Что быстрее всего во вселенной
13 самых быстрых вещей во вселенной (13 фото)
Почти всем нравится скорость. Мысль, что можно двигаться быстрее, чем кто-либо еще, вдохновляла человека на создание все более совершенных вещей.
Самый быстрый человек
Самое быстрое наземное животное
Самым быстрым наземным животным является гепард – чудо эволюции. Он способен бежать со скоростью 115 км/ч. Тело гепарда, гибкое, с длинными конечностями, просто создано для скорости.
Самый быстрый компьютер
Самая быстрая рыба
Парусник – единственный вид в роде парусники и самая быстро плавающая рыба в мире. Парусник обитает в теплых водах всех океанов. Имеет голубой и синий окрас и обладает отличительной чертой – плавником, похожим на парус, идущим по всей длине спины. Еще одним признаком является продолговатый выступ на морде. Эти рыбы развивают скорость до 110 км/ч.
Самый быстрый поезд
В префектуре Яманаси в Японии построен испытательный участок, на котором 2 декабря 2003 года опытный состав из трёх вагонов модификации MLX01 установил абсолютный рекорд скорости для железнодорожного транспорта — 581 км/ч. JR-Maglev использует электродинамическую подвеску на сверхпроводящих магнитах (EDS), установленных как на поезде, так и на трассе. Жители префектуры могут прокатиться на таком поезде бесплатно, и 100000 человек уже сделали это.
Самая быстрая водная горка
Инсано – самая быстрая водная горка в мире высотой 41 м. Она занесена в книгу рекордов Гиннеса. По высоте горка может поравняться с 14тиэтажным зданием. Инсано обеспечивает очень быстрый спуск – за 4-5 сек скорость развивается до 105 км/ч.
Самый быстрый подводный аппарат
К-222 — советская атомная подводная лодка второго поколения, вооружённая крылатыми ракетами П-70 «Аметист», единственный корабль, построенный по проекту 661 «Анчар». Самая быстрая в мире подводная лодка, достигавшая в подводном положении скорости свыше 80 км/ч (42 узла). Однако за такую скорость пришлось много заплатить как в денежном плане, так и высоким уровнем шума и большим ущербом корпусу.
Самый быстрый пилотируемый самолет
X-15 — экспериментальный самолёт-ракетоплан США, оснащённый ракетными двигателями. Самолет держит рекорд как самый быстрый в мире. Он развил скорость до 7273 км/ч под управлением пилота Пита Найта.
Самый быстрый вертолет
Уэстленд «Линкс» — британский многоцелевой вертолёт. 6 августа 1986 г во время демонстрационных полетов на «Линксе» с доработанным двигателем и специальным лопастями несущего винта был установлен мировой рекорд скорости для вертолётов (400,87 км/ч).
Самый быстрый ветер
Самая быстрая птица
Сапсан — хищная птица из семейства соколиных, распространённая на всех континентах, кроме Антарктиды. Он может достигать скорости 322 км/ч в пикировании.
Самый быстрый космический корабль
«Новые горизонты» (New Horizons) — автоматическая межпланетная станция НАСА, предназначенная для изучения Плутона и его естественного спутника Харона. Станция «Новые горизонты» была запущена 19 января 2006 г. Она покинула окрестности Земли с самой большой из всех космических аппаратов скоростью. В момент выключения двигателей она составила 16,21 км/сек.
Топ-10 Рекордных объектов в космосе
Хотя человечество, конечно же, достигло впечатляющих высот, мы всё ещё остаёмся мальками по сравнению с масштабами Вселенной. Космические объекты могут с лёгкостью обойти «самые-пресамые вещи» в любой категории.
10. Самая мощная линза
Общая теория относительности Эйнштейна скрывает за собой несколько утверждений. Среди этих скрытых выводов присутствует тот факт, что свет не всегда идёт по прямой линии. Само пространство, в котором распространяется свет, выгибается вокруг любого объекта, обладающего массой. Чем массивнее объект, тем сильнее искривляется пространство. Это значит, что когда свет проходит мимо, например звезды, он изогнётся в сторону звезды и изменит направление. Результатом является эффект известный как кольца Эйнштейна. Если космическое тело излучает свет во все стороны, находясь позади массивного объекта, весь свет изогнётся в сторону массивного объекта и для наблюдателя по другую сторону тела сформируется иллюзия кольца.
9. Самая мощная вспышка рентгеновского излучения
Самая мощная вспышка рентгеновского излучения была замечена телескопом НАСА Swift в июне 2010 года. Вспышка, произошедшая в пяти миллиардах световых лет от нас, была достаточно мощной, чтобы спутник получил столько данных, что его программное обеспечение просто отказало. Один из учёных, работавших над проектом, описал произошедшее: «это всё равно, что пытаться при помощи ведра и дождемера измерить мощь цунами».
Вспышка была в 14 раз мощнее самого сильного пост
оянного источника рентгеновского излучения в небе, но этим источником является нейтронная звезда, расположенная в 500 000 ближе к Земле. Причиной мощной вспышки являлось падение звезды в чёрную дыру, хотя учёные не ожидали, что при таком сценарии может возникнуть настолько сильный выброс излучения. Интересно то, что хотя рентгеновское излучение зашкаливало, уровень остальных типов излучения держался в пределах нормы.
8. Самый мощный магнит
Титул самого сильного магнита в космосе принадлежит нейтронной звезде SGR 0418+5729, открытой Европейским Космическим Агентством (European Space Agency) в 2009 году. Учёные применили новый подход к обработке рентгеновского излучения, позволивший им исследовать магнитное поле под поверхностью звезды. Сами ЕКА описали своё открытие «магнитным монстром».
7. Мегамазеры
Лазер принес нам за последние несколько десятилетий много пользы, так что не стоит удивляться, что всю отличную репутацию получил именно он. Его двоюродный брат, находящийся чуть дальше по спектру, называется мазером, но, по сути, является почти тем же, за исключением того, что свет заменён микроволнами. Самый мощный лазер, сделанный рукой человека, для сравнения достиг мощности 500 триллионов ватт. Вселенная считает это какой-то тусклой свечой, ведь в космосе существуют мазеры мощностью в ноннилион ватт. В числах, названия которых вы слышали, это миллион триллионов триллионов – мощность в 10 000 раз превышающая возможности нашего Солнца.
Мазер появляется благодаря квазарам, являющихся большими дисками материи, сталкивающихся с массивными центральными чёрными дырами далёких галактик. Как ни странно, источником самых мощных мазеров является вода. Молекулы воды в квазаре сталкиваются друг с другом, излучая микроволны и заставляя соседей делать то же самое. Эта цепная реакция усиливает сигнал, помогая ему достичь состояния мазера, который мы можем увидеть. Мазер квазара MG J0414+0534 был зарегистрирован в 2008 году и послужил доказательством существования воды в 11,1 миллиарда световых лет от нас.
6. Самые старые объекты за всю историю наблюдения
Возраст Вселенной составляет 6 000 лет, плюс-минус 13,7 миллиарда лет. Самым старым объектом, чей возраст мы можем оценить напрямую, является HE 1523-0901 – звезда в нашей галактике. Измерение возраста звезды производится при помощи радиоизотопного анализа, примерно тем же образом, который применяется для измерения возраст человеческих артефактов. Только элементы с долгим периодом полураспада, например уран или торий, могут существовать на протяжении такого долгого отрезка времени. В ходе исследования, проведённого Европейской южной обсерваторией, было применено шесть методов оценки возраста звезды, подтвердивших, что звезде 13,2 миллиардов лет.
Существуют и другие объекты, чей возраст мы не можем измерить точно, а только предположить. Некоторые из них по предположениям являются ещё более старыми. HD 140283, известная также под неофициальным названием «Звезда Мафусаила» (Methuselah star), является звездой, которая давно озадачивает учёных. Изначальная оценка её возраста показала, что звезда является старее самой Вселенной. Более точные измерения, которые позволил произвести телескоп Хаббл, снизили число с 16 миллиардов лет до примерно 14,5 миллиардов – возраст который примерно совпадает с возрастом Вселенной.
5. Самые быстровращающиеся предметы
Учёные недавно создали самый быстровращающийся объект, вращающийся со скоростью 600 миллионов оборотов в секунду. Это впечатляет, но ширина объекта составляла всего 4 миллионных метра, так что его поверхность двигалась со скоростью 7500 метров в секунду. На первый взгляд это быстро (не на первый взгляд тоже), но это ничто по сравнению с тем, что готов показать нам космос.
VFTS 102 является самой быстровращающейся звездой среди открытых человеком, и её поверхность движется со скоростью в 440 000 метров в секунду. Она расположена в 160 000 световых лет от нас в туманности с прикольным названием «Тарантул», в одной из соседних нам галактик. Астрономы считают, что у звезды была частью двойной звезды, но её «напарница» превратилась в сверхновую, придав выжившей VFTS 102 сильный вращательный момент.
4. Галактики-рекордсмены
Если вы не почерпнули ваши знания о физике из фильмов с участием Уилла Смита, вы знаете, что все галактики достаточно большие. Наш Млечный Путь, например, в ширину составляет 100 000 световых лет. В IC 1101, самую большую обнаруженную галактику, можно было бы вместить 50 Млечных Путей. Впервые её заметил Уильям Гершель (William Herschel) в 1790 году, и на данный момент мы знаем, что она расположена в миллиарде световых лет от нас. Это огромное расстояние, но и в подмётки не годится рекордсмену по самому большому расстоянию от нас.
Самой далёкой обнаруженной галактикой является z8_GND_5296, расположенная в 30 миллиардах световых лет от Земли. Галактика образовалась спустя 700 миллионов лет после образования самой Вселенной (фактически, галактику, которую мы видим на данный момент это её далёкое прошлое). Эта галактика также примечательна высоким уровнем образования в ней звёзд, который в 100 раз больше показателя Млечного Пути. Следующее поколение космических телескопов позволит нам заглянуть ещё дальше в прошлое – и взглянуть на одни из самых первых звёзд, сформировавшихся во Вселенной.
Такие тусклые звёзды нельзя найти в видимом излучении. Часть WISE названия звезды происходит от Wide-Field Infrared Survey Explorer (Широкоугольный инфракрасный обзорный исследователь). НАСА использует WISE для обнаружения коричневых карликов и исследовании момента их образования, который можно заметить только в инфракрасном излучении. С момента запуска WISE в декабре 2009 года аппарат обнаружил более 100 коричневых карликов.
2. Самый быстрый метеорит
Если вы случайно были в Калифорнии 22 апреля 2012 года, вы могли наблюдать падение удивительного метеорита, закончившего своё путешествие в районе бывшей лесопилки Саттера (Sutter’s Mill). Увидеть падение метеорита это всегда прикольно, но огненный шар, пролетевший над хребтом Сьерра-Невада в тот день, был особенным – это самый быстрый метеорит за всю историю. Он двигался на скорости 103 тысячи километров в час, превышающей в два раза скорость самой быстрой нашей ракеты.
Учёные собрали информацию из нескольких источников, включая метеорологический радиолокатор, видео и фотографии на которых запечатлен метеорит. Это позволило им произвести триангуляцию его траектории и узнать не только его скорость, но и его отправную точку. Они даже смогли высчитать его орбиту. До того, как он врезался в Землю, метеорит долетел до Юпитера. Газовая планета, скорее всего, «выстрелила» им в нас.
1. Самые быстрые орбиты
Системы двойных звёзд – когда две звезды вращаются вокруг общего центра масс – довольно распространены. У некоторых из них даже есть планеты, а также существует система, в которой шесть звёзд двигаются по общей орбите. Однако некоторые из них двигаются очень и очень быстро.
Самое быстрое движение двух обычных звёзд друг вокруг друга наблюдается в системе под названием HM Cancri. Эти два белых карлика – мёртвые остатки звёзд, похожих на наше Солнце – находятся на расстоянии в три Земли друг от друга. Они двигаются в пространстве со скоростью в 1,8 миллиона километров в час, брызгая друг на друга горячей материей и высвобождая большое количество энергии. На прохождение всей орбиты им требуется всего шесть минут.
Были обнаружены и более необычные парочки, двигающиеся ещё быстрее. Учёные обнаружили чёрную дыру под названием MAXI J1659-152, которая формирует парную систему с красным карликом, размеров всего в 20% Солнца. Чёрная дыра двигается по орбите сравнительно медленно, всего лишь 150 000 километров в час. Его напарник, однако, летает на скорости 2 миллиона километров в час. Красный карлик расположен дальше от общего центра гравитации (в противном случае они бы уже столкнулись), но постоянно теряет свою материю и со временем полностью исчезнет.
Название «чёрная вдова» было дано пульсару из-за поведения самок чёрной вдовы, которые сжирают самца после спаривания. Пульсар выпускает в умирающую звезду столько излучения, что буквально испаряет её. Со временем, нейтронная звезда полностью уничтожит свою напарницу. Так что, хотя система двойных звёзд из HM Cancri занимает всего третью строчку по скорости своего движения, мы вынуждены признать, что отношения у них самые «здоровые».
Поддержи Бугага.ру и поделись этим постом с друзьями! Спасибо! 🙂
masterok
Мастерок.жж.рф
Хочу все знать
Верхний предел скорости известен даже школьникам: связав массу и энергию знаменитой формулой, Альберт Эйнштейн еще в начале ХХ века указал на принципиальную невозможность ничему, обладающему массой, перемещаться в пространстве быстрее, чем скорость света в вакууме. Однако уже в этой формулировке содержатся лазейки, обойти которые вполне по силам некоторым физическим явлениям и частицам.
По крайней мере, явлениям, существующим в теории.
Первая лазейка касается слова «масса»: на безмассовые частицы эйнштейновские ограничения не распространяются. Не касаются они и некоторых достаточно плотных сред, в которых скорость света может быть существенно меньше, чем в вакууме. Наконец, при приложении достаточной энергии само пространство может локально деформироваться, позволяя перемещаться так, что для наблюдателя со стороны, вне этой деформации, движение будет происходить словно быстрее скорости света.
Некоторые такие «сверхскоростные» явления и частицы физики регулярно фиксируют и воспроизводят в лабораториях, даже применяют на практике, в высокотехнологичных инструментах и приборах. Другие, предсказанные теоретически, ученые еще пытаются обнаружить в реальности, а на третьи у них большие планы: возможно, когда-нибудь эти явления позволят и нам перемещаться по Вселенной свободно, не ограничиваясь даже скоростью света.
Телепортация живого существа – хороший пример технологии, теоретически допустимой, но практически, видимо, неосуществимой никогда. Но если речь идет о телепортации, то есть мгновенном перемещении из одного места в другое небольших предметов, а тем более частиц, она вполне возможна. Чтобы упростить задачу, начнем с простого – частиц.
Кажется, нам понадобятся аппараты, которые (1) полностью пронаблюдают состояние частицы, (2) передадут это состояние быстрее скорости света, (3) восстановят оригинал.
Однако в такой схеме даже первый шаг полностью реализовать невозможно. Принцип неопределенности Гейзенберга накладывает непреодолимые ограничения на точность, с которой могут быть измерены «парные» параметры частицы. Например, чем лучше мы знаем ее импульс, тем хуже – координату, и наоборот. Однако важной особенностью квантовой телепортации является то, что, собственно, измерять частицы и не надо, как не надо ничего и восстанавливать – достаточно получить пару спутанных частиц.
Например, для приготовления таких спутанных фотонов нам понадобится осветить нелинейный кристалл лазерным излучением определенной волны. Тогда некоторые из входящих фотонов распадутся на два спутанных – необъяснимым образом связанных, так что любое изменение состояния одного моментально сказывается на состоянии другого. Эта связь действительно необъяснима: механизмы квантовой спутанности остаются неизвестны, хотя само явление демонстрировалось и демонстрируется постоянно. Но это такое явление, запутаться в котором в самом деле легко – достаточно добавить, что до измерения ни одна из этих частиц не имеет нужной характеристики, при этом какой бы результат мы ни получили, измерив первую, состояние второй странным образом будет коррелировать с нашим результатом.
Механизм квантовой телепортации, предложенный в 1993 году Чарльзом Беннеттом и Жилем Брассардом, требует добавить к паре запутанных частиц всего одного дополнительного участника – собственно, того, кого мы собираемся телепортировать. Отправителей и получателей принято называть Алисой и Бобом, и мы последуем этой традиции, вручив каждому из них по одному из спутанных фотонов. Как только они разойдутся на приличное расстояние и Алиса решит начать телепортацию, она берет нужный фотон и измеряет его состояние совместно с состоянием первого из спутанных фотонов. Неопределенная волновая функция этого фотона коллапсирует и моментально отзывается во втором спутанном фотоне Боба.
К сожалению, Боб не знает, как именно его фотон реагирует на поведение фотона Алисы: чтобы понять это, ему надо дождаться, пока она пришлет результаты своих измерений обычной почтой, не быстрее скорости света. Поэтому никакую информацию передать по такому каналу не получится, но факт останется фактом. Мы телепортировали состояние одного фотона. Чтобы перейти к человеку, остается масштабировать технологию, охватив каждую частицу из всего лишь 7000 триллионов триллионов атомов нашего тела, – думается, от этого прорыва нас отделяет не более, чем вечность.
Однако квантовая телепортация и спутанность остаются одними из самых «горячих» тем современной физики. Прежде всего потому, что использование таких каналов связи обещает невзламываемую защиту передаваемых данных: чтобы получить доступ к ним, злоумышленникам понадобится завладеть не только письмом от Алисы к Бобу, но и доступом к спутанной частице Боба, и даже если им удастся до нее добраться и проделать измерения, это навсегда изменит состояние фотона и будет сразу же раскрыто.
Эффект Вавилова – Черенкова
Этот аспект путешествий быстрее скорости света – приятный повод вспомнить заслуги российских ученых. Явление было открыто в 1934 году Павлом Черенковым, работавшим под руководством Сергея Вавилова, три года спустя оно получило теоретическое обоснование в работах Игоря Тамма и Ильи Франка, а в 1958 г. все участники этих работ, кроме уже скончавшегося Вавилова, были награждены Нобелевской премией по физике.
В самом деле, теория относительности говорит лишь о скорости света в вакууме. В других прозрачных средах свет замедляется, причем довольно заметно, в результате чего на их границе с воздухом можно наблюдать преломление. Коэффициент преломления стекла равен 1,49 – значит, фазовая скорость света в нем в 1,49 раза меньше, а, например, у алмаза коэффициент преломления уже 2,42, и скорость света в нем снижается более чем в два раза. Другим частицам ничто не мешает лететь и быстрее световых фотонов.
Именно это произошло с электронами, которые в экспериментах Черенкова были выбиты высокоэнергетическим гамма-излучением со своих мест в молекулах люминесцентной жидкости. Этот механизм часто сравнивают с образованием ударной звуковой волны при полете в атмосфере на сверхзвуковой скорости. Но можно представить и как бег в толпе: двигаясь быстрее света, электроны проносятся мимо других частиц, словно задевая их плечом – и на каждый сантиметр своего пути заставляя сердито излучать от нескольких до нескольких сотен фотонов.
Вскоре такое же поведение было обнаружено и у всех других достаточно чистых и прозрачных жидкостей, а впоследствии излучение Черенкова зарегистрировали даже глубоко в океанах. Конечно, фотоны света с поверхности сюда действительно не долетают. Зато сверхбыстрые частицы, которые вылетают от небольших количеств распадающихся радиоактивных частиц, время от времени создают свечение, возможно, худо-бедно позволяющее видеть местным жителям.
Излучение Черенкова – Вавилова нашло применение в науке, ядерной энергетике и смежных областях. Ярко светятся реакторы АЭС, битком набитые быстрыми частицами. Точно измеряя характеристики этого излучения и зная фазовую скорость в нашей рабочей среде, мы можем понять, что за частицы его вызвали. Черенковскими детекторами пользуются и астрономы, обнаруживая легкие и энергичные космические частицы: тяжелые невероятно трудно разогнать до нужной скорости, и излучения они не создают.
Вот муравей ползет по листу бумаги. Скорость его невелика, и на то, чтобы добраться от левого края плоскости до правого, у бедняги уходит секунд 10. Но стоит нам сжалиться над ним и согнуть бумагу, соединив ее края, как он моментально «телепортируется» в нужную точку. Нечто подобное можно проделать и с нашим родным пространством-временем, с той лишь разницей, что изгиб требует участия других, невоспринимаемых нами измерений, образуя туннели пространства-времени, – знаменитые червоточины, или кротовые норы.
Кстати, согласно новым теориям, такие кротовые норы – это некий пространственно-временной эквивалент уже знакомого нам квантового феномена запутанности. Вообще, их существование не противоречит никаким важным представлениям современной физики, включая общую теорию относительности. Но вот для поддержания такого туннеля в ткани Вселенной потребуется нечто, мало похожее на настоящую науку, – гипотетическая «экзотическая материя», которая обладает отрицательной плотностью энергии. Иначе говоря, это должна быть такая материя, которая вызывает гравитационное. отталкивание. Трудно представить, что когда-нибудь эта экзотика будет найдена, а тем более приручена.
Своеобразной альтернативой кротовым норам может служить еще более экзотическая деформация пространства-времени – движение внутри пузыря искривленной структуры этого континуума. Идею высказал в 1993 году физик Мигеле Алькубьерре, хотя в произведениях фантастов она звучала намного раньше. Это как космический корабль, который движется, сжимая и сминая пространство-время перед своим носом и снова разглаживая его позади. Сам корабль и его экипаж при этом остаются в локальной области, где пространство-время сохраняет обычную геометрию, и никаких неудобств не испытывают. Это прекрасно видно по популярному в среде мечтателей сериалу «Звездный путь», где такой «варп-двигатель» позволяет путешествовать, не скромничая, по всей Вселенной.
Фотоны – частицы безмассовые, как и нейтрино и некоторые другие: их масса в покое равна нулю, и чтобы не исчезнуть окончательно, они вынуждены всегда двигаться, и всегда – со скоростью света. Однако некоторые теории предполагают существование и куда более экзотических частиц – тахионов. Масса их, фигурирующая в нашей любимой формуле E = mc2, задается не простым, а мнимым числом, включающим особый математический компонент, квадрат которого дает отрицательное число. Это очень полезное свойство, и сценаристы любимого нами сериала «Звездный путь» объясняли работу своего фантастического двигателя именно «обузданием энергии тахионов».
В самом деле, мнимая масса делает невероятное: тахионы должны терять энергию, ускоряясь, поэтому для них все в жизни обстоит совсем не так, как мы привыкли думать. Сталкиваясь с атомами, они теряют энергию и ускоряются, так что следующее столкновение будет еще более сильным, которое отнимет еще больше энергии и снова ускорит тахионы вплоть до бесконечности. Понятно, что такое самоувлечение просто нарушает базовые причинно-следственные зависимости. Возможно, поэтому изучают тахионы пока лишь теоретики: ни единого примера распада причинно-следственных связей в природе пока никто не видел, а если вы увидите, ищите тахион, и Нобелевская премия вам обеспечена.
Однако теоретики все же показали, что тахионы, может, и не существуют, но в далеком прошлом вполне могли существовать, и, по некоторым представлениям, именно их бесконечные возможности сыграли важную роль в Большом взрыве. Присутствием тахионов объясняют крайне нестабильное состояние ложного вакуума, в котором могла находиться Вселенная до своего рождения. В такой картине мира движущиеся быстрее света тахионы – настоящая основа нашего существования, а появление Вселенной описывается как переход тахионного поля ложного вакуума в инфляционное поле истинного. Стоит добавить, что все это вполне уважаемые теории, несмотря на то, что главные нарушители законов Эйнштейна и даже причинно-следственной связи оказываются в ней родоначальниками всех причин и следствий.
Если рассуждать философски, тьма – это просто отсутствие света, и скорости у них должны быть одинаковые. Но стоит подумать тщательнее: тьма способна принимать форму, перемещающуюся куда быстрее. Имя этой формы – тень. Представьте, что вы показываете пальцами силуэт собаки на противоположной стене. Луч от фонаря расходится, и тень от вашей руки становится намного больше самой руки. Достаточно малейшего движения пальца, чтобы тень от него на стене сместилась на заметное расстояние. А если мы будем отбрасывать тень на Луну? Или на воображаемый экран еще дальше.
Едва заметное мановение – и она перебежит с любой скоростью, которая задается лишь геометрией, так что никакой Эйнштейн ей не указ. Впрочем, с тенями лучше не заигрываться, ведь они легко обманывают нас. Стоит вернуться в начало и вспомнить, что тьма – это просто отсутствие света, поэтому никакой физический объект при таком движении не передается. Нет ни частиц, ни информации, ни деформаций пространства-времени, есть только наша иллюзия того, что это отдельное явление. В реальном же мире никакая тьма не сможет сравниться в скорости со светом.