Если разобраться, вся электроника состоит из большого числа отдельных кирпичиков. Это транзисторы, диоды, резисторы, конденсаторы, индуктивные элементы. А уже из этих кирпичиков можно сложить всё, что угодно.
От безобидной детской игрушки издающей, например, звук «мяу», до системы наведения баллистической ракеты с разделяющейся головной частью на восемь мегатонных зарядов.
Одной из очень известных и часто применяющихся в электронике схем, является симметричный мультивибратор, который представляет собой электронное устройство вырабатывающее (генерирующее) колебания по форме, приближающиеся к прямоугольной.
Мультивибратор собирается на двух транзисторах или логических схемах с дополнительными элементами. По сути это двухкаскадный усилитель с цепью положительной обратной связи (ПОС). Это значит, что выход второго каскада соединён через конденсатор со входом первого каскада. В результате усилитель за счёт положительной обратной связи превращается в генератор.
Для того чтобы мультивибратор начал генерировать импульсы достаточно подключить напряжение питания. Мультивибраторы могут быть симметричными и несимметричными.
На рисунке представлена схема симметричного мультивибратора.
В симметричном мультивибраторе номиналы элементов каждого из двух плеч абсолютно одинаковы: R1=R4, R2=R3, C1=C2. Если посмотреть на осциллограмму выходного сигнала симметричного мультивибратора, то легко заметить, что прямоугольные импульсы и паузы между ними одинаковы по времени. t импульса (tи) = t паузы (tп). Резисторы в коллекторных цепях транзисторов не влияют на параметры импульсов, и их номинал подбирается в зависимости от типа применяемого транзистора.
Частота следования импульсов такого мультивибратора легко высчитывается по несложной формуле:
Сам по себе такой мультивибратор неинтересен, так как он выдаёт один немодулированный «писк», но если элементами подобрать частоту 440 Гц, а это нота Ля первой октавы, то мы получим миниатюрный камертон, с помощью которого можно, например, настроить гитару в походе. Единственно, что нужно сделать, это добавить каскад усилителя на одном транзисторе и миниатюрный динамик.
Основными характеристиками импульсного сигнала принято считать следующие параметры:
Частота. Единица измерения (Гц) Герц. 1 Гц – одно колебание в секунду. Частоты, воспринимаемые человеческим ухом, находятся в диапазоне 20 Гц – 20 кГц.
Длительность импульса. Измеряется в долях секунды: мили, микро, нано, пико и так далее.
Амплитуда. В рассматриваемом мультивибраторе регулировка амплитуды не предусмотрена. В профессиональных приборах используется и ступенчатая и плавная регулировка амплитуды.
Скважность. Отношение периода (Т) к длительности импульса (t). Если длина импульса равна 0,5 периода, то скважность равна двум.
Исходя из вышеприведенной формулы, легко рассчитать мультивибратор практически на любую частоту за исключением высоких и сверхвысоких частот. Там действуют несколько другие физические принципы.
Для того чтобы мультивибратор выдавал несколько дискретных частот достаточно поставить двухсекционный переключатель и пять шесть конденсаторов разной ёмкости, естественно одинаковые в каждом плече и с помощью переключателя выбирать необходимую частоту. Резисторы R2, R3 так же влияют на частоту и скважность и их можно сделать переменными. Вот ещё одна схема мультивибратора с подстройкой частоты переключения.
Уменьшение сопротивления резисторов R2 и R4 меньше определённой величины зависящей от типа применяемых транзисторов может вызвать срыв генерации и мультивибратор работать не будет, поэтому последовательно с резисторами R2 и R4 можно подключить переменный резистор R3, которым можно подобрат частоту переключений мультивибратора.
Практическое применение симметричного мультивибратора очень обширно. Импульсная вычислительная техника, радиоизмерительная аппаратура при производстве бытовой техники. Очень много уникальной медицинской техники построено на схемах, в основе которых лежит тот самый мультивибратор.
Благодаря исключительной простоте и невысокой стоимости мультивибратор нашёл широкое применение в детских игрушках. Вот пример обычной мигалки на светодиодах.
При указанных на схеме величинах электролитических конденсаторов С1, С2 и резисторов R2, R3 частота импульсов будет 2,5 Гц, а значит, светодиоды будут вспыхивать примерно два раза в секунду. Можно использовать схему, предложенную выше и включить переменный резистор совместно с резисторами R2, R3. Благодаря этому можно будет посмотреть, как будет изменяться частота вспышек светодиодов при изменении сопротивления переменного резистора. Можно поставить конденсаторы разных номиналов и наблюдать за результатом.
Будучи ещё школьником, я собирал на мультивибраторе переключатель ёлочных гирлянд. Всё получилось, но вот когда подключил гирлянды, то мой приборчик стал переключать их с очень высокой частотой. Из-за этого в соседней комнате телевизор стал показывать с дикими помехами, а электромагнитное реле в схеме трещало, как из пулемёта. Было и радостно (работает же!) и немного страшновато. Родители переполошились ненашутку.
Такая досадная промашка со слишком частым переключением не давала мне покоя. И схему проверял, и конденсаторы по номиналу были те, что надо. Не учёл я лишь одного.
Электролитические конденсаторы были очень старые и высохли. Ёмкость их была небольшая и совсем не соответствовала той, что была указана на их корпусе. Из-за низкой ёмкости мультивибратор и работал на более высокой частоте и слишком часто переключал гирлянды.
Приборов, которыми можно было бы измерить ёмкость конденсаторов в то время у меня не было. Да и тестером пользовался стрелочным, а не современным цифровым мультиметром.
Поэтому, если ваш мультивибратор выдаёт завышенную частоту, то первым делом проверяйте электролитические конденсаторы. Благо, сейчас можно за небольшие деньги купить универсальный тестер радиокомпонентов, которым можно измерить ёмкость конденсатора.
Дипломная работа: Расчет схемы мультивибратора на полевых транзисторах
Название: Расчет схемы мультивибратора на полевых транзисторах Раздел: Рефераты по коммуникации и связи Тип: дипломная работа Добавлен 12:22:19 15 апреля 2009 Похожие работы Просмотров: 2190 Комментариев: 14 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно Скачать
В данной пояснительной записке представлены описание схемы и временных диаграмм, расчетные методики мультивибратора на полевых транзисторах. В соответствии с заданием рассчитаны необходимые параметры схемы.
In the given explanatory note the description of the circuit and time diagrams, settlement techniques of the multivibrator on field transistors are submitted. According to the task necessary parameters of the circuit are designed.
Рассчитать схему мультивибратора на полевых транзисторах. Исходные данные:
период следования импульсов Т: 200 мкс
длительность : 10 мкс
длительность среза : 1 мкс
1.Описание схемы устройства фантастронного генератора пилообразного напряжения
Электронная вычислительная техника – сравнительно молодое научно-техническое направление, но она оказывает самое революционизирующее воздействие на все области науки и техники, на все стороны жизни общества. Характерно постоянное развитие элементной базы ЭВМ. Элементная база развивается очень быстро; появляются новые типы логических схем, модифицируются существующие. Существует множество различных электронных устройств: логические элементы, регистры, сумматоры, дешифраторы, мультиплексоры, счетчики, делители частоты, триггеры, генераторы и др.
Генераторы преобразуют энергию источника питания в энергию периодических или квазипериодических электрических колебаний. Основное назначение генераторов в электронике – это формирование импульсов начальной установки и синхронизации, управляющих сигналов различной формы и длительности.
Все многообразие генераторов можно подразделить на следующие типы:
Типичные формы прямоугольных колебаний показаны на рис.1
Генераторы прямоугольных импульсов, имеющие в петле обратной связи элементы, накапливающие энергию, называются мультивибраторами.
Мультивибраторы подразделяются на две группы:
— ждущие мультивибраторы или одновибраторы.
Основное различие между этими мультивибраторами заключается в том, что автоколебательные мультивибраторы формируют импульсную последовательность при подаче напряжения питания на схему, так как они имеют две цепи обратной связи с накопителями энергии, а ждущие мультивибраторы формируют одиночный импульс с заданными параметрами по внешнему запуску, так как одна петля обратной связи не имеет накопителя энергии. Одновибратор – что-то среднее между мультивибратором и триггером [1].
Различают мягкий и жесткий режимы возбуждения мультивибраторов. При мягком режиме любые изменения напряжения в цепи обратной связи в момент включения питания приводят к возникновению режима генераций; при жестком режиме генерация возникает, когда напряжение в цепи обратной связи достигает определенного порога.
Мультивибраторы подразделяются на перезапускаемые и неперезапускаемые. В первом случае при подаче импульса запуска генерация выходных сигналов начинается заново с исходного состояния. Перезапуски позволяют неограниченно увеличивать длительность выходного импульса независимо от параметров схемы мультивибратора. Неперезапускаемые мультивибраторы не реагируют на внешние импульсы запуска
1. Описание схемы мультивибратора на полевых транзисторах
Высокое входное сопротивление полевых транзисторов (ПТ) позволяет конструировать мультивибраторы на очень низкие частоты повторения импульсов при малых ёмкостях времязадающих конденсаторов. Благодаря этому форма выходных импульсов оказывается менее искажённой, а скважность больше, чем у мультивибраторов на биполярных транзисторах.
Для автоколебательных мультивибраторов наиболее подходят ПТ с управляющим p-n переходом, так как во время заряда конденсаторов напряжение на участке затвор-исток приложено в прямом направлении и поэтому сопротивление этого участка мало и малым становится время заряда конденсаторов.
Схема мультивибраторов из ПТ с управляющим p-n переходом и каналом p-типа изображена на рис.2. В этом мультивибраторе через резисторы подаётся небольшое отрицательное напряжение на затвор относительно истока, что повышает стабильность периода колебаний и длительность выходных импульсов В отличие от мультивибратора на БП транзисторах работа устройства не нарушается, если резисторы включить между затвором и общей точкой (схема с «нулевым» затвором).
Временные диаграммы работы несимметричного мультивибратора показаны рис.3. В основных чертах принцип действия этого мультивибратора такой же, как и у лампового. От мультивибратора на БТ его отличает то, что во временно устойчивых состояниях равновесия разряд конденсаторов происходит практически только через резисторы и не до нулевого напряжения, а до значения, при котором напряжение на затворе становится равным напряжению отсечки (обычно 1-6 В)
2.1.ЭЛЕКТРИЧЕСКИЙ РАСЧЕТ
I. Выбор транзистора. Для обеспечения временно устойчивых состояний равновесия необходимо выбирать транзисторы, у которых
где — максимально допустимое напряжение сток-исток,
— напряжение отсечки.
По справочнику выбираем ПТ КП103Л, имеющий следующие параметры:
Для расчёта принимаем 3,4В. Это значение удовлетворительно согласуется с усреднёнными выходными характеристиками КП103Л (рис.4).
Среднее значение входного сопротивления
(2,7кОм)
III.Вычисление ёмкости большего из конденсаторов (рис.2). Она должна быть такой, чтобы за время длительности выходного импульса =10 мкс он успевал зарядиться. Поэтому или (1200пФ)
IV.Сопротивление резисторов
(39 кОм)
Полученное значение сопротивлений резисторов удовлетворяет двум условиям: оно значительно меньше входного сопротивления транзистора (=500 МОм) и значительно больше сопротивления открытого p-n перехода. Первое условие важно с точки зрения влияния входного сопротивления транзистора на период следования импульсов, а второе – для обеспечения на затворе (относительно истока) напряжения открытого транзистора, близкого к нулю.
V.Ёмкость конденсатора
(120пФ)
VI.Длительность среза импульса
VII.Длительность фронта импульса
, где
при этих значениях форма импульсов будет хорошей.
2.2. Выбор и обоснование элементной базы
На основании приведенного выше расчета выбираем элементы (для схемы электрической принципиальной данной в пункте 1):
1) В качестве транзисторов Т1 и Т2 был взят полевой транзистор КП103Л, со следующими характеристиками:
— =10 В;
— 3,4В;
— Ток затвора 20 нА;
— Максимально допустима рассеивающая мощность коллектора:120 мВт.
В соответствии с рассчитанными номиналами резисторов в пункте 2.1., имеем:
= 39 кОм: МЛТ-0,125-39кОм±2%;
=2,7 кОм С5-36,47-2700 Ом±2%;
В ходе выполнения данной курсовой работы была рассчитана схема мультивибратора на полевых транзисторах с заданными характеристиками:
период следования импульсов Т: 200 мкс
длительность : 10 мкс
длительность среза : 1 мкс
Были рассчитаны и проверены параметры данной схемы.
1. Бочаров Л. Н. Расчет электронных устройств на транзисторах, М. 1978.
2. Четвертаков И.И. Резисторы (справочник), М.: Энергоиздат, 1981.
3. Аксенов А. И., Нефедов А. В. Отечественные полупроводниковые приборы (справочное пособие), М.: Солон-Р, 2000.
4. Аксенов А. И., Нефедов А. В. Резисторы, конденсаторы, провода, припои, флюсы (справочное пособие), М.: Солон-Р, 2000.
Расчет схемы мультивибратора на полевых транзисторах
В данной пояснительной записке представлены описание схемы и временных диаграмм, расчетные методики мультивибратора на полевых транзисторах. В соответствии с заданием рассчитаны необходимые параметры схемы.
In the given explanatory note the description of the circuit and time diagrams, settlement techniques of the multivibrator on field transistors are submitted. According to the task necessary parameters of the circuit are designed.
Рассчитать схему мультивибратора на полевых транзисторах. Исходные данные:
период следования импульсов Т: 200 мкс
длительность : 10 мкс
длительность среза : 1 мкс
1.Описание схемы устройства фантастронного генератора пилообразного напряжения
Электронная вычислительная техника – сравнительно молодое научно-техническое направление, но она оказывает самое революционизирующее воздействие на все области науки и техники, на все стороны жизни общества. Характерно постоянное развитие элементной базы ЭВМ. Элементная база развивается очень быстро; появляются новые типы логических схем, модифицируются существующие. Существует множество различных электронных устройств: логические элементы, регистры, сумматоры, дешифраторы, мультиплексоры, счетчики, делители частоты, триггеры, генераторы и др.
Генераторы преобразуют энергию источника питания в энергию периодических или квазипериодических электрических колебаний. Основное назначение генераторов в электронике – это формирование импульсов начальной установки и синхронизации, управляющих сигналов различной формы и длительности.
Все многообразие генераторов можно подразделить на следующие типы:
Типичные формы прямоугольных колебаний показаны на рис.1
Генераторы прямоугольных импульсов, имеющие в петле обратной связи элементы, накапливающие энергию, называются мультивибраторами.
Мультивибраторы подразделяются на две группы:
— ждущие мультивибраторы или одновибраторы.
Основное различие между этими мультивибраторами заключается в том, что автоколебательные мультивибраторы формируют импульсную последовательность при подаче напряжения питания на схему, так как они имеют две цепи обратной связи с накопителями энергии, а ждущие мультивибраторы формируют одиночный импульс с заданными параметрами по внешнему запуску, так как одна петля обратной связи не имеет накопителя энергии. Одновибратор – что-то среднее между мультивибратором и триггером [1].
Различают мягкий и жесткий режимы возбуждения мультивибраторов. При мягком режиме любые изменения напряжения в цепи обратной связи в момент включения питания приводят к возникновению режима генераций; при жестком режиме генерация возникает, когда напряжение в цепи обратной связи достигает определенного порога.
Мультивибраторы подразделяются на перезапускаемые и неперезапускаемые. В первом случае при подаче импульса запуска генерация выходных сигналов начинается заново с исходного состояния. Перезапуски позволяют неограниченно увеличивать длительность выходного импульса независимо от параметров схемы мультивибратора. Неперезапускаемые мультивибраторы не реагируют на внешние импульсы запуска
1. Описание схемы мультивибратора на полевых транзисторах
Высокое входное сопротивление полевых транзисторов (ПТ) позволяет конструировать мультивибраторы на очень низкие частоты повторения импульсов при малых ёмкостях времязадающих конденсаторов. Благодаря этому форма выходных импульсов оказывается менее искажённой, а скважность больше, чем у мультивибраторов на биполярных транзисторах.
Для автоколебательных мультивибраторов наиболее подходят ПТ с управляющим p-n переходом, так как во время заряда конденсаторов напряжение на участке затвор-исток приложено в прямом направлении и поэтому сопротивление этого участка мало и малым становится время заряда конденсаторов.
Схема мультивибраторов из ПТ с управляющим p-n переходом и каналом p-типа изображена на рис.2. В этом мультивибраторе через резисторы подаётся небольшое отрицательное напряжение на затвор относительно истока, что повышает стабильность периода колебаний и длительность выходных импульсов В отличие от мультивибратора на БП транзисторах работа устройства не нарушается, если резисторы включить между затвором и общей точкой (схема с «нулевым» затвором).
Временные диаграммы работы несимметричного мультивибратора показаны рис.3. В основных чертах принцип действия этого мультивибратора такой же, как и у лампового. От мультивибратора на БТ его отличает то, что во временно устойчивых состояниях равновесия разряд конденсаторов происходит практически только через резисторы и не до нулевого напряжения, а до значения, при котором напряжение на затворе становится равным напряжению отсечки (обычно 1-6 В)