силовые и временные параметры возбудимости

Законы раздражения. Параметры возбудимости

силовые и временные параметры возбудимости. Смотреть фото силовые и временные параметры возбудимости. Смотреть картинку силовые и временные параметры возбудимости. Картинка про силовые и временные параметры возбудимости. Фото силовые и временные параметры возбудимости силовые и временные параметры возбудимости. Смотреть фото силовые и временные параметры возбудимости. Смотреть картинку силовые и временные параметры возбудимости. Картинка про силовые и временные параметры возбудимости. Фото силовые и временные параметры возбудимости силовые и временные параметры возбудимости. Смотреть фото силовые и временные параметры возбудимости. Смотреть картинку силовые и временные параметры возбудимости. Картинка про силовые и временные параметры возбудимости. Фото силовые и временные параметры возбудимости силовые и временные параметры возбудимости. Смотреть фото силовые и временные параметры возбудимости. Смотреть картинку силовые и временные параметры возбудимости. Картинка про силовые и временные параметры возбудимости. Фото силовые и временные параметры возбудимости

силовые и временные параметры возбудимости. Смотреть фото силовые и временные параметры возбудимости. Смотреть картинку силовые и временные параметры возбудимости. Картинка про силовые и временные параметры возбудимости. Фото силовые и временные параметры возбудимости

силовые и временные параметры возбудимости. Смотреть фото силовые и временные параметры возбудимости. Смотреть картинку силовые и временные параметры возбудимости. Картинка про силовые и временные параметры возбудимости. Фото силовые и временные параметры возбудимости

ФИЗИОЛОГИЯ И БИОФИЗИКА ВОЗБУДИМЫХ КЛЕТОК.

Понятие о раздражимости, возбудимости и возбуждении. Классификация раздражителей.

Раздражимость – это способность клеток, тканей, организма в целом переходить под воздействием факторов внешней или внутренней среды из состояния физиологического покоя в состояние активности. Состояние активности проявляется изменением физиологических параметров клетки, ткани, организма, например, изменение метаболизма.

Возбудимость – это способность живой ткани отвечать на раздражение активной специфичной реакцией – возбуждением, т.е. генерацией нервного импульса, сокращением, секрецией. Таким образом, возбудимость характеризует специализированные ткани – нервную, мышечные, железистые, которые называются возбудимыми.

Возбуждение – это комплекс процессов реагирования возбудимой ткани на действие раздражителя, проявляющийся изменением мембранного потенциала, метаболизма и т.д.

Возбудимые ткани обладают проводимостью. Это способность ткани проводить возбуждение. Наибольшей проводимостью обладают нервы и скелетные мышцы.

Раздражитель – это фактор внешней или внутренней среды действующей на живую ткань.

Процесс воздействия раздражителя на клетку, ткань, организм называется раздражением.

Все раздражители делятся на следующие группы:

· Физические (электричество, свет, звук, механические воздействия и т.д.);

· Химические (кислоты, щелочи, гормоны и т.д.);

· Физико-химические (осмотическое давление, парциальное давление газов и т.д.);

· Биологические (пища для животного, особь другого пола);

· Социальные (слово для человека).

2. По месту воздействия.

· Подпороговые (не вызывающие ответной реакции).

· Пороговые (раздражители минимальной силы, при которой возникает возбуждение).

· Сверхпороговые (сила выше пороговой).

4. По физиологическому характеру:

· Адекватные (физиологичные для данной клетки или рецептора, которые, приспособились к нему в процессе эволюции, например, свет для фоторецепторов глаза).

Если реакция на раздражитель является рефлекторной, то выделяют также:

Реакция клеток и тканей на раздражитель определяется законами раздражения:

1. Закон «все или ничего»: При допороговых раздражениях клетки ответной реакции не возникает, при пороговой силе раздражителя развивается максимальная ответная реакция, поэтому увеличение силы раздражения выше пороговой не сопровождается ее усилением. В соответствии с этим законом реагирует на раздражение одиночное нервное и мышечное волокна, сердечная мышца.

2. Закон силы: Чем больше сила раздражителя, тем сильнее ответная реакция. Однако выраженность ответной реакции растет лишь до определенного максимума. Закону силы подчиняется целостная скелетная и гладкая мышцы, так как они состоят из многочисленных мышечных клеток, имеющих различную возбудимость.

3. Закон силы длительности: Чем сильнее раздражитель, тем меньше время требуется для возникновения ответной реакции. Зависимость между пороговой силой и необходимой длительностью раздражения отражается кривой силы-длительности (график 1). По этой кривой можно определить ряд параметров возбудимости.

· Порог раздражения – это минимальная сила раздражителя, при которой возникает возбуждение.

· Реобаза – это минимальная сила раздражителя, вызывающая возбуждение при его действии в течении неограниченно долгого времени. На практике порог и реобаза имеют одинаковый смысл. Чем ниже порог раздражения или меньше реобаза, тем выше возбудимость тканей.

· Полезное время – это минимальное время действия раздражителя силой в одну реобазу, за которое возникает возбуждение.

· Хронаксия – это минимальное время действия раздражителя силой в две реобазы, необходимое для возникновения возбуждения. Этот параметр предложил рассчитывать Л. Лапник, для более точного определения показателя времени на кривой силы-длительности. Чем короче полезное время или хронаксия, тем выше возбудимость, и наоборот.

силовые и временные параметры возбудимости. Смотреть фото силовые и временные параметры возбудимости. Смотреть картинку силовые и временные параметры возбудимости. Картинка про силовые и временные параметры возбудимости. Фото силовые и временные параметры возбудимости

В клинической практике реобазу и хронаксию определяют с помощью метода хронаксиметрии для исследования возбудимости нервных стволов.

4. Закон градиента (аккомодации): Реакция ткани на раздражение зависит от его градиента, т.е. чем быстрее нарастает сила раздражения во времени, тем быстрее возникает ответная реакция. При низкой скорости нарастания силы раздражителя растет порог раздражения. Поэтому, если сила раздражителя возрастает очень медленно, возбуждения не будет. Это явление называется аккомодацией.

· Физиологическая лабильность (подвижность) – это большая или меньшая частота реакций, которыми может отвечать ткань на ритмическое раздражение. Чем быстрее восстанавливается ее возбудимость после очередного раздражения, тем выше ее лабильность. Определение лабильности предложено Н.Е. Введенским. Наибольшая лабильность у нервов, наименьшая – у сердечной мышцы.

Источник

Физиология возбудимых тканей

силовые и временные параметры возбудимости. Смотреть фото силовые и временные параметры возбудимости. Смотреть картинку силовые и временные параметры возбудимости. Картинка про силовые и временные параметры возбудимости. Фото силовые и временные параметры возбудимости силовые и временные параметры возбудимости. Смотреть фото силовые и временные параметры возбудимости. Смотреть картинку силовые и временные параметры возбудимости. Картинка про силовые и временные параметры возбудимости. Фото силовые и временные параметры возбудимости силовые и временные параметры возбудимости. Смотреть фото силовые и временные параметры возбудимости. Смотреть картинку силовые и временные параметры возбудимости. Картинка про силовые и временные параметры возбудимости. Фото силовые и временные параметры возбудимости силовые и временные параметры возбудимости. Смотреть фото силовые и временные параметры возбудимости. Смотреть картинку силовые и временные параметры возбудимости. Картинка про силовые и временные параметры возбудимости. Фото силовые и временные параметры возбудимости

силовые и временные параметры возбудимости. Смотреть фото силовые и временные параметры возбудимости. Смотреть картинку силовые и временные параметры возбудимости. Картинка про силовые и временные параметры возбудимости. Фото силовые и временные параметры возбудимости

силовые и временные параметры возбудимости. Смотреть фото силовые и временные параметры возбудимости. Смотреть картинку силовые и временные параметры возбудимости. Картинка про силовые и временные параметры возбудимости. Фото силовые и временные параметры возбудимости

1. Раздражимость (реактивность) клеток — это их способность (свойство) активно отвечать на внешнее воздействие той или иной формой деятельности, например усилением метаболизма и роста, ускорением деления, выбросом секрета, движением, электрическим импульсом.

Возбудимость – способность клеток отвечать не действие раздражителя возбуждением (т.е.генерацией потенциала действия). К возбудимым тканям относятся нервная и мышечная.

Возбуждение – ответ возбудимой клетки на действие раздражителя (потенциал действия).

Клетки, способные к возбуждению, — мышечные, нервные, железистые — называют возбудимыми. К возбудимым клеткам, т. е. к обладающим возбудимостью, относятся и элементы сенсорных рецепторов — нервные окончания и специальные рецепторные клетки. Возбудимость всех этих клеток обеспечивает реактивность макроорганизмов. Возбудимость обнаруживается и у некоторых одноклеточных организмов.

РАЗДРАЖИТЕЛЬ-стимул, любое воздействие, способное вызвать биол. реакцию живой ткани, изменение её структуры и функции. Реакция ткани на Р. наз. раздражением.

В качестве внешних воздействий, вызывающих возбуждение, могут выступать раздражители: стимулы, любые воздействия, способные вызвать биол. реакцию живой ткани, изменение её структуры и функции. 1) химический, электрический, механический и др., (2) пороговый, сверхпороговый, подпороговый; (3) адекватный и неадекватный.

Минимальная энергия (сила) раздражителя, необходимая для возбуждения клетки, называется пороговой (порогом). В случае неадекватных раздражителей (например, механического воздействия на фоторецепторы или нервные волокна) она на много порядков превышает пороговую энергию для адекватных раздражителей. Возбудимость по отношению к раздражителю измеряют порогом раздражения; возбудимость обратно пропорциональна величине порога.

Возбуждение, возникнув в точке действия раздражителя, во многих случаях способно распространяться, охватывая всю клетку. Это тесно связано с электрическим ответом и имеет большое значение в деятельности нервной системы и особенно ее проводящих путей (нервная сигнализация).

Возбудимым клеткам при отсутствии достаточных раздражителей свойственно состояние физиологического покоя, которое, конечно, не равно полной бездеятельности, ибо сопряжено с текущим метаболизмом.

Некоторые внешние воздействия могут вызывать в клетках реакции с отрицательным знаком (уменьшение метаболизма, роста, снижение возбудимости по отношению к раздражителям). Такие реакции называют торможением. Торможение может вызываться как воздействиями из внешней среды, так и влияниями со стороны других клеток организма.

2. Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны.

Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты; участок молекулы, в котором находится остаток фосфорной кислоты, называют гидрофильной головкой, участки, в которых находятся остатки жирных кислот — гидрофобными хвостами. В мембране фосфолипиды располагаются строго упорядоченно: гидрофобные хвосты молекул обращены друг к другу, а гидрофильные головки — наружу, к воде.

Помимо липидов в состав мембраны входят белки (в среднем ≈ 60%). Они определяют большинство специфических функций мембраны (транспорт определенных молекул, катализ реакций, получение и преобразование сигналов из окружающей среды и др.). Различают: 1) периферические белки (расположены на наружной или внутренней поверхности липидного бислоя), 2) полуинтегральные белки (погружены в липидный бислой на различную глубину), 3) интегральные, или трансмембранные, белки (пронизывают мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки). Интегральные белки в ряде случаев называют каналообразующими, или канальными, так как их можно рассматривать как гидрофильные каналы, по которым в клетку проходят полярные молекулы (липидный компонент мембраны их бы не пропустил).

силовые и временные параметры возбудимости. Смотреть фото силовые и временные параметры возбудимости. Смотреть картинку силовые и временные параметры возбудимости. Картинка про силовые и временные параметры возбудимости. Фото силовые и временные параметры возбудимости

силовые и временные параметры возбудимости. Смотреть фото силовые и временные параметры возбудимости. Смотреть картинку силовые и временные параметры возбудимости. Картинка про силовые и временные параметры возбудимости. Фото силовые и временные параметры возбудимости

Строение мембраны: А — гидрофильная головка фосфолипида; В — гидрофобные хвостики фосфолипида; 1 — гидрофобные участки белков Е и F; 2 — гидрофильные участки белка F; 3 — разветвленная олигосахаридная цепь, присоединенная к липиду в молекуле гликолипида (гликолипиды встречаются реже, чем гликопротеины); 4 — разветвленная олигосахаридная цепь, присоединенная к белку в молекуле гликопротеина; 5 — гидрофильный канал (функционирует как пора, через которую могут проходить ионы и некоторые полярные молекулы).

В состав мембраны могут входить углеводы (до 10%). Углеводный компонент мембран представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины образуют надмембранный комплекс — гликокаликс, имеющий толщину несколько десятков нанометров. В нем располагаются многие рецепторы клетки, с его помощью происходит адгезия клеток.

Молекулы белков, углеводов и липидов подвижны, способны перемещаться в плоскости мембраны. Толщина плазматической мембраны — примерно 7,5 нм.

Функции мембран: 1.отделение клеточного содержимого от внешней среды,2.регуляция обмена веществ между клеткой и средой,3.деление клетки на компартаменты («отсеки»),4.место локализации «ферментативных конвейеров»,5.обеспечение связи между клетками в тканях многоклеточных организмов (адгезия),6.распознавание сигналов.

Важнейшее свойство мембран — избирательная проницаемость, т.е. мембраны хорошо проницаемы для одних веществ или молекул и плохо проницаемы (или совсем непроницаемы) для других. Это свойство лежит в основе регуляторной функции мембран, обеспечивающей обмен веществ между клеткой и внешней средой.

3. Процесс прохождения веществ через клеточную мембрану называют транспортом веществ. Различают: 1) пассивный транспорт — процесс прохождения веществ, идущий без затрат энергии; 2) активный транспорт — процесс прохождения веществ, идущий с затратами энергии. 3)транспорт с изменением архитектуры мембраны (экзоцитоз,эндоцитоз) или без изменен структ мембр (все остальн виды транспорта). 4) это транспорт, сопряженный с переносом двух веществ (котранспорт), который может протекать по типу симпорта (два вещества идут воднои направлении — например Na + глюкоза) или по типу антипорта (одно вещество идет в клетку, второе—из клетки или наоборот—Nа К). Антипод котранспорта — обычный транспорт, или унипорт, т. е. когда переносится одно вещество, например, молекулы глюкозы.

1-При пассивном транспорте вещества перемещаются из области с более высокой концентрацией в область с более низкой, т.е. по градиенту концентрации. В любом растворе имеются молекулы растворителя и растворенного вещества. Процесс перемещения молекул растворенного вещества называют диффузией, перемещения молекул растворителя — осмосом. Если молекула заряжена, то на ее транспорт влияет и электрический градиент. Поэтому часто говорят об электрохимическом градиенте, объединяя оба градиента вместе. Скорость транспорта зависит от величины градиента.

Можно выделить следующие виды пассивного транспорта: 1) простая диффузия — транспорт веществ непосредственно через липидный бислой (кислород, углекислый газ); 2) диффузия через мембранные каналы — транспорт через каналообразующие белки (Na+, K+, Ca2+, Cl-); 3) облегченная диффузия — транспорт веществ с помощью специальных транспортных белков, каждый из которых отвечает за перемещение определенных молекул или групп родственных молекул (глюкоза, аминокислоты, нуклеотиды); 4) осмос — транспорт молекул воды (во всех биологических системах растворителем является именно вода).

2-Необходимость активного транспорта возникает тогда, когда нужно обеспечить перенос через мембрану молекул против электрохимического градиента. Этот транспорт осуществляется особыми белками-переносчиками, деятельность которых требует затрат энергии. Источником энергии служат молекулы АТФ.

3-Эндоцитоз — процесс поглощения клеткой крупных частиц и макромолекул. Различают два типа эндоцитоза: 1) фагоцитоз — захват и поглощение крупных частиц (клеток, частей клеток, макромолекул) и 2) пиноцитоз — захват и поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Явление фагоцитоза открыто И.И. Мечниковым в 1882 г. При эндоцитозе плазматическая мембрана образует впячивание, края ее сливаются, и происходит отшнуровывание в цитоплазму структур, отграниченных от цитоплазмы одиночной мембраной. К фагоцитозу способны многие простейшие, некоторые лейкоциты. Пиноцитоз наблюдается в эпителиальных клетках кишечника, в эндотелии кровеносных капилляров.

Экзоцитоз — процесс, обратный эндоцитозу: выведение различных веществ из клетки. При экзоцитозе мембрана пузырька сливается с наружной цитоплазматической мембраной, содержимое везикулы выводится за пределы клетки, а ее мембрана включается в состав наружной цитоплазматической мембраны. Таким способом из клеток желез внутренней секреции выводятся гормоны, у простейших — непереваренные остатки пищи.

Ионные каналы — это интегральные белки мембраны, которые выполняют функцию транспортирующей частицы для соответствующего иона. за счет внутриканально расположенных заряженных частиц Каждый ионный канал имеет устье, селективный фильтр, ворота и механизм управления воротами. Часть каналов управляется за счет разности потенциалов на мембране величины мембранного потенциала либо открывает ворота каналов, либо держит их закрытыми. Второй вариант ионных каналов — рецепторуправляемые каналы: в этом случае ворота каналов управляются за счет рецептора, расположенного на поверхности мембраны: при взаимодействии медиатора с этим рецептором может происходить открытие ионных каналов. Натриевые каналы имеют устья, селективный фильтр, воротный механизм. Ворота у них двух типов — активационные (м-ворота) и инактивационные (п-ворота). При снижении МП (например, до 60 мВ) активационные ворота открываются и впускают ионы натрия в клетку, но вскоре начинают закрываться инактивационные ворота (происходит инактивация натриевых каналов). Некоторое время спустя закрываются активационные ворота, открываются инактивационные ворота, и канал готов к новому циклу. Канал блокируется тетродотоксином, местными анестетиками (новокаином, другими веществами). Это используется в медицинской практике. Калиевые каналы тоже достаточно селективны — в основном пропускают ионы калия. Они блокируются тетраэтиламмонием. Процессы инактивации у них выражены слабо. Кальциевые каналы — имеют все атрибуты ионного канала (устья, воротный механизм, фильтр). Блокируются ионами марганца, никеля, кадмия (двухвалентные ионы), а также лекарственными веществами — верапамилом, нифедипином, дильтиаземом, которые используются в клинической практике.

4. Возбудимые ткани и их общие свойства

Возбудимые ткани – это нервная, мышечная и железистая структуры, которые способны спонтанно или в ответ на действие раздражителя возбуждаться. Возбуждение – это генерация потенциала действия (ПД) + распространение ПД + специфический ответ ткани на этот потенциал, например, сокращение, выделение секрета, выделение кванта медиатора.

Свойства возбудимых тканей и показатели, их характеризующие:

1. Возбудимость – способность возбуждаться

2. Проводимость – способность проводить возбуждение, т.е. проводить ПД

3. Сократимость – способность развивать силу или напряжение при возбуждении

4. Лабильность – или функциональная подвижность – способность к ритмической активности

5. Способность выделять секрет (секреторная активность), медиатор

1.Порог раздражения, реобаза, хронаксия, длительность абсолютной рефракторной фазы, скорость аккомодации.

2.Скорость проведения ПД, например, у нерва она может достигать 120 м/с (около 600 км/час).

3.Максимальная величина силы (напряжения), развиваемая при возбуждении.

4.Максимальное число возбуждений в единицу времени, например, нерв способен в 1с генерировать 1000 ПД.

5.Электрические явления в возбудимых тканях

Закон силы-длительности: раздражающее действие постоянного тока зависит не только от его величины, но и от времени, в течение которого он действует. Чем больше ток, тем меньше времени он должен действовать для возникновения возбуждения.

Исследования зависимости силы-длительности показали, что последняя имеет гиперболический характер. Из этого следует, что ток ниже некоторой минимальной величины не вызывает возбуждение, как бы длительно он не действовал, и чем короче импульсы тока, тем меньшую раздражающую способность они имеют. Причиной такой’ зависимости является мембранная емкость. Очень «короткие» токи просто не успевают разрядить эту емкость до критического уровня деполяризации. Минимальная величина тока, способная вызвать возбуждение при неограниченно длительном его действии, называется реобазой. Время, в течение которого действует ток, равный реобазе, и вызывает возбуждение, называется полезным временем.

Одно важное следствие этого закона – введено понятие «порог раздражения» (минимальная сила раздражителя, способного вызвать возбуждение). Определяя этот показатель,

Закон «все или ничего»: под пороговые раздражители не вызывают ответной реакции («ничего»), на пороговые раздражители возникает максимальная ответная реакция («все»). По закону «все или ничего» сокращаются сердечная мышца и одиночное мышечное волокно. Закон «все или ничего» не абсолютен. Во-первых, на раздражители подпороговой силы не возникает видимой ответной реакции, но в ткани происходят изменения мембранного потенциала покоя в виде возникновения местного возбуждения (локального ответа). Во-вторых, сердечная мышца, растянутая кровью, при наполнении ею камер сердца, реагирует по закону «все или ничего», но амплитуда ее сокращения будет больше по сравнению с сокращением сердечной мышцы, не растянутой кровью.

5. Мембранный потенциал и его происхождение

Для того чтобы МП поддерживался на постоянном уровне, необходимо поддержание ионного гетсрогенитета – ионной асимметрии. Для этого, в частности, служит калий-натриевый насос (и хлорный), который восстанавливает ионную асимметрию, особенно после акта возбуждения. Доказательством калиевой природы МП является наличие зависимости: чем выше концентрация калия в среде, тем меньше величина МП. Для дальнейшего изложения важно понятие: деполяризация (уменьшение МП, например, от минус 90 мВ до минус 70 мВ) и гиперполяризация – противоположное явление.

6. Потенциал действия – это кратковременное изменение разности потенциала между наружной и внутренней поверхностями мембраны (или между двумя точками ткани), возникающее в момент возбуждения. Потенциалы действия могут различаться по своим параметрам в зависимости от типа клетки и даже на различных участках мембраны одной и той же клетки. Наиболее характерный пример различий: потенциал действия сердечной мышцы и потенциал действия большинства нейронов. Тем не менее, в основе любого потенциала действия лежат следующие явления:

1-Мембрана живой клетки поляризована — её внутренняя поверхность заряжена отрицательно по отношению к внешней благодаря тому, что в растворе возле её внешней поверхности находится бо́льшее количество положительно заряженных частиц (катионов), а возле внутренней поверхности — бо́льшее количество отрицательно заряженных частиц (анионов).

2-Мембрана обладает избирательной проницаемостью — её проницаемость для различных частиц (атомов или молекул) зависит от их размеров, электрического заряда и химических свойств.

3-Мембрана возбудимой клетки способна быстро менять свою проницаемостъ для определённого вида катионов, вызывая переход положительного заряда с внешней стороны на внутреннюю.

Первые два свойства характерны для всех живых клеток. Третье же является особенностью клеток возбудимых тканей и причиной, по которой их мембраны способны генерировать и проводить потенциалы действия.

Фазы потенциала действия

1.Предспайк — процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ).

2.Пиковый потенциал, или спайк, состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны). В нем выделяют следующие фазы или компоненты: а. Локальный ответ – начальный этап деполяризации. б. Фазу деполяризации – быстрое снижение мембранного потенциала до нуля и перезарядка мембраны (реверсия, или овершут). в. Фазу реполяризании – восстановление исходного уровня мембранного потенциала;

в ней выделяют фазу быстрой реноляризации и фазу медленной реполяризации, в свою очередь, фаза медленной реполяризации представлена следовыми процессами (потенциалами):следовая негативность (следовая деполяризация) и следовая позитивность (следовая гиперполяризация).

3.Отрицательный следовой потенциал — от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация).

4.Положительный следовой потенциал — увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация).

Форма потенциала действия (при внутриклеточном отведении) зависит от вида возбудимой ткани: у аксона нейрона, скелетной мышцы – пикообразные потенциалы, у гладких мышц в одних случаях пикообразные, в других – платообразные (например, потенциал действия гладких мышц матки беременной женщины – платообразный, а длительность его составляет почти 1 минуту). У сердечной мышцы потенциал действия имеет платообразную форму.

В фазу реполяризации ПД, когда открываются все натриевые каналы и ионы натрия лавинообразно устремляются в клетку, никакой даже сверхсильный раздражитель не может стимулировать этот процесс. Поэтому фазе деполяризации соответствует фаза полной невозбудимости или абсолютной рефрактерности.

В фазе реполяризации все большая часть натриевых каналов закрывается. Однако они могут вновь открываться при действии сверхпорогового раздражителя. Т.е. возбудимость начинает вновь повышаться. Этому соответствует фаза относительной невозбудимости или относительной рефрактерности.

Во время следовой деполяризации МП находится у критического уровня, поэтому даже допороговые стимулы могут вызвать возбуждение клетки. Следовательно в этот момент ее возбудимость повышена. Эта фаза называется фазой экзальтации или супернормальной возбудимости.

В момент следовой гиперполяризации МП выше исходного уровня, т.е. дальше КУД и ее возбудимость снижена. Она находится в фазе субнормальной возбудимости. Следует отметить, что явление аккомодации также связано с изменением проводимости ионных каналов. Если деполяризующий ток нарастает медленно, то это приводит к частичной инактивации натриевых, и активации калиевых каналов. Поэтому развития ПД не происходит.

8. Не́рвные воло́кна — отростки нейронов, покрытые глиальными оболочками.

В различных отделах нервной системы оболочки нервных волокон значительно отличаются по своему строению, что лежит в основе деления всех волокон на миелиновые и безмиелиновые. Те и другие состоят из отростка нервной клетки, лежащего в центре волокна, и поэтому называемого осевым цилиндром (аксоном), и окружающей его глиальной оболочки.

В зависимости от интенсивности функциональной нагрузки нейроны формируют тот или иной тип волокна. Для соматического отдела нервной системы, иннервирующей скелетную мускулатуру, обладающую высокой степенью функциональной нагрузки, характерен миелиновый тип нервных волокон, а для вегетативного отдела, иннервирующего внутренние органы — безмиелиновый тип.

Нервные волокна классифицируются по: 1.длительности потенциала действия; 2.строению (диаметру) волокна; 3.скорости проведения возбуждения.

Особенности проведения возбуждения по миелиновым и безмиелиновым нервным волокнам:

Безмиелиновые волокна- поверхность обладает электрогенными свойствами на всем протяжении. Поэтому малые круговые токи возникают на расстоянии в несколько микрометров. Возбуждение имеет вид постоянно бегущей волны.

Этот способ менее выгоден: большие затраты энергии (на работу Nа-К-насоса), меньшая скорость проведения возбуждения.

Существует три закона проведения раздражения по нервному волокну.

-Закон анатомо-физиологической целостности. Проведение импульсов по нервному волокну возможно лишь в том случае, если не нарушена его целостность.

-Закон изолированного проведения возбуждения. Существует ряд особенностей распространения возбуждения в периферических, мякотных и безмякотных нервных волокнах. В периферических нервных волокнах возбуждение передается только вдоль нервного волокна, но не передается на соседние, которые находятся в одном и том же нервном стволе. В мякотных нервных волокнах роль изолятора выполняет миелиновая оболочка. За счет миелина увеличивается удельное сопротивление и происходит уменьшение электрической емкости оболочки. В безмякотных нервных волокнах возбуждение передается изолированно.

-Закон двустороннего проведения возбуждения. Нервное волокно проводит нервные импульсы в двух направлениях – центростремительно и центробежно.

9. Физиологические свойства мышц.

Различают два типа мышечных сокращений. Если оба конца мышцы неподвижно закреплены, происходит изометрическое сокращение, и при неизменной длине напряжение увеличивается. Если один конец мышцы свободен, то в процессе сокращения длина мышцы уменьшится, а напряжение не изменяется — такое сокращение называют изотоническим; в организме такие сокращения имеют большее значение для выполнения любых движений.

Различают зубчатый и гладкий тетанус. При зубчатом тетанусе каждый последующий нервный импульс воздействует на начавшую расслабляться мышцу, при этом происходит неполная суммация сокращений. При гладком тетанусе, имеющем бо́льшую амплитуду, воздействие импульса происходит в конце периода укорочения, что приводит к полной суммации сокращений.

10. Особенности строения и передачи возбуждения в нервно-мышечных синапсах. Современная теория мышечного сокращения и расслабления.

Нервно-мышечный синапс состоит из трех основных структур: пресинаптической мембраны, синаптической щели и постсинаптической мембраны. Пресинаптическая мембрана покрывает нервное окончание, а постсинаптическая — эффекторную клетку. Между ними находится синаптическая щель. Постсинаптическая мембрана отличается от пресинаптической тем, что имеет белковые хеморецепторы, чувствительные не только к медиаторам, гормонам, но и к лекарственным и токсическим веществам. Строение нервно-мышечного синапса обусловливает его физиологические свойства:

1) односторонее проведение возбуждения (от пресинаптической к постсинаптической мембране) при наличии чувствительных к медиатору рецепторов только в постсинаптической мембране;

2) синаптическая задержка проведения возбуждения, связанная с малой скоростью диффузии медиатора в сравнении со скоростью нервного импульса;

3) низкая лабильность и высокая усталость синапса;

4) высокая избирательная чувствительность синапса к химическим веществам.

Возбуждение распространяется по нервному волокну в виде потенциала действия (нервного импульса), достигнув пресинаптической мембраны, вызывает ее деполяризацию, что приводит к открытию кальциевых каналов. Ионы Са2+ входят внутрь нервного окончания и способствуют освобождению медиатора из синаптических пузырьков и выходу его в синаптическую щель. Медиатор быстро диффундирует через щель и воздействует на постсинаптическую мембрану — взаимодействует с рецептором (ацетилхолин — с холинорецептором, норадреналин — с адренорецептором и т. д.). На взаимодействие медиатора с рецептором мембрана отвечает изменением проницаемости для ионов Nа+ и К+, что приводит к ее деполяризации, возникновению потенциала действия, генерации возбудительного постсинаптического потенциала. Под влиянием этого потенциала происходит деполяризация соседних с синапсом участков мембраны. Таким образом потенциал действия распространяется по всему органу. Медиаторы выбрасываются в синаптическую щель не только при возбуждении, но и в покое.

Синапс – это структурно-функциональное образование, обеспечивающее переход возбуждения или торможения с окончания нервного волокна на иннер-вирующую клетку.

1) пресинаптическая мембрана (электрогенная мембрана в терминале аксона, образует синапс на мышечной клетке);

2) постсинаптическая мембрана (электрогенная мембрана иннервируемой клетки, на которой образован синапс);

3) синаптическая щель (пространство между преси-наптической и постсинаптической мембраной, заполнена жидкостью, которая по составу напоминает плазму крови).

Существует несколько классификаций синапсов.

1) центральные синапсы;

2) периферические синапсы.

2. Функциональная классификация синапсов:

1) возбуждающие синапсы;

2) тормозящие синапсы.

3. По механизмам передачи возбуждения в синапсах:

(обязательно)

Мионевральный (нервно-мышечный) синапс – образован аксоном мотонейрона и мышечной клеткой.

Нервный импульс возникает в тригерной зоне нейрона, по аксону направляется к иннервируемой мышце, достигает терминали аксона и при этом деполяризует пресинаптическую мембрану.

После этого открываются натриевые и кальциевые каналы, и ионы Ca из среды, окружающей синапс, входят внутрь терминали аксона. При этом процессе броуновское движение везикул упорядочивается по направления к пресинаптической мембране. Ионы Ca стимулируют движение везикул. Достигая пресинап-тическую мембрану, везикулы разрываются, и освобождается ацетилхолин (4 иона Ca высвобождают 1 квант ацетилхолина). Синаптическая щель заполнена жидкостью, которая по составу напоминает плазму крови, через нее происходит диффузия АХ с преси-наптической мембраны на постсинаптическую, но ее скорость очень мала. Кроме того, диффузия возможна еще и по фиброзным нитям, которые находятся в синаптической щели. После диффузии АХ начинает взаимодействовать с хеморецепторами (ХР) и холи-нэстеразой (ХЭ), которые находятся на постсинапти-ческой мембране.

Холинорецептор выполняет рецепторную функцию, а холинэстераза выполняет ферментативную функцию. На постсинаптической мембране они расположены следующим образом:

ХР + АХ = МПКП – миниатюрные потенциалы концевой пластины.

Затем происходит суммация МПКП. В результате суммации образуется ВПСП – возбуждающий постсинаптический потенциал. Постсинаптическая мембрана за счет ВПСП заряжается отрицательно, а на участке, где нет синапса (мышечного волокна), заряд положительный. Возникает разность потенциалов, образуется потенциал действия, который перемещается по проводящей системе мышечного волокна.

ХЭ + АХ = разрушение АХ до холина и уксусной кислоты.

В состоянии относительного физиологического покоя синапс находятся в фоновой биоэлектрической активности. Ее значение заключается в том, что она повышает готовность синапса к проведению нервного импульса тем самым значительно облегчает передачу нервного возбуждения по синапсу. В состоянии покоя 1–2 пузырька в терминале аксона могут случайно подойти к пресинаптической мембране, в результате чего вступят с ней в контакт. Везикула при контакте с пресинап-тической мембраной лопается, и ее содержимое в виде 1 кванта АХ поступает в синаптическую щель, попадая при этом на постсинаптическую мембрану, где будет образовываться МПКН.

11. Особенности строения и функционирования гладких мышц

Гладкие мышцы состоят из клеток веретенообразной формы. Клетки располагаются в составе мышечных пучков и тесно прилегают друг к другу. Мембраны прилежащих клеток образуют нексусы, которые служат для передачи возбуж­дения с клетки на клетку. Гладкие мышечные клетки содержат миофиламенты актина и миозина, которые располагаются здесь менее упорядоченно, чем в волокнах скелетной мышцы. Саркоплазматиче­ская сеть в гладкой мышце менее развита, чем в скелетной.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *