при каких значениях параметра а уравнение имеет более трех решений
Задача 18 ЕГЭ-2021 по математике. Параметры
Посмотрите на условия задач с параметрами ЕГЭ-2021. Вы заметите, что на вид все они похожи. Однако сходство только внешнее, и решаются они по-разному. В этой статье – обзор задач с параметрами ЕГЭ-2021 по математике.
1. Начнем с задачи, которую лучше всего решить аналитическим способом. Слева в уравнении модуль, справа – произведение модуля и корня квадратного. Лучше всего первым действием сделать возведение обеих частей уравнения в квадрат (при неотрицательности подкоренного выражения).
О том, как решать уравнения, где слева модуль и справа модуль, читайте здесь: Уравнения с модулем.
При каких значениях параметра a уравнение
имеет ровно 2 решения?
Уравнение равносильно системе:
Вынесли общий множитель за скобку
Так как и при всех исходное уравнение имеет корни и при всех Значит, исходное уравнение имеет ровно два корня в следующих случаях:
не имеет решений и
2) совпадение корней
Рассмотрим первый случай.
Неравенство — не имеет решений, если
Рассмотрим второй случай.
1) Корни и совпадают, тогда и
Так как исходное уравнение при имеет один корень
2) Корни и совпадают.
Уравнение имеет корни и
3) Корни и совпадают, исходное уравнение имеет ровно два корня.
Мы применили аналитический способ решения: с помощью равносильных переходов от исходного уравнения перешли к такой форме, где сразу видно, какие корни имеет уравнение при определенных значениях параметра.
На Онлайн-курсе подготовки к ЕГЭ на 100 баллов мы подробно рассказывали об этом методе и решали множество задач. Способ хорош тем, что вы просто действуете по образцу – и быстро приходите к ответу.
2. Второе уравнение очень похоже на первое. И первое действие будет таким же: возведением обеих частей в квадрат. А закончим мы – для разнообразия – построением графиков в системе координат (а; х).
Найти a, при которых имеет ровно 2 решения.
Возведем обе части уравнения в квадрат.
Найдем, каким значениям параметра соответствует ровно два значения
Построим в системе координат графики функций:
Мы находим такие при которых горизонтальная прямая имеет ровно 2 общие точки с совокупностью прямых, являющихся графиком исходного уравнения.
Видим, что в общем случае прямая пересекает каждую из трех прямых, то есть исходное уравнение имеет ровно 3 решения.
Ровно 2 решения будет в случаях, когда прямая проходит через точки пересечения прямых, то есть в случаях совпадения корней.
Данная совокупность имеет ровно два решения в случаях совпадения корней.
О графическом способе решения задач с параметрами читайте здесь: Графический метод решения задач с параметрами.
3. В третьем задании также присутствуют выражения под модулями. Но подход будет другой: мы применим метод интервалов для модулей, о котором можно прочитать здесь: Уравнения с модулем.
С его помощью раскроем модули и получим график функции, заданной описанием: на разных интервалах график этой функции выглядит по-разному, то есть состоит из отдельных кусочков. А дальше – графическое решение.
Найдите все значения a, при каждом из которых уравнение
имеет ровно два различных корня.
Применим метод интервалов для модулей. Уравнение равносильно совокупности систем:
Мы сделали так, потому что при оба модуля раскрываем с противоположным знаком:
Заметим, что если уравнение не выполняется ни при каких
Решим графически полученную совокупность.
Рассмотрим функцию такую, что:
Для функции ось ординат – вертикальная асимптота.
Уравнение имеет ровно два корня при или
Вообще задачи с параметрами, как правило, можно решать многими способами.
4. И наконец, довольно сложное уравнение с тремя модулями. Нам придется раскрывать все эти модули по определению, рассматривая 4 случая. Но ничего страшного здесь нет – просто аккуратность. А потом мы разобьем координатную плоскость (х; а) на области и в каждой из областей построим график уравнения. Кто знаком с методом областей – тот легко с этим справится.
При каких значениях параметра a уравнение имеет ровно три различных решения
Уравнения с параметром
Разделы: Математика
Справочный материал
Уравнение вида f(x; a) = 0 называется уравнением с переменной х и параметром а.
Решить уравнение с параметром а – это значит, для каждого значения а найти значения х, удовлетворяющие этому уравнению.
Если 1 – а 0, т.е. а
1, то х =
Пример 4.
Если а = 1, то 0х = 0
х – любое действительное число
Если а 1, а
-1, то х =
(единственное решение).
Это значит, что каждому допустимому значению а соответствует единственное значение х.
если а = 5, то х =
=
;
Дидактический материал
3. а = +
4. + 3(х+1)
5. =
–
6. =
при а = 1 х – любое действительное число, кроме х = 1
Квадратные уравнения с параметром
Пример 1. Решить уравнение
х = –
В случае а 1 выделим те значения параметра, при которых Д обращается в нуль.
Д = (2(2а + 1)) 2 – 4(а – 1)(4а + 30 = 16а 2 + 16а + 4 – 4(4а 2 + 3а – 4а – 3) = 16а 2 + 16а + 4 – 16а 2 + 4а + 12 = 20а + 16
a =
a =
х =
х = – = –
Пример 2. При каких значениях параметра а уравнение
х 2 + 2(а + 1)х + 9а – 5 = 0 имеет 2 различных отрицательных корня?
6
Пример 3. Найдите значения а, при которых данное уравнение имеет решение.
Д = 4(а – 1) 2 – 4(2а + 10 = 4а 2 – 8а + 4 – 8а – 4 = 4а 2 – 16а
4а 2 – 16 0
4а(а – 4) 0
а(а – 4)) 0
Ответ: а 0 и а
4
Дидактический материал
1. При каком значении а уравнение ах 2 – (а + 1) х + 2а – 1 = 0 имеет один корень?
2. При каком значении а уравнение (а + 2) х 2 + 2(а + 2)х + 2 = 0 имеет один корень?
3. При каких значениях а уравнение (а 2 – 6а + 8) х 2 + (а 2 – 4) х + (10 – 3а – а 2 ) = 0 имеет более двух корней?
4. При каких значениях а уравнение 2х 2 + х – а = 0 имеет хотя бы один общий корень с уравнением 2х 2 – 7х + 6 = 0?
5. При каких значениях а уравнения х 2 +ах + 1 = 0 и х 2 + х + а = 0 имеют хотя бы один общий корень?
Показательные уравнения с параметром
Пример 1.Найти все значения а, при которых уравнение
3 2(х+1/х) – (а + 2)*3 х+1/х + 2а = 0 (2)
Пусть 3 х+1/х = у, тогда уравнение (2) примет вид у 2 – (а + 2)у + 2а = 0, или
Это уравнение не имеет действительных корней, так как его Д = log 2 32 – 4 х+1/х = а то х + 1/х = log3а, или х 2 – хlog3а + 1 = 0. (3)
Уравнение (3) имеет ровно два корня тогда и только тогда, когда
Д = log 2 32 – 4 > 0, или |log3а| > 2.
Если log3а > 2, то а > 9, а если log3а 9.
Пример 2. При каких значениях а уравнение 2 2х – (а – 3) 2 х – 3а = 0 имеет решения?
а – положительное число.
Дидактический материал
1. Найти все значения а, при которых уравнение
2. При каких значениях а уравнение
2 (а-1)х?+2(а+3)х+а = 1/4 имеет единственный корень?
3. При каких значениях параметра а уравнение
х = у
Если а = 0, то – | 2у + 1 = 0 2у = 1 у = 1/2 х = 1/4 |
Не выполняется (2) условие из (3).
Пусть а 0, то ау 2 – 2у + 1 = 0 имеет действительные корни тогда и только тогда, когда Д = 4 – 4а
0, т.е. при а
1.
Если Д = 0 (а = 1), то (4) имеет единственный положительный корень х = 1, удовлетворяющий условиям (3).
Пусть Д > 0 (а 0 уравнение (4) имеет действительные корни разных знаков. Это условие выполняется тогда и только тогда, когда Д > 0 и 1/а х
Выражая х из (1) и подставляя в (2), получаем неравенство
2 – а > 1 – а (3)
Чтобы решить неравенство (3), построим графики функций у = 2 – а и у = 1 – а.
Решения неравенства (3) образуют промежуток (а0; 2), где а0 2
а0 =