прибор для измерения параметров тиля смолла
Измерение параметров Тиля-Смолла в домашних условиях
Внимание! Статья не актуальная! Вся методика измерений описана здесь.
Для более серьезного подхода понадобится еще знать:
Измерение Re, Fs, Fc, Qes, Qms, Qts, Qtc, Vas, Cms, Sd.
Для проведения измерений этих параметров вам понадобится следующее оборудование: 1. Вольтметр
2. Генератор сигналов звуковой частоты
3. Частотомер
4. Мощный (не менее 5 ватт) резистор сопротивлением 1000 ом
5. Точный (+- 1%) резистор сопротивлением 10 ом
6. Провода, зажимы и прочая дребедень для соединения всего этого в единую схему.
Конечно, в этом списке возможны изменения. Например, большинство генераторов имеют собственную шкалу частоты и частотомер не является в таком случае необходимостью. Вместо генератора можно также использовать звуковую плату компьютера и соответствующее программное обеспечение, способное генерировать синусоидальные сигналы от 0 до 200Гц требуемой мощности.
Схема для измерений
Калибровка: Для начала необходимо откалибровать вольтметр. Для этого вместо динамика подсоединяется сопротивление 10 Ом и подбором напряжения, выдаваемого генератором, надо добиться напряжения 0.01 вольта. Если резистор другого номинала, то напряжение должно соответствовать 1/1000 номинала сопротивления в омах. Например для калибровочного сопротивления 4 ома напряжение должно быть 0.004 вольта. Запомните! После калибровки регулировать выходное напряжение генератора НЕЛЬЗЯ до окончания всех измерений.
Нахождение Re Теперь, подсоединив вместо калибровочного сопротивления динамик и выставив на генераторе частоту, близкую к 0 герц, мы можем определить его сопротивление постоянному току Re. Им будет являться показание вольтметра, умноженное на 1000. Впрочем, Re можно замерить и непосредственно омметром.
Нахождение Fs и Rmax Динамик при этом и всех последующих измерениях должен находиться в свободном пространстве. Резонансная частота динамика находится по пику его импеданса (Z-характеристике). Для ее нахождения плавно изменяйте частоту генератора и смотрите на показания вольтметра. Та частота, на которой напряжение на вольтметре будет максимальным (дальнейшее изменение частоты будет приводить к падению напряжения) и будет являться частотой основного резонанса для этого динамика. Для динамиков диаметром больше 16см эта частота должна лежать ниже 100Гц. Не забудьте записать не только частоту, но и показания вольтметра. Умноженные на 1000, они дадут сопротивление динамика на резонансной частоте Rmax, необходимое для расчета других параметров.
Нахождение Qms, Qes и Qts Эти параметры находятся по следующим формулам:
Нахождение Sd Это так называемая эффективная излучающая поверхность диффузора. Для самых низких частот (в зоне поршневого действия) она совпадает с конструктивной и равна:
Нахождение индуктивности катушки динамика L Для этого нужны результаты одного из отсчетов из самого первого теста. Понадобится импеданс (полное сопротивление) звуковой катушки на частоте около 1000Гц. Поскольку реактивная составляющая (XL) отстоит от активной Re на угол 900, то можно воспользоваться теоремой Пифагора:
Поскольку Z (импеданс катушки на определенной частоте) и Re (сопротивление катушки по постоянному току) известны, то формула преобразуется к:
Найдя реактивное сопротивление XL на частоте F можно рассчитаь и саму индуктивность по формуле:
Измерения Vas Есть несколько способов измерения эквивалентного объема, но в домашних условиях проще использовать два: метод «добавочной массы» и метод «добавочного объема». Первый из них требует из материалов несколько грузиков известного веса. Можно использовать набор грузиков от аптечных весов или воспользоваться старыми медными монетками 1,2,3 и 5 копеек, поскольку вес такой монетки в граммах соответствует номиналу. Второй метод требует наличия герметичного ящика заранее известного объема с соответствующим отверстием под динамик.
Нахождение Vas методом добавочной массы Для начала нужно равномерно нагрузить диффузор грузиками и вновь измерить его резонансную частоту, записав ее как F’s. Она должна быть ниже, чем Fs. Лучше если новая резонансная частота будет меньше на 30%-50%. Масса грузиков берется приблизительно 10 граммов на каждый дюйм диаметра диффузора. Т.е. для 12″ головки нужен груз массой около 120 граммов. Затем необходимо рассчитать Cms на основе полученных результатов по формуле:
Нахождение Vas методом добавочного объема Нужно герметично закрепить динамик в измерительном ящике. Лучше всего это сделать магнитом наружу, поскольку динамику все равно, с какой стороны у него объем, а вам будет проще подключать провода. Да и лишних отверстий при этом меньше. Объем ящика обозначен как Vb. Затем нужно произвести измерения Fс (резонансной частоты динамика в закрытом ящике) и, соответственно, вычислить Qmc,Qec и Qtc. Методика измерения полностью аналогична описанной выше. Затем находится эквивалентный объем по формуле:
Практически с теми же результатами можно использовать и более простую формулу:
Учтите, что приведенная выше методика действенна только для измерения параметров динамиков с резонансными частотами ниже 100Гц, на более высоких частотах погрешность возрастает.
LIMP software – измерение параметров Тиля-Смолла
Если самодельщик собирает, ремонтирует, проверяет и т.п. АС (акустические системы), то он обязан иметь измерительный инструмент, хотя бы по минимуму. Поскольку здесь любители, этот инструмент должен быть по возможности бесплатным и простым в освоении и пользовании, но иметь достаточные для любителей качества.
Начну с программы LIMP она входит в пакет LIMP+ARTA. Первая служит для измерений двухполюсников (резисторы, конденсаторы, катушки и т.д.), параметров Tille-Small Qts, Fs, Vas. Измерения делаются быстро, удобно и точно. Делать вручную – это садомазохизм, да и точность будет ниже. Программу можно скачать по ссылке artalabs.hr/download.htm, она бесплатна и полностью функциональна кроме загрузки и сохранения файлов. Но есть клавиша PrintScreen, а при небольшом желании легко найти номер для регистрации. Там же есть подробные инструкции, все на английском. Ради простоты я буду широко пользоваться ими.
Советую скачать и установить программу, ознакомиться с ее кнопками и возможностями. Но не стоит особо трогать настройки, а использовать по-максимуму режимы по умолчанию. В частности, я сбил у себя калибровку чувствительности, лучше не трогать такие вещи.
Чтобы приступить к работе нужен компьютер (ноутбуки, наколенники, напалечники и т.п. – это эрзац-компьютеры, могут быть проблемы со звуковыми картами, возможно потребуется внешняя звуковая карта, а пока годится старенький десктоп), звуковая карта, очень желательно линейным, а не микрофонным входом (чем часто болеют ноутбуки). И поначалу (для пробы) надо собрать схему 3.1 (из описания):
Советую заранее найти штекеры 3,5 мм и экранированные провода подлиннее (хотя бы 1 метр) для дальнейшего удобства. Вместо резистора 47 Ом лучше сразу взять 20-30 Ом/0,5 Вт и проводочки с крокодильчиками для динамика и других деталей – сначала надо научиться измерять детали с известными номиналами. По части железа поначалу всё. На перспективу нужен модуль УНЧ с питанием 12 В (0,5 А или более).
Подключите динамик, нажмите кнопку с красным треугольником REC, и если всё сделано правильно, получите примерно такую картинку:
Обратите внимание какие у меня нажаты кнопки и выбраны опции. Внимание. Сначала – так! По мере освоения делайте по-своему.
Для получения таблицы с параметрами Тилле-Смолла нужно нажать сверху Анализ и Сlosed box method. Вот и все, мы получили параметры быстро, точно и правильно одним нажатием кнопки. Результат надо сохранить, для этого есть кнопка для сохранения файлов в графических форматах и с комментариями:
В дальнейшем вы будете получать информацию по одному внешнему виду. Обратите, например, внимание на прыщик на частоте 550 Гц и дрыгание фазы. Думаю, это переход диффузора из поршневого диапазона или какой-то механический резонанс.
Возможностей программы много и не все очевидны. Например, можно подбирать идентичные пары из кучи, видеть когда диффузор затирает, когда есть дефекты механической системы и много всего.
Калибровка
Программу нужно настроить и проверить на кошках (резисторах). Я скачал и установил новую версию LIMP.
Образцовый канал – Right или Left. Можете методом тыка. При неправильном указании ошибка измерения очень велика.
Референсный – единственный резистор, который мы подключаем. Тип МЛТ или аналог, мощность 0,5 Вт (можно выше). НЕ проволочный! Усреднение лучше Exp. А вот число усреднений надо менять в процессе. 1 – быстро, но чуть неточно, 10 – десять повторений, в 10 раз дольше, картинка более красивая, гладкая.
Нагрузку пока к зажимам измерительной приставки не подключать. При превышении уровня он покраснеет, но и это на результатах не скажется. Если уровни в каналах резко разные, ищите плохой контакт, ошибки в монтаже. Жмём Calibrate и получаем:
Давим “ОК”. LIMP откалиброван. Калибровку надо периодически проверять (после отключений-подключений приставки). Теперь на свободу с чистой совестью. Напоминаю, что в микшере записи выбрать линейный вход и установить уровень от середины до максимума методом научного тыка.
Начало измерений
Суём в зубы крокодилам резистор 20 Ом/1 Вт. Нажимаем на красный треугольник, зажигается красный квадрат и ждем нового появления треугольника.
Курсор по умолчанию на частоте 20 Гц, это почти постоянный ток. Щелчком мыши по экрану можно выбрать любую частоту. Верхняя серая линия – фаза, сейчас 0°, т.к. резистор не проволочный. При измерениях других деталей фаза будет ого-го как плясать. Подключаем резистор С5-16 сопротивлением 1 Ом/1%, сделано в СССР:
Хорошая точность нашего устройства и резистора. Неплохой тестер ЕТ8102 врет, вместо 1 Ом показывает 0,8-0,9 Ом и 20 Ом менее точно.
Итак, мы получили измеритель более точный, чем тестер среднего класса, а главное – это измеритель импеданса т.е. сопротивления на любой частоте в звуковом диапазоне. Обратите внимание, что на 20 кГц есть заметный сдвиг фазы, это на метровом проводе, а вы говорите – кабели абсолютно не влияют… Ну-ну.
Компенсация кабеля
При измерении акустики потребуется длинный кабель, минимум 1 метр, удобнее 2-3 м. Он вносит свой вклад показания и его надо убрать. Сверху красно-синий флаг “компенсация кабеля”. Каждый раз, доставая и подключая приставку, перед измерениями надо повторить калибровку.
После этого подключаем измерительный кабель и закорачиваем его на конце.
Черная линия – импеданс (сопротивление) кабеля, ось ординат слева (в Омах). Серая линия – сдвиг фазы, ось ординат в градусах справа.
Сразу предупреждаю, что при очень низком импедансе около 0 Ом (0,2 Ома – это не ноль), фаза пляшет. Это нормально. По моим прикидкам LIMP предназначена для измерения R=1…100 Ом, C=1…100 мкФ, L=0,1…10 мГн. То есть диапазон 100 раз (фактически больше) и номиналы именно “для колонок”.
Надо нажать флажок и методом научного тыка установить сопротивление и индуктивность кабеля, добиться минимального сопротивления и сдвига фазы. С первым – просто, со вторым надо повозиться. ОБЯЗАТЕЛЬНО поставить галочку “вычитать при измерениях”. Кнопка с флажком будет вдавлена.
Теперь подключаю 6,5 м самого плохонького акустического кабеля, сечением 0,75 мм 2 и измеряю уже с компенсацией:
Зеленая линия внизу – измерения измерительного входа при его замыкании – 0,01 Ом. Чёрная – акустический кабель 1,2 Ом. Серая линия – сдвиг фазы в акустическом кабеле. Я бы осторожно относился к этим градусам, но эффект есть.
Далее взял два советских резистора ПЭВ-10 сопротивлением 100 Ом и 200 Ом:
Видно. что сдвиг фазы ничтожен, на уровне погрешности. Оказалось, что индуктивность этих “катушек” практически не влияет.
Измерения динамика и его параметров Т-С
LIMP позволяет определить Fs (резонанс) и Q (добротность) одним измерением, без дополнительного ящика или груза. Пример с НЧ динамиком 10 ГД-30Е (очень удачный экземпляр). Процедура все та же что описана выше, но вместо резисторов подключаем измеряемый динамик.
Обращаю внимание, что резонанс – при переходе фазы через ноль. Обращаю внимание на нажатые галочки. Диаметр выбран по гофру и в данном случае он ни на что не влияет. Измерения каждого динамика надо сохранять в файл [.lim] с соответствующим именем и пояснениями.
По Qts и Fs уже можно определить куда ставить данный динамик, если ставить вообще. А вот для определения объема ящика, надо знать эквивалентный объем динамика (Vas). В LIMP предусмотрено 2 метода расчета:
Желательно (для большей точности), чтобы частота резонанса в ящике при этом изменилась на 30-50%. Что я и сделал поместив динамик в ящик объемом 33 литра. Результат тоже сохранил под именем 33l.lim
Затем в LIMP надо загрузить первый файл (без ящика), пометить его как Overlay, затем второй файл “в ящике” (можно поменять порядок первый-второй) и нажать кнопку “Analize”, в открывшемся окне Calculate. Вот что получилось:
Обратите внимание, что все интересующие нас параметры записаны без “семи знаков после запятой”. На основании этих данных в JBL Speakershop прикидываем варианты ящиков для этого динамика.
LIMP позволит рискнуть пилить ящик не вслепую и под конкретные динамики!
Автор: Сергей (KSV) тема поддержки на форуме
1 комментарий: LIMP software – измерение параметров Тиля-Смолла
Хочу поблагодарить Сергея за подготовленный материал.
Так же нужно отметить, что весь процесс намного проще чем кажется. И при небольшой сноровке измерения можно проводить очень быстро.