Что будет если уменьшить степень сжатия двигателя
Изменение степени сжатия — с цифрами в руках
Случайно наткнулся на вот эту статью technicamolodezhi.ru/rubr…ishenie_ego_effektivnosti
На первый взгляд – заманчиво. Я заинтересовался и решил проверить приведённые в статье расчёты. Делать расчёты для двигателя ВАЗ 2106, не интересно. Они за столько лет уже обсчитаны и пересчитаны. Поэтому в качестве примера был взят V-образный, восьмицилиндровый двигатель Magnum 318 (мой автомобиль с таким двигателем) рабочим объёмом 5,21 литра и степенью сжатия 9,1/1. Сначала произвёл тепловой расчёт данного двигателя и построил индикаторную V/p диаграмму.
На основе полученных данных, построил диаграмму изменения крутящего момента, в зависимости от угла поворота коленвала (ПКВ), хотя в современной теории ДВС такие диаграммы не строятся (за ненадобностью). Но будем разговаривать с оппонентом на «его языке».
Линии на диаграмме показывают изменение значения крутящего момента, в зависимости от угла ПКВ. Синяя линия – на сжатии, красная – на расширении. Площадь зелёного прямоугольника равна площади зоны между этими линиями и обозначает средний эффективный крутящий момент в цикле. Поскольку двигатель V-образный с равномерным (через 90°) чередованием вспышек в цилиндрах, то в каждый момент времени такт рабочего хода происходит в двух цилиндрах. Поэтому для получения значения среднего эффективного крутящего момента двигателя в целом, нужно показанное на диаграмме значение Мср умножить на два. Внешние скоростные характеристики двигателя Magnum 318 известны. По ним можно легко проверить приведённые выше расчёты.
Далее рассчитывается вариант с увеличенной до 13,5/1 степенью сжатия и смещением зоны максимального давления (конец сгорания смеси) на 20° ПКВ после ВМТ. При таком значении степени сжатия параметры рабочей смеси (рабочего тела) в цилиндре в 20° ПКВ после ВМТ, соответствуют параметрам рабочей смеси при степени сжатия 9,1/1 в ВМТ обычного двигателя. Строится индикаторная диаграмма. Причём линия сжатия и часть линии расширения строятся для двигателя V8 с рабочим объёмом 5,21 литра и степенью сжатия 13,5/1, а дальше линия расширения строится по сути уже для другого двигателя, тоже V8 но с рабочим объёмом теперь уже 5,02 литра и степенью сжатия 9,1/1. Вот эта диаграмма.
Не смотря на то, что значение среднего эффективного давления не изменилось, наглядно видно, что действует (или будет действовать) это давление только на протяжении 160° поворота коленвала и если это значение переложить на 180°, то диаграмма примет следующий вид.
Как видно на диаграмме, среднее эффективное давление уменьшилось. Почему это произошло, понятно. Во-первых, для увеличения степени сжатия уменьшена камера сгорания, что привело к уменьшению полного объёма цилиндра на 3,6%, а значит, уменьшилось количество рабочей смеси в цикле. Во-вторых, из такта рабочего хода поршня «исключаются» 20° поворота коленвала. А это, в широком понимании, «потеря» части рабочего объёма цилиндра тоже на 3,6%. Автор статьи утверждает, что тепловой расчёт, принятый в современной теории ДВС, не отражает тех изменений эффективных показателей, которые происходят при предложенном им способе доработки двигателя. Так что же, мало того, что компенсирует снижение среднего эффективного давления, так ещё и позволяет достичь выдающихся показателей, как мощности, так и экономичности? Автор статьи ссылается на изменение воздействия этого самого давления на кривошипно-шатунный механизм (КШМ). Вот для сравнения уже известная нам диаграмма изменения крутящего момента от ПКВ обычного Magnum 318 и со смещённой точкой максимального давления.
Значение максимального крутящего момента, действительно, существенно увеличилось. Однако, средний эффективный крутящий момент уменьшился. В тоже время в указанной статье приводятся диаграммы, на которых отчётливо видно, что площадь зоны эффективного крутящего момента значительно увеличивается от диаграммы к диаграмме. Посмотрим на них ещё раз, по-внимательнее.
Если приглядеться, то видно, что формы линий, показывающие значения крутящего момента, не совсем той формы, что получились на моих диаграммах. И дело даже не самих значения, которые они показывают, а именно в форме этих линий или конфигурации, если хотите. Не смотря на шкалу в градусах угла ПКВ, они очень напоминают диаграммы, построенные в зависимости от изменения объёма цилиндра. Вот, для сравнения, такая диаграмма двигателя Magnum 318.
Другими словами, диаграмма Мкр/V (крутящий момент/объём), наложена на шкалу градусов Мкр/градусы ПКВ. Почему в приведённой только-что диаграмме нет значения среднего эффективного крутящего момента? Потому, что вычислить его по этой диаграмме, в принципе, можно, но сложнее, чем по диаграмме в градусах, а по диаграммам, приведённым в статье, вообще невозможно. Сейчас станет ясно, почему.
Дело в том, что при построении диаграммы Мкр/V (крутящий момент/объём) шкала градусов угла ПКВ в такой диаграмме будет неравномерной и вычислить площадь зоны эффективного крутящего момента с помощью клеточек невозможно. Нарисовать и сосчитать клеточки можно, но количество клеток и изменение их количества от диаграммы к диаграмме, будут обозначать всё что угодно, но только не количество джоулей в цикле. В этом и заключается принципиальная ошибка автора упомянутой статьи. Может быть поэтому он назвал клеточки «условными единицами»? Да и ещё, наверное, «забыл» вычесть увеличившееся количество клеток на сжатии. Кроме этого, из-за указанной выше ошибки, указанные на диаграммах точки максимального давления расположены совсем на других углах ПКВ, нежели указанно на шкале градусов (более приближённые к реальным значения нанесены красным). Да и сами формы линий не соответствуют реальным, по той же причине. Вот, для сравнения диаграммы в одинаковом масштабе. Одна построена по реальным значениям углов ПКВ, а другая, по всей видимости, просто нарисована.
Несоответствия видны, что называется, невооружённым глазом. Если линия крутящего момента на расширении более или менее похожа на реальную (по конфигурации, а не по значениям), то линия момента на сжатии просто фантастическая. Ну, бог с ними. Картинки, они и есть картинки. Не смотря на то, что в статье упоминается некий «перерасчёт» двигателя ВАЗ 2106, якобы сделанный автором, подозреваю, что ни какого «перерасчёта» сделано не было. Автор статьи также написал, что «для практической проверки этого метода расчета» был доработан реальный двигатель. Может быть, реальный двигатель и был доработан, но, по всей видимости, словосочетание «метод расчёта» нужно брать в кавычки, т.к. рисование картинок расчётом не является.
Может быть, при максимальном давлении на больших углах ПКВ, картина изменится и значение среднего эффективного крутящего момента увеличится? Вот диаграмма для угла ПКВ 25° после ВМТ. При этом степень сжатия в ВМТ равна 18,5/1. Как бы не вспыхнула рабочая смесь, как в дизеле. Да и какую высоковольтную часть должна иметь система зажигания, чтобы «пробить» такое давление. Система зажигания двигателя Magnum 318 (с бегунком, как и на, упомянутом автором статьи, ВАЗ-2106) с такой задачей явно не справится. Нужны, как минимум, индивидуальные катушки, но и их часто «пробивает» даже при степени сжатия 12/1. Но вернёмся к «нашим баранам».
Как видно из диаграммы, среднее значение эффективного крутящего момента ещё больше снизилось, что подтвердило ранее наметившуюся тенденцию к его снижению. Думаю, уже ясно, что «подружить» максимальное плечо кривошипа с максимальным давлением в цилиндре и получить при этом увеличение среднего эффективного крутящего момента, не получится. А жаль. Хотелось бы, конечно, фрезернуть ГБЦ, внести изменения в программу ЭБУ и всё. Получайте, по данным автора статьи, дополнительные 30% мощности и 24% экономии топлива уже при степени сжатия 13/1. Но в реальности всю прибавку крутящего момента на расширении «съедают накладные расходы», а именно: уменьшение полного объёма цилиндра, увеличившийся крутящий момент на сжатии, и «исключённые» из рабочего хода градусы ПКВ вместе с частью рабочего объёма цилиндра. Всё таки, вопреки утверждению автора статьи, современная теория ДВС ещё на что-то годиться.
Уменьшение и увеличение степени сжатия
У каждого автолюбителя свои задачи. Кто-то хочет больше мощности от двигателя и тогда задумывается над увеличением степени сжатия. Другие, желают дефорсировать мотор и уменьшить степень сжатия, чтобы заправлять дешевый низкооктановый бензин.
В данной статье поговорим про уменьшение и увеличение степени сжатия, зачем это делают и какой результат.
Увеличение степени сжатия двигателя
Увеличение степени сжатия является одной из основных методик поднятия мощности двигателя. Тем самым можно получить больше отдачи с того же объема двигателя. Одним словом мощность повысится, а расход останется на прежнем уровне.
Возникает вопрос, а почему с завода не поднимают степень сжатия до максимально возможного уровня?
Дело в характеристиках бензина не позволяющим поднимать степень сжатия больше определенного уровня, без образования детонации. Если мы значительно повысим степень сжатия, то мощность повысится, но придется заправляться более высокооктановым топливом. С другой стороны, двигатель теперь работает более эффективно и на той мощности на которой вы ездили раньше, он будет потреблять меньше топлива и разность в цене будет несущественна.
Как увеличить степень сжатия? Два лучших способа:
1. Установка более тонкой прокладки двигателя. При таком варианте, клапана могут столкнуться с поршнями и нужно все тщательно рассчитывать. Как вариант, это установка новых поршней двигателя с более глубокими выемки под клапана. Также изменятся фазы газораспределения двигателя и нужно будет их заново настраивать.
2. Растачивание цилиндров двигатель. Такая процедура требует замены поршней, но этот метод увеличивает рабочий объем двигателя и одновременно повышает степень сжатия, так как камера сгорания остается прежней но объем цилиндра увеличивается. Отношение объема возросшего цилиндра к прежнему объему камеры сгорания покажет большую величину степени сжатия.
Прибавка мощности за счет степени сжатия тем выше, чем под более низкую степень сжатия изначально настроен двигатель. Простыми словами, повышение мощности более эффективно при поднятии степени сжатия с 8 до 9, чем с 13 до 14.
Уменьшение степени сжатия двигателя
Для чего производиться уменьшение степени сжатия двигателя? Если при увеличении — мы добивались повышения мощности двигателя, то тут ситуация противоположная — уменьшение степени сжатия производиться с целью перевести автомобиль на более дешевый бензин.
Так, в старые времена поступали владельцы «Жигулей» и «Москвичей», когда переводили свои машины с дорогого 92-ого бензина на более дешевый и доступный 76-ой. Для этих целей используется аналогичный способ, только придется увеличить высоту прокладки под головку двигателя. Берем две обычные прокладки и между ними вставляем алюминиевую нужной толщины. Прокладки, если нужно, вырезались самостоятельно в гараже с помощью подручных средств.
После вышеописанной процедуры уменьшиться степень сжатия за счет увеличения камеры сгорания двигателя и можно заливать дешевый бензин. Не рекомендуем делать эту операцию на современном авто, оборудованным большим количеством электроники, во избежании неприятностей.
Увеличение степени сжатия
Объем камеры сгорания влияет на конечную степень сжатия двигателя.
Камера сгорания, это объем образуемый головкой блока и поршнем в момент нахождения поршня в верхней мертвой точке. Степень сжатия, это отношение объемов цилиндров от максимального до минимального. Максимальный объем камеры сгорания получается, когда поршень находится в нижней мертвой точке. Минимальный при нахождении поршня в верхней мертвой точке цилиндра.
Объем цилиндра без учета камеры сгорания можно узнать, поделив паспортный рабочий объем двигателя на количество цилиндров.
Объем камеры сгорания состоит из суммы 3 объемов:
1 Объем камеры сгорания на головке блока
2 Объем, образуемый толщиной прокладки головки блока
3 Объем вогнутого пространства в днище поршня.
Справедливости ради стоит сказать, что существует масса вариантов когда поршни выпуклые и при вычислениях они не добавляют, а наоборот уменьшают пространство камеры сгорания. И это нужно учитывать при расчетах.
Степень сжатия и компрессия, это не одно и тоже и различается тем, что степень сжатия это геометрическая величина, а компрессия динамическая. Так как двигатель при вращении обладает некоторыми насосными свойствами, плюс воздух при сжатии нагревается, то величина компрессии будет отличаться от степени сжатия в большую сторону. Компрессия обычно больше в 1.4 раза чем степень сжатия.
Увеличение степени сжатия является одной из основных методик поднятия мощности двигателя, так как чем больше сжать топливовоздушную смесь, тем больше она сможет расшириться относительно сжатого объема при сгорании. Тем самым можно получить больше мощности с того же объема сгоревшего топлива. Одним словом мощность повысится, а расход останется на прежнем уровне. Возникает вопрос, а почему с завода не поднимают степень сжатия до максимально возможного уровня? Дело все в характеристиках бензина не позволяющим поднимать степень сжатия больше определенного уровня, без образования аномальных, нежелательных процессов горения (детонация и др). Октановое число как раз и является основным показателем величины детонационной стойкости топлива и чем это число выше, тем большую степень сжатия можно использовать в двигателе, без образования детонации.
То есть проще говоря, если мы значительно повысим степень сжатия то мощность у нас повысится, но придется заправляться более высокооктановым топливом, а оно стоит дороже. Но с другой стороны, двигатель теперь работает более эффективно и на той мощности на которой вы ездили раньше, он будет потреблять меньше топлива и разность в цене как бы нивелируется! Но правда все же такова, что вы не будете ездить на малой мощности. Иначе зачем нужно было все это затевать?
Степень сжатия можно повысить двумя самыми эффективными способами:
1 установка более тонкой прокладки головки блока, либо спиливание нижней части головки блока. При таком варианте, клапана приближаются к поршню и необходимо делать или увеличивать выборки под них. Изменяются фазы работы ГРМ так как высота цепи или ремня, ответственная за синхронизацию распредвала изменяется на величину, уменьшения высоты позиционирования головки блока. При верхневальном двигателе (распределительный вал находится в головке блока). Настроить работу распределительного вала можно с помощью резрезной шестерни, либо шестерни с несколькими позициями под шпонку. При нижневальном, когда распредвал стоит внизу (в блоке цилиндров) и связь с клапанами происходит посредством толкателей также изменяется кинематика клапанного механизма без гидроусилителей, а с гидроусилителями может не хватить их хода и придется ставить меньшие по длине толкатели. При использовании метода на V образном двигателе при спиливании головок изменится расстояние между посадочными отверстиями впускного коллектора, что потребует его подгонки.
2 Растачивание цилиндров под больший по диаметру поршень. Такая процедура требует замены поршней, но этот метод увеличивает рабочий объем двигателя и одновременно повышает степень сжатия, так как камера сгорания остается прежней но объем цилиндра увеличивается. Отношение возросшего цилиндра к прежней камере сгорания покажет большую величину степени сжатия. Метод кроме замены поршней и расточки цилиндра не требует больше каких либо переделок и более предпочтителен для увеличения степени сжатия.
Прибавка мощности за счет степени сжатия тем выше, чем под более низкую степень сжатия изначально настроен двигатель. Простыми словами, повышение мощности более эффективно при поднятии степени сжатия с 8 до 9 чем с 13 до 14.
Примеры прибавок в процентах:
с 8 до 9 = 2.0 % прибавка мощности
с 9 до 10 = 1.7 % прибавка мощности
с 10 до 11 = 1.5 % прибавка мощности
с 11 до 12 = 1.3 % прибавка мощности
с 12 до 13 = 1.2 % прибавка мощности
с 13 до 14 = 1.1 % прибавка мощности
с 14 до 15 = 1.0 % прибавка мощности
с 15 до 16 = 0.9 % прибавка мощности
с 16 до 17 = 0.8 % прибавка мощности
Промежуточные результаты суммируются, например поднятие степени сжатия с 8 до 14 даст прибавку 8.7 %
Примеры перехода на более высокооктановое топливо при повышении (СС)
Вот что на самом деле означает ‘степень сжатия’, и почему это имеет значение
Почему для двигателей так важна степень сжатия, и на что она влияет.
Вы наверняка слышали термин «степень сжатия» в двигателях внутреннего сгорания. Но вы когда-нибудь задумывались, что он означает? Итак, пришло время точно объяснить, что же такое коэффициент сжатия (степень) в двигателях автомобиля и почему сегодня все автопроизводители одержимы этим показателем, как будто этот параметр представляет собой Святой Грааль для будущих продаж автоновинок.
Сразу хотим отметить, что разобраться в том, что такое степень сжатия двигателя, не так просто, как кажется на первый взгляд. Вы наверняка заметили в различных рекламных проспектах и каталогах, а также в описании на сайтах автопроизводителей, что автобренды пытаются привлечь наше внимание такой характеристикой, как степень сжатия двигателей. Особенно стараются нам рассказать о степени сжатия менеджеры автосалонов. Мы обычно делаем вид, что понимаем, о чем идет речь, пропуская мимо ушей эту информацию. И причина такого поведения в том, что многие автолюбители просто не представляют, что такое степень сжатия двигателей, равно как и на что она влияет. Но тем не менее мы считаем, что все автолюбители должны знать, что же это за показатель двигателей внутреннего сгорания, о котором недавно вспомнили многие автопроизводители.
Мы знаем, что высокое сжатие двигателя – это хорошо, а низкое – плохо. Мы также знаем, что новый мотор Mazda Skyactiv-X имеет высокую степень сжатия. Не отстает от Mazda и Toyota со своими моторами «Dynamic Force», которые имеют высокую степень сжатия. Эти компании рекламируют новые двигатели с большим коэффициентом сжатия, заявляя, что они не только стали мощнее, но и получили большую экономичность. Но при чем здесь высокая степень сжатия и увеличение мощности с уменьшением расхода топлива? Сейчас объясним.
Двигатель Toyota «Dynamic Force»
Мы живем в эпоху, когда инженеры не могут просто дать двигателю больше энергии за счет укрупнения, как, например, это было раньше, когда автопроизводители на многие свои автоновинки устанавливали моторы с увеличенным объемом. К тому же это приводило к неминуемому увеличению расхода топлива и росту уровня вредных выбросов в выхлопе автомобиля. Сегодня в связи с дороговизной топлива по всему миру и сложной экологической обстановкой подобный способ увеличения мощности мотора не подходит. Особенно если учитывать жесткие экологические нормы, предъявляемые автопроизводителям рядом развитых западных стран.
В итоге автопроизводители стали улучшать эффективность нынешних моторов за счет применения турбин и увеличения степени сжатия современных двигателей.
Как определяется степень сжатия, и что это такое?
Степень сжатия – это показатель, при котором устанавливается, какой максимальный объем цилиндра двигателя может быть сжат в минимальный объем цилиндра. Этот показатель степени сжатия определяется как соотношение.
Например, обычно степень сжатия записывают вот таким образом: 9:1 (коэффициент сжатия двигателя «девять к одному»).
Теперь представьте цилиндр двигателя. Внутри цилиндра двигателя, как вы знаете, перемещается поршень: вверх и вниз. Когда поршень находится в самой нижней точке цилиндра двигателя, это называется «нижней мертвой точкой». Именно в этом положении поршня сверху него находится наибольший объем цилиндра. Когда поршень находится в самой высокой точке внутри цилиндра двигателя, это положение поршня называется «верхней мертвой точкой». В этом положении объем цилиндра находится в наименьшем значении. Вот сравнение этих двух объемов цилиндров над поршнями двигателя и образует соотношение степени сжатия. Обратите внимание, что когда поршень находится в верхней мертвой точке, все-таки над ним есть объемное пространство, где и происходит сжатие топливно-воздушной смеси.
Для тех, кто любит больше смотреть, чем читать, внизу мы публикуем GIF-картинку, на которой демонстрируется, как работает четырехтактный двигатель. Обратите внимание, как поршень движется вверх во время такта сжатия топливной смести (топливо + кислород), которая подается клапанами головки блока двигателя. Напомним, что воздух и топливо, поступаемые в цилиндр двигателя, сжимаются поршнем, чтобы затем воспламенить эту смесь с помощью свечи зажигания (в бензиновых моторах) или за счет сильного сжатия (в дизельных моторах).
Если двигатель имеет высокую степень сжатия, это означает, что заданный объем воздуха и топлива в цилиндре сжимается в гораздо меньшем пространстве, чем в двигателях с небольшой степенью сжатия.
А теперь математический пример соотношения степени сжатия в ДВС.
Предположим, что у нас есть двигатель, объем цилиндра и камер сгорания которого в момент нахождения поршня в нижней мертвой точке составляет 10 куб. см. После того как впускной клапан головки блока двигателя закрывается и поршень поднимается вверх, начав такт сжатия, он сжимает воздух и топливную смесь в пространство 1 куб. см. Этот двигатель имеет коэффициент сжатия (степень) 10:1.
Также часто производители любят вычислять итоговую степень сжатия, деля большее значение объема цилиндра над поршнем на меньший объем цилиндра. В итоге во многих технических характеристиках автомобилей вместо соотношения производители указывают результат деления этих значений.
Таким образом вычисляется, во сколько раз сжимается топливно-воздушная смесь при движении из нижней мертвой точки поршня в верхнюю мертвую точку. Разделив большее значение на меньшее, мы и получим итоговое значение степени сжатия без соотношения большего объема к меньшему.
Почему производители стараются увеличить степень сжатия?
Но не все так просто со степенью сжатия. Одно дело – понимать, что такое степень сжатия. И это не менее важно по сравнению с пониманием, почему так важна высокая степень сжатия для современных двигателей. К сожалению, объяснить простыми словами, почему высокая степень сжатия в двигателях современных автомобилей – это отличное решение на ближайшие годы, не получится. Тем не менее мы попытаемся.
Вы знаете, что мощность двигателя появляется в тот момент, когда сгорание топливной смеси оказывает силу на поршень внутри цилиндра двигателя. Эта сила толкает поршень вниз по цилиндру. И чем выше поршень находится в цилиндре в момент сжигания топливно-воздушной смеси, тем больше сил будет приложено на поршень.
Как мы уже сказали, чем больше степень сжатия, тем выше находится поршень в верхней мертвой точке. В итоге это позволяет вырабатывать больше мощности в момент сгорания топлива. Также помимо увеличения мощности для вырабатывания силы, толкающей поршень вниз по цилиндру двигателя, необходимо меньше топлива, что в конечном итоге влияет на топливную эффективность мотора. Это простое объяснение. Но оно неполное, поскольку при увеличении степени сжатия двигателей возникает ряд проблем, для решения которых необходимо в идеале знать термодинамику.
Итак, мы знаем, что высокая степень сжатия означает, что двигатель получает больше силы и мощности из того же количества топлива по сравнению с мотором с меньшим коэффициентом сжатия. Как мы выяснили, это хорошо для динамики автомобиля, а также для достижения хороших показателей его экономичности.
Чтобы объяснить вам точнее, почему более высокая степень сжатия дает больше экономии топлива, мы не будем погружаться слишком глубоко в науку о термодинамике. Тем не менее без нее нам также не объяснить вам в деталях, почему моторы с большой степенью сжатия более экономичные. Да, это нелегко понять. Но все же этот раздел термодинамики очень и очень интересен.
Более высокое сжатие в двигателе означает больше мощности, но больше давления
На приведенном выше рисунке показана диаграмма PV давления – объема для идеального типичного бензинового двигателя. Этот график наглядно демонстрирует, что происходит в двигателе, когда он сжигает воздушно-топливную смесь (в нашем примере бензин + кислород).
На приведенном выше графике кривая 1-2 показывает ход сжатия.
Линия 2-3 показывает сгорание топлива.
Верхняя кривая 3-4 показывает ход расширения.
И линия 4-1 показывает отвод тепла, когда открывается выпускной клапан в головке блока цилиндров двигателя.
Если описать все более техническим языком, то эту диаграмму следует понимать так:
На диаграмме кривая 1-2 показывает ход сжатия, при котором давление (ось Y) возрастает, а объем (ось Х) падает, когда поршень сжимает воздушно-топливную смесь внутри цилиндра, приближаясь к верхней мертвой точке.
Линия 2-3 показывает тепло, выделяемое во время горения топливной смеси. Эта линия показывает, как быстро увеличивается давление и температура сгораемого топлива.
Кривая 3-4 показывает увеличение объема цилиндра двигателя и падение давления, когда газ, полученный в процессе сгорания топливной смеси, оказывает силу на поршень, который начинает свое движение вниз по цилиндру двигателя (такт расширения).
Линия 4-1 показывает отвод тепла от газов, образованных в процессе сгорания топлива. Когда давление внутри цилиндра возвращается к давлению окружающей среды, открывается выпускной клапан.
Наконец, линия 1-5 демонстрирует нам ход выхлопа (выхлопной цикл мотора), в процессе которого поршень снова движется внутри цилиндра вверх (к верхней мертвой точке), чтобы снова сжать топливно-воздушную смесь для повторения цикла.
Область в пределах линий 1-2-3-4 показывает нам, сколько работы было проделано двигателем в рамках одного лишь только цикла. Более высокая степень сжатия двигателя означает, что две вертикальные линии на графике выше будут двигаться влево и вверх, оставляя больший диапазон хода поршня, что влияет на получение большей мощности по сравнению с двигателем, имеющим низкий коэффициент сжатия. То есть двигатель с высокой степенью сжатия сделает больше работы за один цикл, чем мотор с небольшой степенью сжатия.
И все дело в том, что в двигателях с высокой степенью сжатия в процессе сгорания топлива образуется больше давления, которое с большей силой двигает поршень вниз по цилиндру. Правда, в этом случае внутри двигателя выделяется больше тепла.
Более высокое сжатие в двигателе также означает более высокую тепловую эффективность
Важно отметить, что образование тепла и потеря тепла в течение цикла работы двигателя напрямую связаны с его эффективностью (речь идет о коэффициенте полезного действия – КПД). Причем на КПД главное влияние оказывает степень сжатия двигателя. Все дело в двух идеях. Во-первых, любая тепловая энергия, поступающая в систему, должна быть преобразована в механическую или отработанную. Во-вторых, тепловая эффективность – это просто результат работы двигателя (мощность и сила), разделенный на теплопередачу.
Вот как выглядит уравнение этой взаимосвязи (n – тепловой КПД, r – степень сжатия, а γ (гамма) – свойство жидкости):
Теперь вернемся к нашей диаграмме выше. Когда вы обеспечиваете больший ход поршня между верхней и нижней мертвой точкой, вы увеличиваете степень сжатия. За счет этого вы смещаете на диаграмме PV вверх и влево и увеличиваете температуру (Qh на графике выше). Причем увеличение температуры будет больше, чем потери тепла (Ql).
Иными словами, вы добываете в процессе сгорания топливной смеси больше энергии за один цикл работы двигателя. Кстати, вот один интересный ролик видеоблогера Джейсона Фенске, который рассказывает более простыми словами о взаимосвязи между степенью сжатия, теплопередачей и эффективностью (экономичностью двигателя):
Для тех, кто не знает английский, включите субтитры и их машинный перевод на русский язык.Так что, как вы, наверное, уже поняли, тепловая эффективность двигателя возрастает по мере увеличения степени сжатия двигателя. Таковы законы физики, а именно законы термодинамики. Особенно это становится ясно из уравнения, приведенного выше.
Соответственно, чем выше степень сжатия мотора, тем больше он выдает лошадиных сил и меньше потребляет топлива. Для нас это означает более тяжелый кошелек за счет сэкономленных денег на заправке и больше адреналина при разгоне.
Чтобы это понять, вам нужно взять на прокат какой-нибудь старый американский неэффективный автомобиль с бензиновым V8 атмосферным двигателем, который имеет низкую степень сжатия. Поездив на таком автомобиле несколько дней, вы поймете, что автомобиль «жрет», как слон, но взамен не выдает хорошую мощность, которую сегодня показывают современные четырехцилиндровые и даже трехцилиндровые моторы.
Например, знаменитый двигатель Skyactiv-G от Mazda является очень эффективным в плане не только мощности, но и хорошей экономичности. Во многом это благодаря большой степени сжатия. Также ряд и других производителей стали выпускать современные моторы с высоким коэффициентом сжатия. Так, сегодня компании Mazda, Nissan / Infiniti и Toyota и другие начали выпускать двигатели с очень высокой степенью сжатия – 14:1.
Вы не поверите, но двигатели с такой степенью сжатия еще недавно казались фантастикой. Кстати, благодаря такой степени сжатия автопроизводителям нет необходимости оснащать двигатели турбинами, для того чтобы добиться соответствия современным стандартам экономичности, экологическим нормам, а также требованиям к мощности.
Почему более высокая степень сжатия означает, что автомобиль должен заправляться топливом с высоким октановым числом
Но почему большинство автопроизводителей сегодня не перешли на выпуск двигателей с высокой степенью сжатия, если такие силовые агрегаты позволяют без турбокомпрессоров добиваться таких выдающихся результатов эффективности силовых агрегатов? Все дело в законах физики.
Многие двигатели с высоким коэффициентом сжатия нуждаются в премиальном топливе или в высокооктановом бензине.
Тем, кто не знает или не помнит, что такое октан бензина и как он помогает избежать детонации в двигателе, советуем почитать наши следующие материалы:
Топливо с низким октановым числом по сравнению с топливом с высоким октаном, скорее всего, будет самопроизвольно воспламеняться из-за более высоких температур и давления воздуха в двигателях с высокой степенью сжатия. Мы знаем, что воспламенение топливно-воздушной смеси должно происходить, когда это действительно нужно, а не наоборот. Такое неконтролируемое воспламенение топлива называется детонацией. Это очень вредно для любых двигателей внутреннего сгорания. Дело в том, что излишняя детонация уменьшает крутящий момент и может нанести непоправимый урон двигателю автомобиля.
Высокая степень сжатия увеличивает риск сильной детонации двигателя. Вот почему моторы с большим коэффициентом сжатия, как правило, работают на высококачественном или высокооктановом бензине.
Главная причина риска самовоспламенения топливно-воздушной смеси в двигателях с высокой степенью сжатия – это превышение допустимого давления, которое приводит к резкому нагреву топливной смеси. В итоге это вызывает преждевременное сжигание топлива еще до того, как свеча зажигания с помощью искры зажжет его. Повторяем, преждевременное воспламенение топлива – это очень плохо для любого двигателя.
Для того чтобы снизить риск преждевременного воспламенения топлива, компания Mazda много работала над поршневыми и выпускными конструкциями бензиновых двигателей с высокой степенью сжатия (соотношение степени сжатия в цилиндрах двигателя 14:1). Например, мотор Skyactiv-X оснастили специальными поршнями, имеющими полость посередине, которая позволила предотвращать всплеск богатого кислородом топлива вокруг области воспламенения топливной смеси от свечи зажигания.
Именно проблема самовоспламенения топлива в двигателях с высокой степенью сжатия и препятствует сегодня массовому распространению данного типа моторов во всей автопромышленности. Подробнее об двигателе Mazda можно почитать здесь
Существуют ли ограничения по увеличению степени сжатия в двигателях
Интересно, почему автопроизводители не стараются сделать степень сжатия своих двигателей еще больше? Почему сегодня коэффициент сжатия 14:1 уже считается много? Неужели нельзя сделать двигатель с еще большим коэффициентом сжатия? Ведь в таком случае автомобили получили бы еще больше мощности и одновременно стали бы еще экономичней.
Например, почему бы не сделать двигатель со степенью сжатия 60:1? Но на самом деле это невозможно в сегодняшнем мире.
Такую степень сжатия не выдержит ни один металл внутри двигателя. Да дело даже не в металле. Даже если бы у нас был такой крепкий дешевый металл, способный выдержать степень сжатия 60:1, все равно бы мы не смогли построить подобный рабочий мотор. Просто такая степень сжатия привела бы к чрезмерно высокой температуре внутри двигателя. В итоге мотор стал бы настолько горячим, что это вызвало бы его самоуничтожение (двигатель взорвался бы от высоких температур).
Также, в принципе, нас не должна так сильно заботить высокая степень сжатия в современных автомобилях, если речь идет, конечно, не о спортивных мощных автомобилях, где каждая лишняя лошадиная сила на вес золота. Сегодня в рамках массового рынка нас больше волнует не мощность, а экономичность обычных повседневных автомобилей. Особенно во времена немалой стоимости топлива, где вопрос экономии топлива напрямую влияет на наши кошельки. Также сегодня более остро стоит вопрос экологии. А мы знаем, что чем менее экономичен автомобиль, тем меньше он загрязняет окружающую среду выхлопными газами. Так что, в принципе, увеличение степени сжатия в современных двигателях необходимо в первую очередь для улучшения экологической обстановки на всей планете. Но для того чтобы этого добиться, нет смысла существенно увеличивать в современных моторах степень сжатия.
Вот мы и подошли к концу темы о степени сжатия двигателей внутреннего сгорания. Надеемся, что теперь вы не просто знаете, что такое степень сжатия силовых агрегатов, но и понимаете, какую важную роль она играет в современных двигателях.