Что было до ddr
Типы и стандарты оперативной памяти
Приветствую, дорогие читатели! Сегодня я расскажу про типы оперативной памяти компьютера. Ее разновидностей существует много – достаточно, чтобы запутаться в параметрах.
Краткий экскурс в историю
Давным-давно, когда компьютеры были большими, программы маленькими, а вирусов не существовало вообще, применялись модули SIMM нескольких модификаций: на 30, 68 и 72 контакта. Работали они в связке с процессорами от 286 до 486 включительно.
Сейчас найти такой компьютер в работоспособном состоянии крайне сложно: для него не существует современного софта. Программы, которые теоретически можно было бы запустить, на практике оказываются слишком тяжеловесными.
Главное отличие от предшественника в том, что расположенные на обеих сторонах планки контакты независимы, в отличие от спаренных контактов на SIMM. Здесь уже задействована технология SDRAM – синхронная динамическая память с произвольным доступом.Массовый выпуск этого типа памяти начался в 1993 году. Предназначались такие модули, в первую очередь, для процессора Intel Pentium или Celeron на 64-разрядной шине данных.
Модули памяти SO-DIMM более компактны, так как используются в ноутбуках.
Если точнее, правильно такой тип памяти называется DDR SDRAM. Появилась на рынке в 2001 году и использовалась в качестве оперативки и видеопамяти. Отличия от предшественника в удвоенной частоте, так как планка способна передавать данные дважды за один такт.
Это первый из типов модулей памяти, который может работать в двухканальном режиме.
Подробнее о том, что такое двухканальный режим, вы можете узнать здесь.
И так да, DDR SDRAM и ее потомки выпускаются в формфакторе DIMM, то есть имеют независимые контакты с обеих сторон.
Этот тип памяти смог составить конкуренцию предшественнику уже в 2004 году и занимал лидирующие позиции до 2010 года. Планки выпускались в формфакторах DIMM для десктопных компьютеров и SO-DIMM для портативных.
По сравнению с предшественником этот тип памяти имеет:
К недостаткам стоит отнести более высокие тайминги оперативной памяти. Что это такое можно узнать здесь.
Подобно предшественнику, выпускаются в виде 240-контактной планки, однако несовместимы из-за разных разъемов (далее расскажу об этом более подробно).
Тип памяти отличается еще большей частотой и меньшим энергопотреблением, а также увеличением предподкачки с 4 до 8 бит. Существует модификация DDR3L со сниженным до 1,35 В рабочим напряжением. Кстати, о частоте. Есть несколько модификаций: 1066, 1333, 1600, 1866, 2133 или 2400 с соответствующей скоростью передачи данных.Выпускается с 2012 года. Компьютеры, использующий этот тип памяти, работают до сих пор. Объем установленных модулей от 1 до 16 Гб. В формфакторе SO-DIMM «потолок» — 8 Гб.
Четвертое поколение удвоило количество внутренних банков, благодаря чему увеличилась скорость передачи внешней шины. Массовое производство началось с 2014 году. У топовых моделей пропускная способность достигает 3200 миллионов передач за секунду, а выпускаются они в модулях объемом от 4 до 128 Гб.
Имеют они уже 288 контактов. Физические размеры детали те же, поэтому разъемы упакованы плотнее. По сравнению с DDR3 незначительно увеличена высота.Модули SO-DIMM имеют по 260 контактов, расположенных ближе друг к другу.
А что дальше?
А дальше, полагаю, стандарты DDR5 и далее по нарастающей (но это неточно). Возможно, неожиданно изобретут нечто эдакое, что кардинально изменит архитектуру ЭВМ и сделает оперативную память для ПК лишним элементом.
Интересная тенденция: у каждого следующего поколения памяти увеличиваются тайминги, что инженеры стараются компенсировать увеличением рабочей частоты и скоростью передачи данных. Настолько эффективно, что следующее поколение оказывается шустрее предшественников.
Именно поэтому еще раз акцентирую ваше внимание на том, что при выборе комплектующих старайтесь «плясать» от стандарта DDR4 как самого нового и прогрессивного.
Совместимость типов памяти
Существует заблуждение, что из-за особенностей интерфейса планку памяти невозможно вставить в неподходящие слоты. Скажу так: достаточно сильный парень (и даже некоторые девчонки) вставит что угодно куда угодно – не только оперативную память, но и процессор Intel в слот для AMD. Правда, есть одно НО: работать такая сборка, увы, не будет.
Остальные юзеры, собирающие компы аккуратно, обычно оперативку вставить в неподходящий слот не могут. Даже если планки имеют одинаковые габариты, это не позволит сделать так называемый ключ. Внутри слота есть небольшой выступ, не дающий смонтировать несоответствующий тип ОЗУ. На подходящей же планке в этом месте есть небольшой вырез, поэтому вставить ее можно без проблем.
Как определить модель
Встроенные в Windows утилиты позволяют узнать только минимальную информацию – объем установленной памяти. Какого она типа, таким способом узнать невозможно. На помощь придет сторонний софт, выдающий полную информацию о системе – например, Everest или AIDA64.
Также тип памяти прописан в BIOS. Где именно указана эта информация и как вызвать BIOS, зависит от его модификации. В большинстве случаев достаточно удерживать кнопку Del при запуске компьютера, однако возможны исключения.
Естественно, маркировка указывается на самой оперативке, а точнее на приклеенном шильдике. Чтобы добраться до планки, придется разобрать корпус и демонтировать ее. В случае с ноутбуком эта простая задача превращается в увлекательнейший квест с просмотром подробных инструкций по разборке.
Вот, собственно, все о типах оперативки, что достаточно знать для самостоятельного подбора комплектующих. И если вы собираете игровой комп, рекомендую ознакомиться с информацией о влиянии оперативной памяти в играх.
Спасибо за внимание и до следующих встреч! Не забывайте подписаться на обновления этого блога и делиться публикациями в социальных сетях.
Эволюция оперативной памяти
Как все начиналось
Сейчас количество памяти, установленной в твоем компьютере, в несколько раз превышает количество памяти, которое было в первых персоналках. В конце семидесятых годов прошлого века ПК комплектовались всего 64 килобайтами памяти (и это еще много! были компьютеры и с 16 Кб), и этого первое время вполне хватало для работы с текстами, вычислениями и даже для игрушек. Но затем, естественно, памяти стало мало, и появились компьютеры с большим количеством памяти. Оригинальные PC поставлялись с 64 Кб, которые находились прямо на материнской плате, если пользователю требовалось увеличить размер оперативки, приходилось покупать платы расширения. Тогда еще не было отдельных слотов для памяти. С началом массового производства PC/XT стандартный объем памяти увеличился до 256 Кб, затем появились платы расширения объемом 384 Кб. Установка дополнительной памяти проходила следующим образом: в специальную плату расширения вставлялись (вручную) микросхемы памяти, затем с помощью перемычек на материнской плате компьютеру сообщалось, сколько у него памяти. Если ты думаешь, что это очень просто, то сильно ошибаешься. Все было просто, если в компьютере уже было 256 Кб, и ты просто прибавлял к ним еще 384. А если изначально есть только 64 Кб, и нужно установить плату расширения на 128 Кб (всего должно получиться 192 Кб), то правильно установить перемычки было очень нелегко. Даже сейчас многие путаются с джамперами на жестких дисках, а с памятью все было гораздо сложнее.
Таким образом, суммарная емкость оперативной памяти стала достигать «целых» 640 Кб. Это было уже в 80-х годах. Именно тогда, в 1981 году, Билл Гейтс сделал свое знаменитое заявление: «640 килобайт должно хватить всем!».
Процессор 8088, используемый в IBM PC, мог работать с памятью объемом до 1 Мб. Объем памяти, с которым может работать проц, называется адресным пространством. Объемы RAM больше 1 Мб были просто немыслимы для домашнего компьютера, никто не мог представить, что понадобится значительно больше.
Логическая организация памяти
Первая память
В 1970 году молодая компания Intel выпустила первый модуль DRAM (Dynamic Random Access Memory, динамическая память со случайным доступом) памяти, под номером 1103. И к 1972 году это был самый продаваемый полупроводниковый чип памяти в мире. В коммерческих компьютерах он впервые стал использоваться в HP 9800. В основе этой памяти лежал очень маленький транзистор и конденсатор, а ее изобретателем был Robert H. Dennard, работавший в исследовательском центре IBM. В 1968 году он вместе с IBM получил патент на свое изобретение. Вся оперативная память, используемая в персональных компьютерах, является памятью со случайным доступом (RAM). Это значит что процессор может обращаться к любому байту памяти по номеру столбца и строки, не затрагивая остальные байты. Всего существует два основных вида RAM: динамическая (Dynamic RAM) и статическая (Static RAM). Различия заключается в том, что динамическая память нуждается в частом обновлении содержимого (этим занимается контроллер памяти) иначе конденсатор разряжается, и информация в памяти теряется. В статической памяти вместо конденсатора использовался триггер на биполярных транзисторах. Получив один раз заряд, такая ячейка способна хранить информацию, пока есть питание. Но когда питание отключается оба типа памяти все «забывают». Статическая память быстрее динамической, однако и стоит значительно дороже, поэтому она нашла свое применение в кэш-памяти процессора, где, кстати, сейчас и используется.
Быстрая память
А в 1994 году появилась новая архитектура памяти: EDO (Extended Data Output или другое название Hyper Page Mode). По сути, это просто усовершенствованный вид FPM. EDO частично совмещала такты чтения, за счет чего появилась возможность считывания следующей порции данных не дожидаясь окончательной передачи предыдущих. Схема чтения у EDO была уже 5-2-2-2. Она могла работать даже с частотой шины 75 МГц. Память этого типа использовалась в системных платах до Intel 430 FX, то есть и в 486 компьютерах, и даже в Pentium’ах. Питание было 5 В или 3.3 В.
Так как Pentium был революционным процессором, ему нужна была новая революционная память. В 1997 году на смену EDO приходит SDRAM (Synchronous DRAM, синхронная DRAM). Впервые поддержка этой памяти была реализована в чипсетах Intel TX и VX. Чипы SDRAM использовали новейшие технологии, применявшиеся при изготовлении кэш памяти. За счет этого они работали по схеме 5-1-1-1, такой же, как в BEDO. Первоначально SDRAM разрабатывалась для видеокарт, однако с удешевлением стоимости производства памяти она перекочевала в ОЗУ. Главной особенностью SDRAM стала синхронизация работы с процессором. До этого вся память работала асинхронно, то есть, обращаясь к памяти, процессор «не знал», сколько времени потребуется памяти для ответа, и ему ничего не оставалось, как ждать. С появлением синхронной памяти процессор уже «знал», сколько тактов ему ждать, и он мог начать выполнять следующую операцию, не дожидаясь ответа RAM, при условии, что последующая операция не использует результаты предыдущей команды. Первоначально память работает на частоте 66 МГц.
Но в первом квартале 1998 года Intel выпускает спецификацию PC100 и вместе с ней новый чипсет i440BX, который поддерживал частоту шины 100 МГц. Максимальная пропускная способность памяти (произведение частоты памяти на ее разрядность) составляла 0.8 ГБ/с. Питание осуществлялось от 3.3 В. Чуть позже появляется спецификация PC133 для материнских плат с частотой шины 133 МГЦ, однако Intel в этом не участвует, почему, ты поймешь ниже. Поддержкой PC133 занимались VIA
MD. Пропускная способность такой памяти вырастает до 1.06 ГБ/с.
Но и этого вскоре оказалось мало, и тогда на помощь «старым» игрокам рынка памяти приходит Samsung, представивший спецификацию SDRAM II или DDR SDRAM (Double Data Rate SDRAM). Ничего идеологически нового в DDR памяти не появилось, но она стала обеспечивать удвоенную пропускную способность за счет работы на обеих границах тактового сигнала (подъем и спад). Питание такой памяти было 2.5 В. Первоначально она работала на частоте 100 МГц (РС1600 аналогично обычной SDRAM на частоте 200 МГц) и 133 МГц (РС2100), а затем доросла аж до 266 МГц.
Rambus
Компания Rambus еще в 1995 году разработала новый вид памяти, который начал применяться в высокопроизводительных видеокартах и в приставке Nintendo 64. Память получила название RDRAM (Rambus DRAM). Год спустя Intel подписывает соглашение с Rambus, а в 1999 году начинает продвигать новую память. Intel решила, что от DDR SDRAM добиться больших скоростей нереально и для нового процессора Pentium IV требуется другая память. Но DDR не умер, ее поддержкой активно занялись AMD, VIA и другие производители.
Спустя короткое время становится ясно, что RDRAM не оправдывает возложенных на нее надежд, а DDR SDRAM догоняет и в некоторых случаях даже начинает обгонять по скорости Rambus. Однако пока Intel ничего не может сделать, она связанна контрактом с Rambus и не может выпускать материнские платы с поддержкой другой памяти до истечения срока контракта.
А тем временем.
VIA и AMD вполне успешно продолжали развитие DDR, а Intel испытывала серьезные трудности с чипсетом i820, который так и не смог нормально работать с памятью Rambus. Корпорации пришлось развивать поддержку медленной памяти SDRAM. И только в середине 2000 года на свет появляется чипсет i815, официально поддерживающий PC133 SDRAM. Хотя и раньше, разгоняя чипсет i440BX, можно было использовать эту память. Также для Pentium 4 появился чипсет i845, поддерживающий оба типа памяти.
Сегодня на большинстве компьютеров используется DDR SDRAM, однако Intel не успокоилась и принялась за стандарт DDR2, который уже в этом году был реализован в чипсетах i915/i925. Наученная горьким опытом с Rambus, Intel уже не делает ставку только на DDR2, новые чипы по-прежнему будут поддерживать обычную DDR. DDR2 также ничего революционно нового не принесла. Однако модули DDR2 несколько отличаются по конструкции и требуют меньшее питание. И снова DDR2 пришел к нам из видеокарт, где появился раньше. AMD и VIA пока что не планируют переход к новой памяти и продолжают использовать DDR.
Заглядывая дальше в будущее, можно предсказать переход к DDR3, которая уже сейчас используется в видеокартах.
Тайминги памяти
Например, память работает на частоте 100 МГц, время одного такта 1/100 млн, то есть 10 нс. Таким образом 5 тактов ожидания соответствуют задержке в 50 нс.
Краткий экскурс в историю оперативной памяти (RAM)
Память является одним из важнейших элементов логических устройств — это справедливо не только для машин, но даже и для работы нашего, человеческого мышления. Невозможно обработать данные, пока у нас нет места, где мы сможем их хранить. Именно поэтому память всегда была ключевым компонентом компьютерных устройств. Говоря о памяти, мы как правило подразумеваем запоминающие устройства с произвольным доступом (Random Access Memory), однако начиналось всё несколько иначе.
История вкратце
Первые компьютеры имели значительно отличающуюся от сегодняшней архитектуру и, соответственно, иначе работали с оперативной памятью. Большинство людей, имеющих понятие об истории информационных технологий, наверное, знают, что первоначально в запоминающих устройствах подобного рода использовались вакуумные электронные лампы — схожие с используемыми в старых ЭЛТ телевизорах и мониторах. Однако затем пришла эпоха транзисторов, разработанных лабораторией Bell Labs.
Транзисторы стали главной составляющей всех современных типов памяти, взявшей начало с простейших транзисторных ключей — электрических схем, позволяющих хранить 1 бит информации. Ключи в дальнейшем развились до элементов называемых триггерами, которые могли объединяться в регистры, именно они чаще всего используются сегодня в качестве ячеек постоянных запоминающих устройств. Следующим усовершенствованием стало объединение транзистора и конденсатора, что позволило разработать более компактную динамическую память.
Основные типы памяти: статическая и динамическая память
Говоря о классификации памяти, прежде всего её делят на два типа: статическая память (Static RAM) и динамическая память (Dynamic RAM). Как было сказано выше, в статической памяти используются определённым образом выстроенные транзисторы, образующие триггеры — ячейки памяти. Одна ячейка памяти хранит 1 бит информации. Наиболее современные SRAM ячейки состоят из шести КМОП транзисторов и представляют собой самый быстрый тип памяти в мире.
В противоположность, динамическая память объединяет транзистор и конденсатор для сведения к минимуму размеров ячейки. Недостатком такого устройства является необходимость периодически подзаряжать конденсатор, что обуславливает задержки доступа к памяти (это именно то, что мы называем таймингами).
Хотя DRAM и обладает явным преимуществом в компактности относительно SRAM, её скорость не может и близко сравниться со скоростью, обеспечиваемой SRAM. Именно поэтому сверхбыстрая память (например, кэш центрального процессора) всегда конструируется из SRAM ячеек. Но из-за больших габаритов SRAM является более дорогим типом и не может быть использована повсеместно.
DRAM же максимально компактна и используется в большинстве мест, где более важен объем, чем мгновенный доступ.
Синхронная и асинхронная память
DRAM может быть классифицирована по функциональности. Все знают, что неотъемлемой частью многих электронных устройств является тактовый генератор, генерирующий специальные импульсы, организующие и синхронизирующие работу основных компонентов.
Синхронная память (SDRAM) может принимать или отправлять данные только в момент начала или окончания тактового импульса (мы еще вернёмся к этому далее). К асинхронной же памяти доступ можно получить в любой момент работы системы, и это является весьма значительным преимуществом.
Single Data Rate SDRAM
На данный момент SDR SDRAM является однозначно устаревшей технологией. Это была одна из первых архитектур с поддержкой синхронного доступа. Single Data Rate обозначает что за один цикл может быть передано одно слово (16 бит для архитектуры x86). Этот тип памяти широко использовался в 90-х, вплоть до выхода Intel Pentium III.
Наиболее распространенными стандартами являлись PC-100 и PC-133, которые могли работать на тактовых частотах 100 и 133 МГц соответственно.
Double Data Rate SDRAM
SDRAM с удвоенной скоростью передачи. Для простоты этот тип памяти сегодня называют просто — DDR. Является прямым наследником SDR SDRAM. В новой технологии была использована возможность удвоения скорости передачи данных с помощью следующего трюка: одно слово передаётся по фронту (началу) тактового импульса, другое — по спаду (окончанию). Память DDR использовалась в системах на базе Intel Pentium 4 и AMD Athlon.
В маркетинговых целях DDR SDRAM продвигалась с удвоенной частотой (относительно реальной) в названии. Например, DDR-400 на самом деле работала на тактовой частоте 200 МГц.
Стандарт DDR быстро обрёл широкую поддержку и в скором времени был усовершенствован для соответствия требованиям высокопроизводительных систем. Улучшения коснулись пропускной способности, оптимизации тактовых частот и питания. Это привело к значительному улучшению производительности. DDR2 память использовалась в сочетании с Pentium 4 Prescott, Intel Core и AMD Athlon 64.
Популярными стали скорости от DDR2-400 до DDR2-1066 (как и ранее, реальные частоты в названии удваивали).
Спецификация этого типа памяти была завершена в 2007 году. Прежде всего улучшения были направлены на максимизацию тактовой частоты, параллельно с уменьшением напряжения питания. Однако, это привело к некоторым негативным последствиям — увеличилась задержка доступа (латентность). В результате прирост скорости по сравнению с DDR2 оказалась не таким уж значительным (всего около 5%). Однако последние на то время платформы AMD и Intel (790/AM3 и X58/P55 соответственно) поддерживали исключительно DDR3.
Новая спецификация включила стандарты вплоть до DDR3-2000.
Стала логическим продолжением DDR3: тактовые частоты были еще более повышены, а напряжение питания вновь уменьшилось. Главным отличием от DDR3 стало удвоение количества банков памяти с 8 до 16. Эти и некоторые другие усовершенствования позволили увеличить производительность по сравнению с предыдущим поколением примерно на 50%. Максимальная эффективная (удвоенная) частота на этот раз достигла 3600 МГц.
Поддержка памяти DDR4 (стандарт опубликован в 2014 году) стартовала с выходом в свет процессоров Intel Haswell. На 2016 год данный тип памяти только начинает догонять по популярности DDR3 (убедиться в этом можно, заглянув в любой электронный каталог, например, e-Katalog http://ek.ua).
Графическая память. GDDR5
Название этого типа может ввести в заблуждение, поэтому следует отметить, что данный тип памяти является специфическим: она используется исключительно в графических ускорителях (видеокартах). Это отдельная «ветвь разработки» DDR, являющаяся наследником DDR3 и запущенная в производство в 2010 году.
Вспомнить все. Эволюция компьютерной памяти
Электромагнитные реле стояли в самых первых компьютерах, а их жизнь на рынке автоматизированных вычислений была недолгой. Однако видоизмененные катушки используют в технике и по сей день.
В стародревние времена — дело было почти 80 лет назад, на заре становления вычислительной техники — память вычислительных устройств было принято делить на три типа. На первичную, вторичную и внешнюю. Сейчас этой терминологией уже никто не пользуется, хотя сама классификация существует и по сей день. Только первичную память теперь называют оперативной, вторичную — внутренними жесткими дисками, ну а внешняя маскируется под всевозможные оптические диски и флэш-накопители.
Прежде чем начать путешествие в прошлое, давайте разберемся в обозначенной выше классификации и поймем, для чего нужен каждый из типов памяти. Компьютер представляет информацию в виде последовательности бит — двоичных цифр со значениями 1 или 0. Общепринятой универсальной единицей информации считают байт, как правило, состоящий из 8 бит. Все используемые компьютером данные занимают некоторое количество байт. К примеру, типичный музыкальный файл занимает 40 миллионов бит — 5 миллионов байт (или 4,8 мегабайта). Центральный процессор не сможет функционировать без элементарного запоминающего устройства, ведь вся его работа сводится к получению, обработке и записи обратно в память. Именно поэтому легендарный Джон фон Нейман (мы не раз упоминали его имя в цикле статей про мейнфреймы) придумал размещать внутри компьютера независимую структуру, где хранились бы все необходимые данные.
Классификация внутренней памяти разделяет носители еще и по скоростному (и энергетическому) принципу. Быстрая первичная (оперативная) память в наше время используется для хранения критичной информации, к которой ЦП обращается наиболее часто. Это ядро операционной системы, исполняемые файлы запущенных программ, промежуточные результаты вычислений. Время доступа — минимально, всего несколько наносекунд.
Первичная память общается с контроллером, размещенным либо внутри процессора (у последних моделей ЦП), либо в виде отдельной микросхемы на материнской плате (северный мост). Цена на оперативку относительно высока, к тому же она энергозависима: выключили компьютер или случайно выдернули шнур из розетки — и вся информация потерялась. Поэтому все файлы хранятся во вторичной памяти — на пластинах жестких дисков. Информация здесь не стирается после отключения питания, а цена за мегабайт очень низкая. Единственный недостаток винчестеров — низкая скорость реакции, она измеряется уже в миллисекундах.
Кстати, интересный факт. На заре развития компьютеров первичную память не отделяли от вторичной. Главный вычислительный блок был очень медленным, и память не давала эффекта бутылочного горлышка. Оперативные и постоянные данные хранились в одних и тех же компонентах. Позже, когда скорость компьютеров подросла, появились новые типы носителей информации.
Назад в прошлое
Компьютер Bendix G15 с барабанной памятью. Оператор в костюме прилагается.
Одним из основных компонентов первых компьютеров были электромагнитные переключатели, разработанные известным американским ученым Джозефом Хенри еще в 1835 году, когда ни о каких компьютерах никто даже не помышлял. Простой механизм состоял из обмотанного проводом металлического сердечника, подвижной железной арматуры и нескольких контактов. Разработка Хенри легла в основу электрического телеграфа Сэмюеля Морзе и Чарльза Витстоуна.
Первый компьютер, построенный на переключателях, появился в Германии в 1939 году. Инженер Конрад Зюс использовал их при создании системной логики устройства Z2. К сожалению, прожила машина недолго, а ее планы и фотографии были утеряны во время бомбардировок Второй мировой войны. Следующее вычислительное устройство Зюса (под именем Z3) увидело свет в 1941 году. Это был первый компьютер, управляемый программой. Основные функции машины реализовывались при помощи 2000 переключателей. Конрад собирался перевести систему на более современные компоненты, но правительство прикрыло финансирование, посчитав, что идеи Зюса не имеют будущего. Как и ее предшественница, Z3 была уничтожена во время бомбардировок союзников.
Электромагнитные переключатели работали очень медленно, но развитие технологий не стояло на месте. Вторым типом памяти для ранних компьютерных систем стали линии задержки. Информацию несли электрические импульсы, которые преобразовывались в механические волны и на низкой скорости перемещались через ртуть, пьезоэлектронный кристалл или магниторезистивную катушку. Есть волна — 1, нет волны — 0. В единицу времени по проводящему материалу могли путешествовать сотни и тысячи импульсов. По завершении своего пути каждая волна трансформировалась обратно в электрический импульс и отсылалась в начало — вот вам и простейшая операция обновления.
Линии задержки разработал американский инженер Джон Преспер Экерт. Компьютер EDVAC, представленный в 1946 году, содержал два блока памяти по 64 линии задержки на основе ртути (5,5 Кб по современным меркам). На тот момент этого было более чем достаточно для работы. Вторичная память также присутствовала в EDVAC — результаты вычислений записывались на магнитную пленку. Другая система, UNIVAC 1, увидевшая свет в 1951 году, использовала 100 блоков на основе линий задержки, а для сохранения данных у нее была сложная конструкция со множеством физических элементов.
Блок памяти на основе линий задержки больше похож на гиперпространственный двигатель космического корабля. Сложно представить, но подобная махина могла сохранить всего несколько бит данных!
За кадром нашего исследования осталось два довольно значимых изобретения в области носителей данных. Оба сделал талантливый сотрудник Bell Labs Эндрю Бобек. Первая разработка — так называемая твисторная память — могла стать прекрасной альтернативой памяти на основе магнитных сердечников. Она во многом повторяла последнюю, но вместо ферритовых колец для хранения данных использовала магнитную пленку. У технологии были два важных преимущества. Во-первых, твисторная память могла одновременно записывать и считывать информацию с целого ряда твисторов. Плюс к этому, было легко наладить ее автоматическое производство. Руководство Bell Labs надеялось, что это позволит существенно снизить цену твисторной памяти и занять перспективный рынок. Разработку финансировали ВВС США, а память должна была стать важной функциональной ячейкой ракет Nike Sentinel. К сожалению, работа над твисторами затянулась, а на первый план вышла память на основе транзисторов. Захват рынка не состоялся.
«Не повезло в первый раз, так повезет во второй»,— подумали в Bell Labs. В начале 70-х годов Эндрю Бобек представил энергонезависимую пузырьковую память. В ее основе лежала тонкая магнитная пленка, которая удерживала небольшие намагниченные области (пузырьки), хранящие двоичные значения. Спустя какое-то время появилась первая компактная ячейка емкостью 4096 бит — устройство размером один квадратный сантиметр обладало емкостью целой планки с магнитными сердечниками.
Изобретением заинтересовались многие компании, и в середине 70-х разработками в области пузырьковой памяти занялись все крупные игроки рынка. Энергонезависимая структура делала пузырьки идеальной заменой как первичной, так и вторичной памяти. Но и тут планам Bell Labs не удалось сбыться — дешевые винчестеры и транзисторная память перекрыли кислород пузырьковой технологии.
Вакуум — наше все
Вакуумные трубки сохранились в технике и по сей день. Особенной любовью они пользуются среди аудиофилов. Считается, что усилительный тракт на основе вакуумных трубок по качеству звука на голову выше современных аналогов.
К концу 40-х годов системная логика компьютеров переехала на вакуумные трубки (они же электронные трубки или термионные шахты). Вместе с ними новый толчок в развитии получили телевидение, устройства для воспроизведения звука, аналоговые и цифровые компьютеры.
Под загадочным словосочетанием «вакуумная трубка» скрывается довольно простой по строению элемент. Он напоминает обычную лампу накаливания. Нить заключена в безвоздушное пространство, при нагреве она испускает электроны, которые попадают на положительно заряженную металлическую пластину. Внутри лампы под напряжением образуется поток электронов. Вакуумная трубка умеет или пропускать, или блокировать (фазы 1 и 0) проходящий через нее ток, выступая в роли электронного компонента компьютеров. Во время работы вакуумные трубки сильно нагреваются, их надо интенсивно охлаждать. Зато они намного быстрее, чем допотопные переключатели.
Первичная память на основе этой технологии появилась в 1946-1947 годы, когда изобретатели Фредди Вильямс и Том Килберн представили трубку Вильямса — Килберна. Метод сохранения данных был весьма остроумным. На трубке при определенных условиях появлялась световая точка, которая слегка заряжала занимаемую поверхность. Зона вокруг точки приобретала отрицательный заряд (ее называли «энергетическим колодцем»). В «колодец» можно было поместить новую точку или оставить его без внимания — тогда первоначальная точка быстро исчезала. Эти превращения истолковывались контроллером памяти как двоичные фазы 1 и 0. Технология была очень популярна. Память на трубках Вильямса — Килберна устанавливали в компьютеры Ferranti Mark 1, IAS, UNIVAC 1103, IBM 701, IBM 702 и Standards Western Automatic Computer (SWAC).
Параллельно свою трубку, именуемую селектрон, разрабатывали инженеры из компании Radio Corporation of America под управлением ученого Владимира Зворыкина. По задумке авторов селектрон должен был вмещать до 4096 бит информации, что в четыре раза больше, чем у трубки Вильямса — Килберна. Предполагалось, что к концу 1946 года будет произведено около 200 селектронов, но производство оказалось очень дорогим.
Наравне с вакуумными трубками в некоторых компьютерах того времени использовалась барабанная память, изобретенная Густавом Таусчеком в 1939 году. Простая конструкция включала большой металлический цилиндр, покрытый сплавом из ферромагнетика. Считывающие головки, в отличие от современных винчестеров, не перемещались по поверхности цилиндра. Контроллер памяти ждал, пока информация самостоятельно пройдет под головками. Барабанная память использовалась в компьютере Атанасова — Берри и некоторых других системах. К сожалению, ее производительность была очень низкой.
Селектрону не было суждено завоевать рынок вычислительных машин — опрятные на вид электронные компоненты так и остались пылиться на свалке истории. И это несмотря на выдающиеся технические характеристики.
В данный момент рынком первичной памяти правит стандарт DDR. Точнее, второе его поколение. Переход на DDR3 состоится уже совсем скоро — осталось дождаться появления недорогих чипсетов с поддержкой нового стандарта. Повсеместная стандартизация сделала сегмент памяти слишком скучным для описания. Производители перестали изобретать новые, уникальные продукты. Все труды сводятся к увеличению рабочей частоты и установке навороченной системы охлаждения.
Технологический застой и робкие эволюционные шаги будут продолжаться до тех пор, пока производители не доберутся до предела возможностей кремния (именно из него изготавливают интегрированные микросхемы). Ведь частоту работы нельзя повышать бесконечно.
Правда, здесь кроется один подвох. Производительности существующих чипов DDR2 достаточно для большинства компьютерных приложений (сложные научные программы не в счет). Установка модулей DDR3, работающих на частоте 1066 МГц и выше, не ведет к ощутимому приросту скорости.
Звездный путь в будущее
Странная текстура на фотографии — это память на основе магнитных сердечников. Перед вами наглядная структура одного из массивов с проводами и ферритовыми кольцами. Представляете, сколько времени приходилось потратить, чтобы найти среди них нерабочий модуль?
Главным недостатком памяти, да и всех остальных компонентов на основе вакуумных трубок было тепловыделение. Трубки приходилось охлаждать при помощи радиаторов, воздуха и даже воды. К тому же постоянный нагрев существенно уменьшал время работы — трубки самым натуральным образом деградировали. Под конец срока эксплуатации их приходилось постоянно настраивать и в конечном итоге менять. Можете представить, скольких усилий и средств стоило сервисное обслуживание вычислительных систем?!
Потом наступило время массивов с близко расположенными ферритовыми кольцами — изобретение американских физиков Эн Вэнг и Вэй-Донг Ву, доработанное студентами под управлением Джея Форрестера из Массачусетского технологического университета (MIT). Через центры колец под углом 45 градусов проходили соединительные провода (по четыре на каждое кольцо в ранних системах, по два в более совершенных). Под напряжением провода намагничивали ферритовые кольца, каждое из которых могло сохранить один бит данных (намагничено — 1, размагничено — 0).
Джей Форрестер разработал систему, при которой управляющие сигналы для многочисленных сердечников шли всего по нескольким проводам. В 1951 году вышла память на основе магнитных сердечников (прямой аналог современной оперативной памяти). В дальнейшем она заняла достойное место во многих компьютерах, включая первые поколения мейнфреймов компаний DEC и IBM. По сравнению с предшественниками у нового типа памяти практически отсутствовали недостатки. Ее надежности хватало для функционирования в военных и даже космических аппаратах. После крушения шаттла «Челленджер», которое привело к смерти семи членов его экипажа, данные бортового компьютера, записанные в памяти с магнитными сердечниками, остались в полной целости и сохранности.
Технологию постепенно совершенствовали. Ферритовые кольца уменьшались в размерах, скорость работы росла. Первые образцы функционировали на частоте порядка 1 МГц, время доступа составляло 60 000 нс — к середине 70-х годов оно сократилось до 600 нс.
Дорогая, я уменьшил нашу память
Производители памяти в наше время больше заботятся о внешнем виде своих продуктов — все равно стандарты и характеристики заранее определены в комиссиях вроде JEDEC.
Следующий скачок в развитии компьютерной памяти произошел, когда были придуманы интегральные микросхемы и транзисторы. Индустрия пошла по пути миниатюризации компонентов с одновременным повышением их производительности. В начале 1970-х полупроводниковая промышленность освоила выпуск микросхем высокой степени интеграции — на сравнительно малой площади теперь умещались десятки тысяч транзисторов. Появились микросхемы памяти емкостью 1 Кбит (1024 бит), небольшие чипы для калькуляторов и даже первые микропроцессоры. Случилась самая настоящая революция.
Особый вклад в развитие первичной памяти внес доктор Роберт Деннард, сотрудник компании IBM. Он разработал первый чип на транзисторе и небольшом конденсаторе. В 1970 году рынок подстегнула компания Intel (которая появилась всего двумя годами раньше), представив чип памяти i1103 емкостью 1 Кбит. Спустя два года этот продукт стал самым продаваемым полупроводниковым чипом памяти в мире.
Во времена первых Apple Macintosh блок оперативной памяти занимал огромную планку (на фото сверху), тогда как объем не превышал 64 Кб.
Микросхемы высокой степени интеграции быстро вытеснили старые типы памяти. С переходом на следующий уровень развития громоздкие мейнфреймы уступили место настольным компьютерам. Основная память в то время окончательно отделилась от вторичной, оформилась в виде отдельных микрочипов емкостью 64, 128, 256, 512 Кбит и даже 1 Мбит.
Наконец, микросхемы первичной памяти переехали с материнских плат на отдельные планки, это сильно облегчило установку и замену неисправных компонентов. Частоты начали расти, время доступа уменьшаться. Первые синхронные динамические чипы SDRAM появились в 1993 году, их представила компания Samsung. Новые микросхемы работали на частоте 100 МГц, время доступа равнялось 10 нс.
С этого момента началось победоносное шествие SDRAM, а к 2000 году этот тип памяти вытеснил всех конкурентов. Определением стандартов на рынке оперативки занялась комиссия JEDEC (Joint Electron Device Engineering Council). Ее участники сформировали спецификации, единые для всех производителей, утвердили частотные и электрические характеристики.
Дальнейшая эволюция не так интересна. Единственное значимое событие произошло в 2000 году, когда на рынке появилась оперативная память стандарта DDR SDRAM. Она обеспечила удвоенную (по сравнению с обычной SDRAM) пропускную способность и создала задел для будущего роста. Вслед за DDR в 2004 году появился стандарт DDR2, который до сих пор пользуется наибольшей популярностью.
В современном IT-мире фразой Patent Troll (патентный тролль) называют фирмы, которые зарабатывают деньги на судебных исках. Они мотивируют это тем, что другие компании нарушили их авторские права. Целиком и полностью под это определение попадает разработчик памяти Rambus.
С момента основания в 1990 году Rambus занималась лицензированием своих технологий сторонним компаниям. К примеру, ее контроллеры и микросхемы памяти можно найти в приставках Nintendo 64 и PlayStation 2. Звездный час Rambus настал в 1996 году, когда Intel заключила с ней соглашение на использование в своих продуктах памяти RDRAM и разъемов RIMM.
Сначала все шло по плану. Intel получила в свое распоряжение продвинутую технологию, а Rambus довольствовалась партнерством с одним из крупнейших игроков IT-индустрии. К сожалению, высокая цена модулей RDRAM и чипсетов Intel поставили крест на популярности платформы. Ведущие производители материнских плат использовали чипсеты VIA и платы с разъемами под обычную SDRAM.
Rambus поняла, что на этом этапе она проиграла рынок памяти, и начала свои затяжные игры с патентами. Первым делом ей под руку попалась свежая разработка JEDEC — память стандарта DDR SDRAM. Rambus накинулась на нее, обвинив создателей в нарушении авторских прав. В течение некоторого времени компания получала денежные отчисления, однако уже следующее судебное разбирательство с участием Infineon, Micron и Hynix расставило все по своим местам. Суд признал, что технологические наработки в области DDR SDRAM и SDRAM не принадлежат Rambus.
С тех пор общее количество исков со стороны Rambus к ведущим производителям оперативки превысило все мыслимые пределы. И, похоже, такой образ жизни компанию вполне устраивает.