.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, школьникам покаТСтся излишним Ρ‚Π°ΠΊΠΎΠ΅ Β«ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎΠ΅Β» ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Β«Π°Ρ€ΠΊΠΎΠ²Β». Однако, Π² ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠΌ случаС, Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ элСмСнтарныС Ρ‚ΠΈΠΏΠΎΠ²Ρ‹Π΅ задания Π•Π“Π­ ΠΌΠΎΠ³ΡƒΡ‚ ввСсти учащихся Π² Ρ‚ΡƒΠΏΠΈΠΊ.

Π—Π°Π΄Π°Π½ΠΈΠ΅ 1. Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Π΅ Π½Π° рисункС.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

ΠžΡ‚Π²Π΅Ρ‚: рис. 1 – 4, рис.2 – 1.

Π’ Π΄Π°Π½Π½ΠΎΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΡƒΠΏΠΎΡ€ сдСлан Π½Π° ΠΌΠ΅Π»ΠΎΡ‡Π°Ρ…. ΠžΠ±Ρ‹Ρ‡Π½ΠΎ ΡƒΡ‡Π΅Π½ΠΈΠΊΠΈ ΠΎΡ‡Π΅Π½ΡŒ Π½Π΅Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ относятся ΠΊ ΠΏΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΡŽ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² ΠΈ Π²Π½Π΅ΡˆΠ½Π΅ΠΌΡƒ Π²ΠΈΠ΄Ρƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Π·Π°Ρ‡Π΅ΠΌ Π·Π°ΠΏΠΎΠΌΠΈΠ½Π°Ρ‚ΡŒ Π²ΠΈΠ΄ ΠΊΡ€ΠΈΠ²ΠΎΠΉ, Ссли Π΅Π΅ всСгда ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΠΏΠΎ расчСтным Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ. НС стоит Π·Π°Π±Ρ‹Π²Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π² условиях тСста врСмя, Π·Π°Ρ‚Ρ€Π°Ρ‡Π΅Π½Π½ΠΎΠ΅ Π½Π° рисунок для простого задания, потрСбуСтся для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π±ΠΎΠ»Π΅Π΅ слоТных Π·Π°Π΄Π°Π½ΠΈΠΉ.

АрктангСнс

Arctg числа a – это Ρ‚Π°ΠΊΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΡƒΠ³Π»Π° Ξ±, Ρ‡Ρ‚ΠΎ Π΅Π³ΠΎ тангСнс Ρ€Π°Π²Π΅Π½ Π°.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Если Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ арктангСнса, ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ свойства:

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ ΠΊΡ€Π°Ρ‚ΠΊΠΈΠΉ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· tg x ΠΈ arctg x Π² Π²ΠΈΠ΄Π΅ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

АрккотангСнс

Arcctg числа a – ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ξ± ΠΈΠ· ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° (0; Ο€), Ρ‡Ρ‚ΠΎ Π΅Π³ΠΎ котангСнс Ρ€Π°Π²Π΅Π½ Π°.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Бвойства Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ арккотангСнса:

Π‘ΠΎΠΏΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ctg x ΠΈ arctg x ΠΎΡ‡Π΅Π½ΡŒ просто, Π½ΡƒΠΆΠ½ΠΎ лишь ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π΄Π²Π° рисунка ΠΈ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΡ€ΠΈΠ²Ρ‹Ρ….

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Π—Π°Π΄Π°Π½ΠΈΠ΅ 2. БоотнСсти Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΈ Ρ„ΠΎΡ€ΠΌΡƒ записи Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Если Ρ€Π°ΡΡΡƒΠΆΠ΄Π°Ρ‚ΡŒ логичСски, ΠΈΠ· Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΎΠ±Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰ΠΈΠ΅. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΎΠ±Π° рисунка ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ°ΡŽΡ‚ Π½Π΅ΠΊΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ arctg. Из свойств арктангСнса извСстно, Ρ‡Ρ‚ΠΎ y=0 ΠΏΡ€ΠΈ x = 0,

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

ΠžΡ‚Π²Π΅Ρ‚: рис. 1 – 1, рис. 2 – 4.

ВригономСтричСскиС тоТдСства arcsin, arcos, arctg ΠΈ arcctg

Π Π°Π½Π΅Π΅ Π½Π°ΠΌΠΈ ΡƒΠΆΠ΅ Π±Ρ‹Π»Π° выявлСна взаимосвязь ΠΌΠ΅ΠΆΠ΄Ρƒ Π°Ρ€ΠΊΠ°ΠΌΠΈ ΠΈ основными функциями Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Данная Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π° рядом Ρ„ΠΎΡ€ΠΌΡƒΠ», ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΡ… Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, синус Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°, Ρ‡Π΅Ρ€Π΅Π· Π΅Π³ΠΎ арксинус, арккосинус ΠΈΠ»ΠΈ Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚. Π—Π½Π°Π½ΠΈΠ΅ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… тоТдСств Π±Ρ‹Π²Π°Π΅Ρ‚ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ΠΌ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ².

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Π’Π°ΠΊΠΆΠ΅ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ для arctg ΠΈ arcctg:

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Π•Ρ‰Π΅ ΠΎΠ΄Π½Π° полСзная ΠΏΠ°Ρ€Π° Ρ„ΠΎΡ€ΠΌΡƒΠ», устанавливаСт Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ для суммы Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ arcsin ΠΈ arcos, Π° Ρ‚Π°ΠΊΠΆΠ΅ arcctg ΠΈ arcctg ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈ Ρ‚ΠΎΠ³ΠΎ ΠΆΠ΅ ΡƒΠ³Π»Π°.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡

Задания ΠΏΠΎ Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ условно Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹: Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ числовоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠ³ΠΎ выраТСния, ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π½Π°ΠΉΡ‚ΠΈ Π΅Π΅ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния ΠΈΠ»ΠΈ ΠžΠ”Π— ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ аналитичСскиС прСобраТСния для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°.

ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° Π·Π°Π΄Π°Ρ‡ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡ€ΠΈΠ΄Π΅Ρ€ΠΆΠΈΠ²Π°Ρ‚ΡŒΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΏΠ»Π°Π½Π° дСйствий:

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

ΠŸΡ€ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅ с Π³Ρ€Π°Ρ„ΠΈΠΊΠ°ΠΌΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π³Π»Π°Π²Π½ΠΎΠ΅ – это Π·Π½Π°Π½ΠΈΠ΅ ΠΈΡ… свойств ΠΈ внСшнСго Π²ΠΈΠ΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠΉ. Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ тригономСтричСских ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ нСравСнств Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ тоТдСств. Π§Π΅ΠΌ большС Ρ„ΠΎΡ€ΠΌΡƒΠ» ΠΏΠΎΠΌΠ½ΠΈΡ‚ школьник, Ρ‚Π΅ΠΌ ΠΏΡ€ΠΎΡ‰Π΅ Π½Π°ΠΉΡ‚ΠΈ ΠΎΡ‚Π²Π΅Ρ‚ задания.

Допустим Π² Π•Π“Π­ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΎΡ‚Π²Π΅Ρ‚ для уравнСния Ρ‚ΠΈΠΏΠ°:

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Если ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΈ привСсти ΠΊ Π½ΡƒΠΆΠ½ΠΎΠΌΡƒ Π²ΠΈΠ΄Ρƒ, Ρ‚ΠΎ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ Π΅Π³ΠΎ ΠΎΡ‡Π΅Π½ΡŒ просто ΠΈ быстро. Для Π½Π°Ρ‡Π°Π»Π°, пСрСнСсСм arcsin x Π² ΠΏΡ€Π°Π²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ равСнства.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Если Π²ΡΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ arcsin (sin Ξ±) = Ξ±, Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ свСсти поиск ΠΎΡ‚Π²Π΅Ρ‚ΠΎΠ² ΠΊ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ систСмы ΠΈΠ· Π΄Π²ΡƒΡ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

ΠžΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π½Π° модСль x Π²ΠΎΠ·Π½ΠΈΠΊΠ»ΠΎ, ΠΎΠΏΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΈ ΠΈΠ· свойств arcsin: ΠžΠ”Π— для x [-1; 1]. ΠŸΡ€ΠΈ Π° β‰ 0, Ρ‡Π°ΡΡ‚ΡŒ сиcΡ‚Π΅ΠΌΡ‹ прСдставляСт собой ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ с корнями x1 = 1 ΠΈ x2 = – 1/a. ΠŸΡ€ΠΈ a = 0, x Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π΅Π½ 1.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

НахоТдСниС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ арксинуса, арккосинуса, арктангСнса ΠΈ арккотангСнса

Π’ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ вопросы нахоТдСния Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ арксинуса, арккосинуса, арктангСнса ΠΈ арккотангСнса Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ числа. Для Π½Π°Ρ‡Π°Π»Π° вводятся понятия арксинуса, арккосинуса, арктангСнса ΠΈ арккотангСнса. РассматриваСм основныС ΠΈΡ… значСния, ΠΏΠΎ Ρ‚Π°Π±Π»ΠΈΡ†Π°ΠΌ, Π² Ρ‚ΠΎΠΌ числС ΠΈ Брадиса, Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

ЗначСния арксинуса, арккосинуса, арктангСнса ΠΈ арккотангСнса

НСобходимо Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒΡΡ Π² понятиях «значСния арксинуса, арккосинуса, арктангСнса, арккотангСнса».

Для Ρ‡Π΅Ρ‚ΠΊΠΎΠ³ΠΎ понимания рассмотрим ΠΏΡ€ΠΈΠΌΠ΅Ρ€.

Π’Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ ΡƒΠ³Π»Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΊΠ°ΠΊ градус, Ρ‚Π°ΠΊ ΠΈ Ρ€Π°Π΄ΠΈΠ°Π½. Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΡƒΠ³Π»Π° Ο€ 3 равняСтся ΡƒΠ³Π»Ρƒ Π² 60 градусов (ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅ΠΉ разбираСтся Π² Ρ‚Π΅ΠΌΠ΅ ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Π° градусов Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎ). Π”Π°Π½Π½Ρ‹ΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ с арккосинусом 1 2 ΠΈΠΌΠ΅Π΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ 60 градусов. Вакая тригономСтричСская запись ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ a r c cos 1 2 = 60 Β°

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ значСния arcsin, arccos, arctg ΠΈ arctg

Π’Π°Π±Π»ΠΈΡ†Π° синусов основных ΡƒΠ³Π»ΠΎΠ² ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ Ρ‚Π°ΠΊΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΡƒΠ³Π»ΠΎΠ²:

Для ΡƒΠ΄ΠΎΠ±Π½ΠΎΠ³ΠΎ примСнСния Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ арксинуса занСсСм Π² Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ. Π‘ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ придСтся Π²Ρ‹ΡƒΡ‡ΠΈΡ‚ΡŒ эти значСния, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ приходится часто ΠΊ Π½ΠΈΠΌ ΠΎΠ±Ρ€Π°Ρ‰Π°Ρ‚ΡŒΡΡ. НиТС ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π° Ρ‚Π°Π±Π»ΠΈΡ†Π° арксинуса с Ρ€Π°Π΄ΠΈΠ°Π½Π½Ρ‹ΠΌ ΠΈ градусным Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ ΡƒΠ³Π»ΠΎΠ².

— Ο€ 2— Ο€ 3— Ο€ 4— Ο€ 60Ο€ 6Ο€ 4Ο€ 3Π² Π³ Ρ€ Π° Π΄ Ρƒ с Π° Ρ…— 90 Β°— 60 Β°— 45 Β°— 30 Β°0 Β°30 Β°45 Β°60 Β°a r c sin Ξ± ΠΊ Π° ΠΊ Ρ‡ ΠΈ с Π» ΠΎ— Ο€ 2— Ο€ 3— Ο€ 4— Ο€ 60Ο€ 6Ο€ 4Ο€ 3

Для получСния основных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ арккосинуса Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚ΡŒΡΡ ΠΊ Ρ‚Π°Π±Π»ΠΈΡ†Π΅ косинусов основных ΡƒΠ³Π»ΠΎΠ². Π’ΠΎΠ³Π΄Π° ΠΈΠΌΠ΅Π΅ΠΌ:

БлСдуя ΠΈΠ· Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹, Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ значСния арккосинуса:

Ο€5 Ο€ 63 Ο€ 42 Ο€ 3Ο€ 2Ο€ 3Ο€ 4Ο€ 60Π² Π³ Ρ€ Π° Π΄ Ρƒ с Π° Ρ…180 Β°150 Β°135 Β°120 Β°90 Β°60 Β°45 Β°30 Β°0 Β°a r c cos Ξ± ΠΊ Π° ΠΊ Ρ‡ ΠΈ с Π» ΠΎΟ€5 Ο€ 63 Ο€ 42 Ο€ 3Ο€ 2Ο€ 3Ο€ 4Ο€ 60

Π’Π°ΠΊΠΈΠΌ ΠΆΠ΅ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, исходя ΠΈΠ· опрСдСлСния ΠΈ стандартных Ρ‚Π°Π±Π»ΠΈΡ†, находятся значСния арктангСнса ΠΈ арккотангСнса, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Ρ‹ Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅ арктангСнсов ΠΈ арккотангСнсов Π½ΠΈΠΆΠ΅.

Ξ±— 3— 1— 3 303 313
a r c t g a ΠΊ Π° ΠΊ Ρƒ Π³ ΠΎ Π»Π² Ρ€ Π° Π΄ ΠΈ Π° Π½ Π° Ρ…— Ο€ 3— Ο€ 4— Ο€ 60Ο€ 6Ο€ 4Ο€ 3
Π² Π³ Ρ€ Π° Π΄ Ρƒ с Π° Ρ…— 60 Β°— 45 Β°— 30 Β°0 Β°30 Β°45 Β°60 Β°
a r c t g a ΠΊ Π° ΠΊ Ρ‡ ΠΈ с Π» ΠΎ— Ο€ 3— Ο€ 4— Ο€ 60Ο€ 6Ο€ 4Ο€ 3

НахоТдСниС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΏΠΎ Ρ‚Π°Π±Π»ΠΈΡ†Π°ΠΌ синусов, косинусов, тангСнсов ΠΈ котангСнсов Брадиса

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Π‘Ρ‹Π²Π°ΡŽΡ‚ ситуации, ΠΊΠΎΠ³Π΄Π° искомого числа Π½Π΅Ρ‚ Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅ ΠΈ Π΄Π°ΠΆΠ΅ с ΠΏΠΎΠΏΡ€Π°Π²ΠΊΠ°ΠΌΠΈ Π΅Π³ΠΎ Π½Π΅ Π½Π°ΠΉΡ‚ΠΈ, Ρ‚ΠΎΠ³Π΄Π° отыскиваСтся Π΄Π²Π° самых Π±Π»ΠΈΠ·ΠΊΠΈΡ… значСния синусов. Если искомоС число 0,2861573, Ρ‚ΠΎ числа 0,2860 ΠΈ 0,2863 ΡΠ²Π»ΡΡŽΡ‚ΡΡ блиТайшими Π΅Π³ΠΎ значСниями. Π­Ρ‚ΠΈΠΌ числам ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ значСния синуса 16 градусов 37 ΠΌΠΈΠ½ΡƒΡ‚ ΠΈ 16 градусов ΠΈ 38 ΠΌΠΈΠ½ΡƒΡ‚. Π’ΠΎΠ³Π΄Π° ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠ³ΠΎ числа ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ с Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ Π΄ΠΎ ΠΌΠΈΠ½ΡƒΡ‚Ρ‹.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

НахоТдСниС значСния arcsin, arccos, arctg ΠΈ arcctg

Если Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°ΠΉΡ‚ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ арктангСнса ΠΈΠ»ΠΈ арккотангСнса числа a с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ извСстного арксинуса ΠΈΠ»ΠΈ арккосинуса, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎΠ»Π³ΠΈΠ΅ вычислСния, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ стандартных Ρ„ΠΎΡ€ΠΌΡƒΠ» Π½Π΅Ρ‚. Рассмотрим Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

ЀактичСски, Ρ‚Π°Π±Π»ΠΈΡ†Π° Брадиса ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ Π² Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ значСния ΡƒΠ³Π»Π° ΠΈ ΠΏΡ€ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ ΡƒΠ³Π»Π° позволяСт ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ количСство градусов.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

АрктангСнс- ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, свойства ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Π§Ρ‘Ρ‚Π½ΠΎΡΡ‚ΡŒ ΠΈ возрастаниС

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ арктангСнса, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ кривая тангСнса ΠΏΡƒΡ‚Ρ‘ΠΌ Π·Π°ΠΌΠ΅Π½Ρ‹ мСстами осСй ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ абсцисс. Для устранСния многозначности ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π», Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ функция ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½Π°. Π­Ρ‚ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ считаСтся основным Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ арктангСнса. Если ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, Π·Π½Π°Ρ‡ΠΈΡ‚ функция нСчётная.

Π“Π»Π°Π²Π½ΠΎΠ΅ свойство arctg β€” Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ Π½Π° Π΅Π³ΠΎ области опрСдСлСния (для числа Ρ…). Π’Π°ΠΊ ΠΊΠ°ΠΊ y = arctg x, Π³Π΄Π΅ y Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ, Ρ‚ΠΎΠ³Π΄Π° x = 0, Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΈ arctg 0. ΠŸΡ€ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ расчётов ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Ρ‚Π°Π±Π»ΠΈΡ†Π° арктангСнсов.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Π’ Π½Π΅ΠΉ ΡƒΠΊΠ°Π·Π°Π½Ρ‹ значСния Π² градусах ΠΈ Ρ€Π°Π΄ΠΈΠ°Π½Π°Ρ…, ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°. Если вычислСния Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ΡΡ Π½Π° матСматичСском Π²Π΅Π±-рСсурсС, ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŽ прСдоставляСтся Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ бСсплатно ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΠΈ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ Брадиса. МоТно Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ синус, косинус, ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ арктангСнса Π² эксСлС Π»ΠΈΠ±ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ языка программирования Паскаль.

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ свойства Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. ΠŸΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ опрСдСлСния арксинуса выполняСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ sin (arcsin a)=a. Бвойства Π΄Ρ€ΡƒΠ³ΠΈΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½:

Π’ ΠΏΠ΅Ρ€Π²Ρ‹Ρ… Π΄Π²ΡƒΡ… свойствах ΡΠΎΠ±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ условиС βˆ’1≀a≀1. Если Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π° Π²Ρ‹Ρ…ΠΎΠ΄ΠΈΡ‚ Π·Π° ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹, Ρ‚ΠΎΠ³Π΄Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅Ρ‚ смысла ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ. Учитывая свойства синуса арксинуса, нСльзя Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ sin (arcsin8)=8, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ sin (arcsin8) Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ смысла. Аналогичный ΠΎΡ‚Π²Π΅Ρ‚ получаСтся, Ссли Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ арккосинуса sqrt (ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ) ΠΈΠ· пяти.

ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Π΅ числа

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹, с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… производится расчёт связи ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ: arcsin (-a)=-arcsina, arccos (-a)=ΠΏΠΈ-arccosa, arctg (-a)=-arctga, arcctg (-a)=ΠΏΠΈ-arcctga. Π”ΠΎΠ»ΠΆΠ½ΠΎ ΡΠΎΠ±Π»ΡŽΠ΄Π°Ρ‚ΡŒΡΡ условиС βˆ’1≀a≀1. Если Π° ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΡƒ βˆ’βˆž Π΄ΠΎ +∞, Ρ‚ΠΎΠ³Π΄Π° arctg (βˆ’a), ΠΈ arcctg (βˆ’a).

Π§Ρ‚ΠΎΠ±Ρ‹ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€Π²ΠΎΠ΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ с ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΌΠΈ числами, рассматриваСтся ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ arcsin (βˆ’a). Число Π»ΠΈΠ±ΠΎ ΡƒΠ³ΠΎΠ» находится Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… βˆ’Ο€/2-Ο€/2 ΠΈ синус, Ρ€Π°Π²Π½Ρ‹ΠΉ βˆ’a. Учитывая ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ арксинуса, ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ равСнство: βˆ’Ο€/2≀arcsin a≀π/2.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

НСобходимо Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ sin (βˆ’arcsin a)=βˆ’a. Для этого рСкомСндуСтся ΠΏΡ€ΠΈΠ΄Π΅Ρ€ΠΆΠΈΠ²Π°Ρ‚ΡŒΡΡ свойств ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ². Из рассмотрСнных ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄: sin (βˆ’arcsin a)=βˆ’sin (arcsin a)=βˆ’a.

Аналогичным способом ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ arccos (βˆ’a)=Ο€βˆ’arccos a. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, подтвСрТдаСтся, Ρ‡Ρ‚ΠΎ Ο€βˆ’arccos a β€” ΡƒΠ³ΠΎΠ» Π»ΠΈΠ±ΠΎ число, Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ колСблСтся Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… 0-Ο€, Π° cos (Ο€βˆ’arccos a)=βˆ’a. ΠŸΡ€ΠΈΠ΄Π΅Ρ€ΠΆΠΈΠ²Π°ΡΡΡŒ опрСдСлСния арккосинуса числа, выполняСтся нСравСнство 0≀arccos a≀π.

Если срСдняя Ρ‡Π°ΡΡ‚ΡŒ уравнСния равняСтся βˆ’a, Ρ‚ΠΎΠ³Π΄Π°, ΠΏΡ€ΠΈΠ΄Π΅Ρ€ΠΆΠΈΠ²Π°ΡΡΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ привСдСния, записываСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ равСнство cos (Ο€βˆ’arccos a)=βˆ’cos (arcos a). Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ свойства ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ косинуса Π·Π°Π²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ΡΡ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ cos (Ο€βˆ’arccos a)=βˆ’cos (arcos a)=βˆ’a. Аналогичной схСмы рСкомСндуСтся ΠΏΡ€ΠΈΠ΄Π΅Ρ€ΠΆΠΈΠ²Π°Ρ‚ΡŒΡΡ ΠΏΡ€ΠΈ рассмотрСнии свойств арккотангСнсов ΠΈ арктангСнсов ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Ρ… Π·Π½Π°ΠΊΠΎΠ². Плюс утвСрТдСния β€” Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΈΠ·Π±Π°Π²ΠΈΡ‚ΡŒΡΡ ΠΎΡ‚ вычислСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… чисСл.

Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½

Бвойство, согласно ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ устанавливаСтся связь ΠΌΠ΅ΠΆΠ΄Ρƒ arccos arcsin числа Π°, ΠΈ ΠΌΠ΅ΠΆΠ΄Ρƒ arctg ΠΈ arcctg ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ, записываСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ: arcsina+arccosa=ΠΏΠΈ/2, arctga+arcctga=ΠΏΠΈ/2. Π§Ρ‚ΠΎΠ±Ρ‹ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€Π²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ равСнства, Π³Π΄Π΅ расписана сумма ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… синуса ΠΈ косинуса числа Π°, дСлённая Π½Π° Π΄Π²Π°, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΡƒΡŽ запись: arcsin a=Ο€/2βˆ’arccos a.

ΠžΡΠ½ΠΎΠ²Ρ‹Π²Π°ΡΡΡŒ Π½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ арксинуса, ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅Ρ€Π½ΠΎ, ΠΊΠΎΠ³Π΄Π° Ο€/2βˆ’arccos a β€” ΡƒΠ³ΠΎΠ» (Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅), Π»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ Π½Π° ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ βˆ’Ο€/2 Π΄ΠΎ Ο€/2, Π° синус ΡƒΠ³Π»Π° Ρ€Π°Π²Π΅Π½ Π°. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‚Π°ΠΊΡƒΡŽ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ арккосинуса ΠΈ равСнство 0≀arccos a≀π. ПослСднСС Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ считаСтся справСдливым.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Π‘ ΡƒΡ‡Ρ‘Ρ‚ΠΎΠΌ свойств нСравСнств, ΡƒΠΌΠ½ΠΎΠΆΠ°ΡŽΡ‚ΡΡ части Π½Π° минус ΠΎΠ΄ΠΈΠ½, ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Π·Π½Π°ΠΊΠΈ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ значСния ΡΡƒΠΌΠΌΠΈΡ€ΡƒΡŽΡ‚ΡΡ с числом Ο€/2. Π’Ρ‹ΠΏΠΎΠ»Π½ΠΈΠ² пСрСчислСнныС дСйствия, получаСтся нСравСнство βˆ’Ο€/2≀π/2βˆ’arccosa≀π/2. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ sin (Ο€/2βˆ’arccos a)=a, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° привСдСния, свойство ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ косинус.

Π”ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ сумма arccos ΠΈ arccos a Ρ€Π°Π²Π½Π° Ο€/2. Аналогично понадобится Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ сумма арккотангСнса числа a ΠΈ арктангСнса равняСтся Ο€/2. Π“Π»Π°Π²Π½ΠΎΠ΅ ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΈΡ… свойств Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‚ арксинус Ρ‡Π΅Ρ€Π΅Π· акрккосинус ΠΎΠ΄Π½ΠΎΠ³ΠΎ числа, Π° Ρ‚Π°ΠΊΠΆΠ΅ арккотангСнс Ρ‡Π΅Ρ€Π΅Π· арктангСнс ΠΈ Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ

Задания Π½Π° свойства Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ ΠΈΡ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΎΡ‚ числа Π»ΠΈΠ±ΠΎ ΡƒΠ³Π»Π° ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ€Π°Π·Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ: excel, pascal. ДСйствия Π±ΡƒΠ΄ΡƒΡ‚ Π·Π°Π²ΠΈΡΠ΅Ρ‚ΡŒ ΠΎΡ‚ условий Π·Π°Π΄Π°Ρ‡ΠΈ. РСшСниС Π΄ΠΎΠ»ΠΆΠ½ΠΎ ΠΎΡΠ½ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒΡΡ Π½Π° основныС ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ, Π΄ΠΎΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ Π»ΠΈΠ±ΠΎ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Ρ‘Π½Π½Ρ‹Π΅ равСнства. Бвойствам ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΎΡ‚Π²Π΅Ρ‡Π°ΡŽΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ выраТСния:

РавСнства ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹Ρ… условий ΡΠ»Π΅Π΄ΡƒΡŽΡ‚ ΠΈΠ· ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ числа. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ½ΡΡ‚ΡŒ утвСрТдСния, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ: arcsin (sin Ξ±)=Ξ±, ΠΏΡ€ΠΈ этом Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒΡΡ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠ΅ βˆ’Ο€/2≀α≀π/2. Аналогичным ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ Π΄ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΎΡΡ‚Π°Π²ΡˆΠΈΠ΅ΡΡ свойства. Если ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΡ‚ΡŒ sin Ξ±=Π°, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ находится Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ [βˆ’1, 1], Ρ‚ΠΎΠ³Π΄Π° получится Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ arcsin (sin Ξ±)=Ξ±, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ arcsin a=Ξ±. Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ ΠΈΠ· условий Π·Π°Π΄Π°Ρ‡, Ρ‡Ρ‚ΠΎ βˆ’Ο€/2≀α≀π/2. ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Ρ‡Π΅Ρ€Π΅Π· Π° ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠ»ΠΈ sin Ξ±.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ arcsin a=Ξ±, Ρ‡Ρ‚ΠΎ эквивалСнтно ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ синуса. Π’Ρ‹Π²ΠΎΠ΄: arcsin (sin Ξ±)=Ξ± ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ βˆ’Ο€/2≀α≀π/2. Π Π°Π·Π½Ρ‹Π΅ свойства, связанныС с синусом ΠΈ косинусом, тангСнсом ΠΈ котангСнсом, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅.

Π—Π°ΠΏΠΈΡΡŒ arccos (cos Ξ±) правдивая, Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ 0≀α≀π. Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ arccos (cos Ξ±)=Ξ± считаСтся справСдливым Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€ΠΈ Ρ‚Π°ΠΊΠΎΠΌ условии. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ arccos (cos (βˆ’3Ο€))=βˆ’3Ο€ Π½Π΅ Π²Π΅Ρ€Π½ΠΎ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ βˆ’3Ο€ Π½Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΌΡƒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΡƒ. Π‘Ρ…ΠΎΠΆΠΈΠ΅ утвСрТдСния Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹ ΠΈ для arcctg (ctg Ξ±), arctg (tg Ξ±).

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ всСх Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΈΡ… ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ, тригономСтричСскиС Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ равСнства ΠΈ уравнСния, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… отобраТаСтся связь ΠΌΠ΅ΠΆΠ΄Ρƒ arcsin, arcctg, arctg ΠΈ arccos. Π§Ρ‚ΠΎΠ±Ρ‹ быстро Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° Π΄Π°Π½Π½ΡƒΡŽ Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΡƒ, рСкомСндуСтся Π²Ρ‹ΡƒΡ‡ΠΈΡ‚ΡŒ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Ρ‘Π½Π½Ρ‹Π΅ равСнства (arcsin 0=0, arccos 1=0, ΠΊΠ°ΠΊ ΡƒΠ³ΠΎΠ» arccos (-1)=180 градусов). Они описаны Π² ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Ρ‚Π°Π±Π»ΠΈΡ†Π°Ρ…, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Π² глобальной сСти Π»ΠΈΠ±ΠΎ Π² ΡƒΡ‡Π΅Π±Π½ΠΈΠΊΠ°Ρ… ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

АрктангСнс ΠΈ арккотангСнс. Онлайн ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€

Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŽ этого ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ арксинус ΠΈ арккосинус ΠΎΡ‚ числа. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΈΠ΄Π΅Ρ‚ΡŒ ΠΊΠ°ΠΊ Π² градусах, Ρ‚Π°ΠΊ ΠΈ Π² Ρ€Π°Π΄ΠΈΠ°Π½Π°Ρ…. Π’Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ ΠΈ числСнныС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ смотритС Π½ΠΈΠΆΠ΅.

АрктангСнс ΠΈ арккотангСнс βˆ’ тСория, ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ

Ѐункция арктангСнс ΠΈ Π΅Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Однако, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ тангСнс ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρ‹, Π³Π΄Π΅ ΠΎΠ½Π° ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½Π°. Π­Ρ‚ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρ‹:

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс, ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс, ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс, ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнси Ρ‚.Π΄.

По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠΎΠ± ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ² функция tg x ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ. ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ это Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Однако, ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚Π΅Π½ΠΈΠ΅ отдаСтся ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠžΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ x=arctg y. ПомСняв мСстами x ΠΈ y, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

Ѐункция (1) βˆ’ это функция, обратная ΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ арктангСнс ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΈΠ· Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнсс ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ прСобразования симмСтрии ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ прямой y=x (Рис.2).

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Бвойства Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ арктангСнс.

РСшим тригономСтричСскоС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅

Π’ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнсдля уравнСния (2) сущСствуСт ΠΎΠ΄Π½ΠΎ t, для ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ tg t=a. Π­Ρ‚ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнсуравнСниС (2) ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡ€Π΅Π½ΡŒ. Π’Π°ΠΊ ΠΊΠ°ΠΊ тангСнс пСриодичная функция с основным ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ Ο€, Ρ‚ΠΎ всС ΠΊΠΎΡ€Π½ΠΈ уравнСния (2) ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ Π½Π° Ο€n (n∈Z), Ρ‚.Π΅.

РСшСниС уравнСния (2) прСдставлСн Π½Π° Рис.3:

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Π’Π°ΠΊ ΠΊΠ°ΠΊ tg t βˆ’ это ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния прямой OMt1 c прямым x=1, Ρ‚ΠΎ для любого a Π½Π° Π»ΠΈΠ½ΠΈΠΈ тангСнса Π΅ΡΡ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½Π° Ρ‚ΠΎΡ‡ΠΊΠ° T(1; a). ΠŸΡ€ΡΠΌΠ°Ρ OTt пСрСсСкаСтся с ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ с радиусом 1 Π² Π΄Π²ΡƒΡ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ…: ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Но Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнссоотвСтствуСт ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ соотвСтствуСт Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Π Π΅ΡˆΠΈΡ‚ΡŒ тригономСтричСскоС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

РСшСниС. Π’ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ (3):

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2. Π Π΅ΡˆΠΈΡ‚ΡŒ тригономСтричСскоС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

РСшСниС. Π’ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ (3):

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

Ѐункция арккотангСнс ΠΈ Π΅Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Однако, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ кокотангСнс ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρ‹, Π³Π΄Π΅ ΠΎΠ½Π° ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½Π°. Π­Ρ‚ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρ‹:

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнскакиС значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠΎΠ± ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠ² функция ctg x ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ. Π­Ρ‚ΠΎ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Однако, ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚Π΅Π½ΠΈΠ΅ отдаСтся ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠžΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΎΠ±Ρ€ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ x=arcctg y. ПомСняв мСстами x ΠΈ y, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

Ѐункция (4) βˆ’ это функция, обратная ΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ арккотангСнс ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΈΠ· Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнсс ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ прСобразования симмСтрии ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ прямой y=x (Рис.5).

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

Бвойства Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ арккотангСнс.

РСшим тригономСтричСскоС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅

Π’ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ (0; Ο€) для уравнСния (5) сущСствуСт ΠΎΠ΄Π½ΠΎ t, для ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ сtg t=a. Π­Ρ‚ΠΎ t=arcctg a. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ (0; Ο€) ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ (5) ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡ€Π΅Π½ΡŒ. Π’Π°ΠΊ ΠΊΠ°ΠΊ котангСнс пСриодичная функция с основным ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ Ο€, Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ уравнСния (5) ΠΈΠΌΠ΅Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄:

РСшСния уравнСния (5) ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ окруТности (Рис.6):

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс

ctg t βˆ’ это абсцис Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния прямой ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнсс прямым y=1. Π›ΡŽΠ±ΠΎΠΌΡƒ числу a Π½Π° Π»ΠΈΠ½ΠΈΠΈ котангСнс соотвСтствуСт Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½Π° Ρ‚ΠΎΡ‡ΠΊΠ° ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠŸΡ€ΡΠΌΠ°Ρ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнспСрСсСкСтся с Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ Π² Π΄Π²ΡƒΡ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Но Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнссоотвСтствуСт ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρƒ (0; Ο€), ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ соотвСтствуСт Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Π Π΅ΡˆΠΈΡ‚ΡŒ тригономСтричСскоС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

РСшСниС. Π’ΠΎcΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ (6):

Π’Π°ΠΊ ΠΊΠ°ΠΊ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ (0; Ο€)ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс, Ρ‚ΠΎ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2. Π Π΅ΡˆΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ тригономСтричСскоС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

РСшСниС. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ (6), ΠΈΠΌΠ΅Π΅ΠΌ

Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° вычисляСм ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ арктангСнс. Π’ΠΎΠ³Π΄Π°

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *