какие значения принимает магнитное квантовое число для орбиталей d подуровня
Какие значения принимает магнитное квантовое число для орбиталей d подуровня
Главное квантовое число `n` определяет полную энергию электрона на энергетическом уровне и показывает, из скольких энергетических уровней состоит электронная оболочка атома. Принимает целочисленные положительные значения от `1` до `oo`. В периодической таблице Д. И. Менделеева `n` равно номеру периода.
Орбитальное квантовое число `l` показывает, сколько энергетических подуровней составляют данный уровень и характеризует форму орбиталей. Принимает значения от `0` до `(n – 1)`.
При `n=3`, `l` принимает уже три значения: `0(s)`; `1(p)` и `2(d)`. Таким образом, на третьем уровне три подуровня. Орбитали `d`-подуровня имеют форму двух перекрещенных объёмных восьмёрок либо объёмной восьмёрки с перемычкой (рис. 1).
При `n=4` значений `l` уже четыре, следовательно, и подуровней на четвёртом уровне четыре. К перечисленным выше добавляется `3(f)`. Орбитали `f`-подуровня имеют более сложную, объёмную, форму.
Магнитное квантовое число `ml` определяет число орбиталей на каждом подуровне и характеризует их взаимное расположение.
Принимает значения от `-l` до `+l`, включая `0`.
При `l=1`, `m_l` принимает три значения: `−1`; `0`; `+1`. Значит, орбиталей на данном подуровне (`p`-подуровне) три. Так как `p`-орбитали представляют из себя объёмные восьмёрки (то есть линейной структуры), располагаются они в пространстве по осям координат, перпендикулярно друг другу `(p_x,p_y,p_z)`.
При `l=2`, `m_l` принимает уже пять значений: `−2`; `−1`; `0`; `+1`; `+2`. То есть на `d`-подуровне располагаются пять орбиталей. Это плоскостные структуры, в пространстве занимают пять положений.
Ну и наконец, при `l=3`, то есть на `f`-подуровне, орбиталей становится семь, так как `m_l` принимает семь значений (от `−3` до `+3` через `0`). Орбитали являются более сложными объёмными структурами, и взаимное их расположение ещё более сложно.
`m_s` характеризует собственный момент количества движения электрона и принимает только два значения: `+1//2` и `-1//2`.
Электронная ёмкость подуровня (максимальное количество электронов на подуровне) может быть рассчитана по формуле `2(2l+1)`, а уровня — по формуле `2n^2`.
Всё вышесказанное можно обобщить в Таблице 2.
Таблица 2. Квантовые числа, атомные орбитали и число электронов на подуровнях (для `n
Какие значения принимает магнитное квантовое число для орбиталей d подуровня
Орбитальное квантовое число `l` показывает, сколько энергетических подуровней составляют данный уровень и характеризует форму орбиталей. Принимает значения от `0` до `(n-1)`.
При `n=3`, `l` принимает уже три значения: `0` `(s)`; `1` `(p)` и `2` `(d)`. Таким образом, на третьем уровне три подуровня. Орбитали `d`-подуровня имеют форму двух перекрещённых объёмных восьмёрок либо объёмной восьмерки с перемычкой (рис. 1).
При `n=4`, значений `l` уже четыре, следовательно, и подуровней на четвёртом уровне четыре. К перечисленным выше добавляется `3` `(f)`. Орбитали `f`-подуровня имеют более сложную, объёмную, форму.
Магнитное квантовое число `ml` определяет число орбиталей на каждом подуровне и характеризует их взаимное расположение.
Принимает значения `-l` до `+l`, включая `0`.
При `l=1`, `m_l` принимает три значения: `−1`; `0`; `+1`. Значит, орбиталей на данном подуровне (`p`-подуровне) три. Так как `p`-орбитали представляют из себя объёмные восьмёрки (то есть линейной структуры), располагаются они в пространстве по осям координат, перпендикулярно друг другу (`p_x`, `p_y`, `p_z`).
При `l=2`, `m_l` принимает уже пять значений: `−2`; `−1`; `0`; `+1`; `+2`. То есть на `d`-подуровне располагаются пять орбиталей. Это плоскостные структуры, в пространстве занимают пять положений.
Спиновое квантовое число `m_s` характеризует собственный момент количества движения электрона и принимает только два значения: `+1//2` и `-1//2`.
Всё вышесказанное можно обобщить в Таблице 2.
Таблица 2. Квантовые числа, атомные орбитали и число электронов на подуровнях (для `n
Строение электронных оболочек атомов элементов первых четырёх периодов: s-, p-, d-элементы
Содержание:
Тема строения атома – это место встречи химии и квантовой физики. В атоме всё подчиняется строгим законам, но в то же время атом не совсем понятен для человеческого ума. Например, количество электронов строго равно количеству протонов, но невозможно точно сказать, в каком месте атома находится электрон. Шрёдингер рассматривал электрон как облако с отрицательным зарядом. Большинство своего времени электрон в отдельном участке атома – орбитали.
Все электроны в атоме расположены на своём расстоянии от ядра – в электронной оболочке. Электрон не может приблизиться к ядру, но и отдалиться тоже не может. Дело в том, что у электрона есть свой запас энергии. Чем её меньше, тем ближе от ядра располагается электрон. Электроны с одинаковым уровнем энергии группируются в один слой – энергетический уровень.
Главное квантовое число и энергетический уровень
Квантовые числа — это своеобразный код записи положения электрона в атоме. Если сравнить атом с домом, то квантовые числа – это адрес электрона: этаж, квартира, комната.
Электроны в атоме сосредоточены на энергетических уровнях – «этажах». Их нумеруют числами 1, 2, 3, … или буквами K, L, M, N, O, P, Q. Главное квантовое число n – это и есть номер энергетического уровня.
С удалением от ядра число электронов возрастает. Чем выше энергетический уровень, тем больше электронов на нём находится. Их максимальное число для каждого уровня определяется по формуле:
На внешнем энергетическом уровне не может находиться больше 8 электронов.
В энергетических уровнях также выделяют подуровни. Их количество также соответствует главному квантовому числу. Это напоминает расположение квартир в доме: на первом этаже располагается одна квартира, на втором – две, на третьем – три и т.д.
Номер уровня (n) и его буквенное обозначение | Количество подуровней | Максимальное количество электронов на уровне |
1 К | 1 (s) | 2 |
2 L | 2 (s, p) | 8 |
3 M | 3 (s, p, d) | 18 |
4 N | 4 (s, p, d, f) | 32 |
Орбитальное (побочное), магнитное квантовые числа и форма орбитали
Конкретное место в атоме, «комната», в которой почти постоянно находится электрон, называется орбиталью. Орбитали напоминают облака разной формы из электронов. Подуровни и форму орбиталей обозначают латинскими буквами: s, p, d, f.
Эту схему предложил Бор, она помогает разобраться в строении атома, но не отражает реальной картины. Наши представления об атоме расходятся с реальностью. И выглядит это примерно так:
На первом энергетическом уровне есть только сферическая s-орбиталь. На втором энергетическом уровне появляются три p-орбитали. Их форма напоминает гантель или восьмёрку. На третьем энергетическом уровне уже есть пять d-орбиталей, которые как бы состоят из нескольких лепестков. На четвёртом уровне возникают семь f-орбиталей.
Форму орбиталей обозначают орбитальным (побочным) квантовым числом l (эль). Оно на единицу меньше главного квантового числа, то есть l = n – 1. Тогда получается, что орбитальное число единственной s-орбитали первого энергетического уровня равно нулю. Орбиталь p имеет число 1, орбиталь d – 2, f – 3.
Но как же располагаются орбитали внутри одного подуровня? Дело в том, что движущийся электрон создаёт магнитное поле, в котором по осям x, y, z ориентируются орбитали.
Сферическая s-орбиталь не имеет ориентации в пространстве. Три p-орбитали располагаются в трёх различных проекциях, d – в пяти, f – в семи проекциях. Другими словами, сколько орбиталей одного типа, столько и проекций.
Магнитное квантовое число ml показывает, какие проекции есть у орбитали. Количество таких вариантов определяется по формуле 2l+1.
Для s-орбитали l = 0 и ml = 0, так и получается, что сфера принимает только одно положение в пространстве.
Спин электрона
Еще два квантовых числа – спиновое и проекция спина – характеризуют уникальное квантовое свойство электрона. Спин не имеет аналогов в классической механике. Можно представить, что электрон вращается вокруг своей оси в одну или другую сторону.
Квантовые числа
В атомах первого периода таблицы Менделеева есть один энергетический уровень. В нём один или два электрона движутся по s-единственной орбитали.
В атомах второго периода появляется второй уровень. Он состоит из s-и p-подуровней. Второй s-подуровень – это тоже s-орбиталь, на p-подуровне есть три орбитали, которые по-разному расположены в пространстве. Каждая p-орбиталь вмещает 1 или 2 электрона, поэтому максимально на p-подуровне их может быть 6.
В атомах третьего периода появляется d-подуровень с пятью d-орбиталями, в атомах четвёртого периода – f-подуровень с семью f-орбиталями.
Как заполняются орбитали?
Электроны заполняют орбитали в соответствии с 3 принципами (правилами).
Состояние электронов в атоме
Состояние электронов в атоме описывается с помощью четырёх квантовых чисел: главного, орбитального, магнитного и спинового.
Главное квантовое число обозначается буквой n. Оно характеризует общий запас энергии электрона и выражается целыми числами натурального ряда: 1,2,3,4 и т.д. Электроны вокруг ядра образуют слои. Они называются квантовыми слоями или энергетическими уровнями и имеют буквенные обозначения: K,L,M,N и т.д. Номер слоя, в котором находится электрон, равен его главному квантовому числу. Если для какого-то электрона главное квантовое число равно 1, то он находится в первом (самом близком к ядру) энергетическом слое (K) и обладает минимальным запасом энергии. Если n = 2, электрон находится во втором квантовом слое (L) и т.д. Энергетический уровень объединяет все электроны с одинаковым значением главного квантового числа.
Количество квантовых слоёв в атоме определённого элемента зависит от его положения в периодической системе Д.И.Менделеева. Оно равно номеру периода, в котором находится данный элемент. Химические свойства атома зависят от строения его внешнего (самого удалённого от ядра) квантового слоя, номер которого также совпадает с номером периода. Для конкретного энергетического уровня существуют подуровни, определяемые орбитальным квантовым числом. Орбитальное квантовое число обозначается буквой l. Оно имеет столько значений, какова величина числа «n». Если n =1, то l имеет только одно значение; если n = 2, оно имеет два значения и т.д. Орбитальное квантовое число зависит от главного и принимает значения от 0 до (n–1). Каждому значению l соответствует свой подуровень в данном квантовом слое:n = 1 l = 0; один подуровень;n = 2 l = 0, 1; два подуровня;n = 3 l = 0, 1, 2; три подуровня;n = 4 l = 0, 1, 2, 3; четыре подуровня.Формально (математически) орбитальное квантовое число показывает количество узловых поверхностей, которые проходят через центральную точку атома — ядро. Под узловой поверхностью понимают плоскость, в которой электронная плотность равна нулю. Геометрически орбитальное квантовое число определяет форму электронной орбитали.Если l = 0, через ядро не проходит ни одной узловой поверхности. В этом случае электронная орбиталь обладает сферической симметрией. Она называется s-орбиталью и имеет форму шара (рис. 1).
Если при этом n = 1, она обозначается 1s, если n = 2, — 2s и т. д. Эти орбитали отличаются радиусом (объёмом внутреннего пространства) и распределением электронной плотности. При увеличении размера орбиталь становится более рыхлой, диффузной: 4s-орбиталь более диффузна, чем 3s-орбиталь, которая в свою очередь является более рыхлой, чем 2s- и 1s-орбитали (рис. 2).
Значение l = 1 показывает, что орбиталь имеет одну узловую поверхность, т.е. через ядро проходит одна плоскость, в которой электрон находиться не может. Тогда орбиталь принимает форму объёмной восьмёрки (или гантелеобразную форму) и называется p-орбиталью (рис. 3).
Если p-орбиталь принадлежит второму квантовому слою (n = 2), она обозначается 2p; если она находится в третьем квантовом слое, — 3p и т.д.Если l = 2, через ядро проходит две узловых поверхности, образуется d-орбиталь, которая имеет форму объёмного четырёхлистника (рис. 4). Если при этом n = 3, орбиталь обозначается 3d, если n = 4, то — 4d и т.д. В четвёртом квантовом слое появляются f—орбитали, они соответствуют значению l = 3. Эти орбитали имеют сложную геометрическую форму (рис. 5).
Магнитное квантовое число обозначается ml или просто mи принимает все значения от –l до +l. Оно характеризует положение орбитали в пространстве и показывает количество одноимённых орбиталей в данном квантовом слое.
Квантовые числа
Материалы портала onx.distant.ru
Квантовые числа
Общая характеристика квантовых чисел
Принцип (запрет) Паули
Правило Хунда
Примеры решения задач
Задачи для самостоятельного решения
Общая характеристика квантовых чисел
Значение n | 1 | 2 | 3 | 4 | 5 | 6 |
Обозначение слоя | K | L | M | N | O | P |
Различия в энергиях электронов, принадлежащих к различным подуровням данного энергетического уровня, отражает побочное (орбитальное) квантовое число l. Электроны в атоме с одинаковыми значениями n и l составляют энергетический подуровень (электронную оболочку). Максимальное число электронов в оболочке Nl:
Побочное квантовое число принимает целые значения 0, 1, … (n – 1). Обычно l обозначается не цифрами, а буквами:
Значение l | 0 | 1 | 2 | 3 | 4 |
Обозначение орбитали | s | p | d | f | g |
Орбиталь – пространство вокруг ядра, в котором наиболее вероятно нахождение электрона.
Побочное (орбитальное) квантовое число l характеризует различное энергетическое состояние электронов на данном уровне, форму орбитали, орбитальный момент импульса электрона.
Таким образом, электрон, обладая свойствами частицы и волны, движется вокруг ядра, образуя электронное облако, форма которого зависит от значения l. Так, если l = 0, (s-орбиталь), то электронное облако имеет сферическую симметрию. При l = 1 (p-орбиталь) электронное облако имеет форму гантели. d-орбитали имеют различную форму: dz 2 — гантель, расположенная по оси Z с тором в плоскости X – Y, dx2 — y2 — две гантели, расположенные по осям X и Y; dxy, dxz, dyz, — две гантели, расположенные под 45 o к соответствующим осям.
Магнитное квантовое число ml характеризует ориентацию орбитали в пространстве, а также определяет величину проекции орбитального момента импульса на ось Z. ml принимает значения от +l до — l, включая 0. Общее число значений ml равно числу орбиталей в данной электронной оболочке.
Магнитное спиновое квантовое число ms характеризует проекцию собственного момента импульса электрона на ось Z и принимает значения +1/2 и –1/2 в единицах h/2p (h – постоянная Планка).
Принцип (запрет) Паули
В атоме не может быть двух электронов со всеми четырьмя одинаковыми квантовыми числами. Принцип Паули определяет максимальное число электронов Nn, на электронном слое с номером n:
На первом электронном слое может находиться не более двух электронов, на втором – 8, на третьем – 18 и т. д.
Правило Хунда
Заполнение энергетических уровней происходит таким образом, чтобы суммарный спин был максимальным. Например, три р-электрона на орбиталях р-оболочки располагаются следующим образом:
Таким образом, каждый электрон занимает одну р-орбиталь.
Примеры решения задач
Задача 1. Охарактеризуйте квантовыми числами электроны атома углерода в невозбужденном состоянии. Ответ представьте в виде таблицы.
№ электрона | n | l | ml | ms |
1 | 1 | 0 | 0 | +1/2 |
2 | 1 | 0 | 0 | –1/2 |
3 | 2 | 0 | 0 | +1/2 |
4 | 2 | 0 | 0 | –1/2 |
5 | 2 | 1 | 1 | +1/2 |
6 | 2 | 1 | 0 | +1/2 |
Задача 2. Охарактеризуйте квантовыми числами внешние электроны атома кислорода в основном состоянии. Ответ представьте в виде таблицы.
№ электрона | n | l | ml | ms |
1 | 2 | 0 | 0 | +1/2 |
2 | 2 | 0 | 0 | –1/2 |
3 | 2 | 1 | 1 | +1/2 |
4 | 2 | 1 | 0 | +1/2 |
5 | 2 | 1 | –1 | +1/2 |
6 | 2 | 1 | 1 | –1/2 |
Решение. Согласно правилу Хунда электроны в квантовых ячейках располагаются следующим образом:
Значения главного, побочного и спинового квантовых чисел у электронов одинаковы и равны n=4, l=2, ms=+1/2. Рассматриваемые электроны отличаются значениями квантовых чисел ml.
№ электрона | n | l | ml | ms |
1 | 4 | 2 | 2 | +1/2 |
2 | 4 | 2 | 1 | +1/2 |
3 | 4 | 2 | 0 | +1/2 |
4 | 4 | 2 | –1 | +1/2 |
5 | 4 | 2 | –2 | +1/2 |
Задача 4. Рассчитайте максимальное число электронов в электронном слое с n = 4.
Решение. Максимальное число электронов, обладающих данным значением главного квантового числа, рассчитываем по формуле (2). Следовательно, в третьем энергетическом уровне может быть не более 32 электронов.
Задача 5. Рассчитайте максимальное число электронов в электронной оболочке с l = 3.
Решение:
Максимальное число электронов в оболочке определяется выражением (1). Таким образом, максимальное число электронов в электронной оболочке с l = 3 равно 14.
Задачи для самостоятельного решения
1. Охарактеризуйте квантовыми числами электроны атома бора в основном состоянии. Ответ представьте в виде таблицы:
№ электрона | n | l | ml | ms |
1 | ? | ? | ? | ? |
2 | ? | ? | ? | ? |
3 | ? | ? | ? | ? |
4 | ? | ? | ? | ? |
5 | ? | ? | ? | ? |
№ электрона | n | l | ml | ms |
1 | 1 | 0 | 0 | +1/2 |
2 | 1 | 0 | 0 | –1/2 |
3 | 2 | 0 | 0 | +1/2 |
4 | 2 | 0 | 0 | –1/2 |
5 | 2 | 1 | 1 | +1/2 |
2. Охарактеризуйте квантовыми числами d-электроны атома железа в основном состоянии. Ответ представьте в виде таблиц:
Расположение 3d-электронов атома железа на орбиталях:
Значения квантовых чисел этих электронов:
№ электрона | n | l | ml | ms |
1 | ? | ? | ? | ? |
2 | ? | ? | ? | ? |
3 | ? | ? | ? | ? |
4 | ? | ? | ? | ? |
5 | ? | ? | ? | ? |
6 | ? | ? | ? | ? |
Шесть 3d-электронов атома железа располагаются на орбиталях следующим образом
Квантовые числа этих электронов приведены в таблице
№ электрона | n | l | ml | ms |
1 | 3 | 2 | 2 | +1/2 |
2 | 3 | 2 | 1 | +1/2 |
3 | 3 | 2 | 0 | +1/2 |
4 | 3 | 2 | — 1 | +1/2 |
5 | 3 | 2 | — 2 | +1/2 |
6 | 3 | 2 | 2 | — 1/2 |
3. Каковы возможные значения магнитного квантового числа ml, если орбитальное квантовое число l = 3?
Ответ: ml = +3; +2; +1; 0, — 1, — 2, — 3.
4. Охарактеризуйте квантовыми числами находящиеся во втором электронном слое электроны:
Ответ представьте в виде таблицы:
№ электрона | n | l | ml | ms |
1 | ? | ? | ? | ? |
2 | ? | ? | ? | ? |
3 | ? | ? | ? | ? |
4 | ? | ? | ? | ? |
5 | ? | ? | ? | ? |
6 | ? | ? | ? | ? |
7 | ? | ? | ? | ? |
№ электрона | n | l | ml | ms |
1 | 2 | 0 | 0 | +1/2 |
2 | 2 |