Что ввода сохранения вывода информации
Ввод/вывод
С информатике, ввод/вывод (в англ. языке часто используется сокращение I/O — input/output) означает взаимодействие между обработчиком информации (например, компьютер) и внешним миром, который может представлять как человек, так и любая другая система обработки информации. Ввод — сигнал или данные, полученные системой, а вывод — сигнал или данные, посланные ею (или из нее). Термин также может использоваться как обозначение (или дополнение к обозначению) определенного действия: «выполнять ввод/вывод» означает выполнение операций ввода или вывода. Устройства ввода-вывода используются человеком (или другой системой) для взаимодействия с компьютером. Например, клавиатуры и мыши — специально разработанные компьютерные устройства ввода, а мониторы и принтеры — компьютерные устройства вывода. Устройства для взаимодействия между компьютерами, как модемы и сетевые карты, обычно служат устройствами ввода и вывода одновременно.
Стоит отметить, что назначение устройства в качестве устройства ввода или вывода зависит от перспективы. Мыши и клавиатуры принимают физическое взаимодействие, осуществляемое человеком-пользователем (кстати, относительно него это будут действия по выводу информации), и превращает его в сигналы, понятные компьютеру. Вывод информации из этих устройств является вводом ее в компьютер. Аналогично, принтеры и мониторы получают на входе сигналы, которые выводит компьютер. Затем они преобразуют эти сигналы в такой вид, который человек сможет увидеть или прочитать. (Для людей-пользователей процесс чтения или просмотра подобных вариантов представления информации является вводом или получением информации).
В компьютерной архитектуре объединение процессора и основной памяти (то есть памяти, из которой процессор может читать и записывать в нее напрямую с помощью особых инструкций) составляет «мозг» компьютера, и с этой точки зрения, любой обмен информацией с этим объединением, например, с дисковым накопителем, подразумевает ввод-вывод. Процессор и его сопутствующие электронные цепи реализуют ввод-вывод с распределением памяти, используемый в низкоуровневом программировании при реализации драйверов устройств.
Высокоуровневая операционная система и программное обеспечение используют другие, более абстрактные концепции и примитивы ввода-вывода. Например, большинство операционных систем реализуют прикладные программы через концепцию файлов. Языки программирования Си и C++, а также операционные системы семейства Unix, традиционно абстрагируют файлы и устройства в виде потоков данных, из которых можно читать и в которые можно записывать, или и то и другое вместе. Стандартная библиотека языка Си реализует функции для работы с потоками для ввода и вывода данных.
Альтернативой специальным простейшим функциям служит монада ввода-вывода, которая позволяет программам просто описывать ввод-вывод, а действия выносятся за рамки программы. Это весьма примечательно, так как функции ввода-вывода имеют побочные эффекты в любом языке программирования, но сейчас получило распространение чисто функциональное программирование.
Содержание
Интерфейс ввода-вывода
Интерфейс ввода-вывода требует управления процессором каждого устройства. Интерфейс должен иметь соответствующую логику для интерпретации адреса устройства, генерируемого процессором.
Установление контакта должно быть реализовано интерфейсом при помощи соответствующих команд типа (ЗАНЯТ, ГОТОВ, ЖДУ), чтобы процессор мог взаимодействовать с устройством ввода-вывода через интерфейс.
Если существует необходимость передачи различающихся форматов данных, то интерфейс должен уметь конвертировать последовательные (упорядоченные) данные в параллельную форму и наоборот.
Должна быть возможность для генерации прерываний и соответствующих типов чисел для дальнейшей обработки процессором (при необходимости).
Компьютер, использующий ввод-вывод с распределением памяти, обращается к аппаратному обеспечению при помощи чтения и записи в определенные ячейки памяти, используя те же самые инструкции языка ассемблера, которые компьютер обычно использует при обращении к памяти.
Режимы адресации
Существует несколько способов, которыми данные могут быть прочитаны или помещены в память. Каждый метод представляет собой режим адресации и имеет собственные преимущества и ограничения.
Режимы адресации делятся на множество типов, как например, прямая адресация, косвенная (непрямая) адресация, непосредственная адресация, индексная адресация, базовая адресация, базово-индексная адресация, предполагаемая адресация и т. д.
Прямая адресация
В этом типе адрес данных сам является частью инструкции. Когда процессор декодирует инструкцию, он получает адрес ячейки памяти, откуда может быть считана (куда может быть записана) требуемая информация.
В данном случае операнд Addr указывает на область памяти, содержащее данные и копирует их в указанный регистр Reg.
Косвенная адресация
В этом случае адрес может храниться в регистре. Инструкции будут обращаться к регистру, содержащему адрес. То есть, для получения данных, инструкция должна декодировать данные соответствующего регистра. Содержимое регистра будет обработано как адрес, используя который, будет считана/записана информация из/в соответствующую область памяти.
Ввод-вывод с распределением (вводимой информации) по портам (памяти)
Ввод-вывод с распределением (вводимой информации) по портам (памяти) обычно требует применения инструкций, специально разработанных для выполнения операций ввода-вывода.
Устройства вывода и ввода информации: характеристика
О том, что существуют устройства ввода и вывода информации, наверное, не нужно говорить никому. Иначе как бы пользователь общался с компьютером? Однако далеко не все понимают, что на самом деле представляют собой устройства ввода и вывода информации, причем не только на физическом, но и на программном уровне. Тут нужно понимать несколько основных моментов, о которых далее и пойдет речь.
Устройства ввода и вывода информации: что это в общем понимании?
Любой компьютерной или мобильной системе, работающей под управлением определенной ОС в качестве основной платформы, требуется участие пользователя. Без его запросов по запуску приложений и откликов установленных программ результата выполнения определенной поставленной задачи добиться будет невозможно.
Означает это только то, что изначально нужно ввести запрос (input), после чего получить результат его выполнения в виде обработки данных, запуска программы и т. д. (output). Каким образом юзер может задать компьютеру постановку задачи и получить решение по ее выполнению? Для этого и созданы устройства вывода и ввода. Правда, далеко не все могут их правильно идентифицировать. Впрочем, кому это по большому счету нужно? Тем не менее в этом вопросе стоит разобраться, что называется, по существу.
Как осуществляется ввод данных?
К устройствам ввода и вывода информации относятся все «железные» устройства, а иногда и виртуальные компоненты.
Среди простейших, знакомых каждому пользователю средств, отвечающих за ввод, можно отметить клавиатуру, мышь, джойстик, тачпад, камеру, микрофон, сканер, стример и другие сопутствующие компоненты.
Каждый такой элемент позволяет решать узконаправленные задачи по добавлению информации или данных, которые на определенном уровне могли бы быть распознаны и обработаны компьютерной системой. Но это только лишь самый поверхностный взгляд. И не стоит удивляться, что в списке присутствуют два последних устройства. По сути, ведь мы задаем системе распознавание информации, а это уже есть ввод неких данных, которые должны быть определены системой.
Обработка информации
Дело в том, что основные устройства ввода-вывода нельзя идентифицировать только на уровне того, что пользователь видит перед собой в процессе общения с компьютерной системой.
На самом деле следует принять во внимание процессы, при которых происходит обработка тех же запускаемых программ или сохранение информации. Так, например, устройства ввода и вывода компьютера могут идентифицировать даже начальные параметры установленных компонентов, что производится в первичной системе BIOS (об этом будет сказано несколько позже).
С другой стороны, функционирование ни одного «железного» устройства невозможно без специальных управляющих программ, называемых драйверами. Их тоже смело можно причислить к той категории, которую в данном случае принято характеризовать как программные устройства ввода и вывода данных. Те же графические карты отвечают за изображение на мониторе.
А если взять в расчет, что ранее данные нужно было вводить исключительно с перфокарт, когда начальные системы инициализации созданы еще не были, можно себе представить, какими были все эти процессы в плане начального ввода, выполнения операций и выдачи результата. На это требовалось не только время и вычислительные способности машины, а еще и специальные устройства, способные считывать информацию. Дискеты тоже оказались не наилучшими носителями в силу их слабой износостойкости, не говоря уже об ограниченном дисковом пространстве.
Хранение данных
Говоря о том, что представляют собой устройства хранения информации ввода-вывода, нельзя не отметить основные средства сохранения данных.
Как правило, для начального сохранения любого файла используется жесткий диск, называемый винчестером. Он исполняет универсальную роль, являясь одновременно и средством ввода данных (новые файлы, копирование, перемещение), и промежуточным средством вывода, поскольку именно на нем хранятся все драйверы и та же самая операционная система. Память устройства ввода/устройства вывода этого типа, напрямую зависит от объема, производителя и применяемой файловой системы. В большинстве случаев это NTFS, но для дисков с размеров 2 Тб и выше ее использовать нельзя. Тут потребуется инициализация на уровне GPT-раздела, иначе система такой «винт», будь он хоть SSD, не воспримет.
Характеристика устройств ввода-вывода данных: визуализация
С методами ввода вроде бы все понятно. Но с выводом данных у многих юзеров возникают проблемы, в частности, в вопросе понимания этого процесса как такового.
Как пользователь воспринимает информацию после обработки? Исходя из человеческих способностей, когда индивидуум, естественно, мысленно не может понять, какой именно процесс в данный момент совершает машина, и не способен подключиться к ее программным процессам, остается что? Разве что – увидеть результат выполнения запроса или программы в визуальном виде. Для этого и созданы компьютерные мониторы, за работу которых отвечают графические карты (интегрированные или дискретные). Иными словами, мы должны видеть то, что в данный момент совершается.
Мониторы
Мониторы как средства отображения информации о происходящих процессах являются самыми главными. Некогда в интернете проскочила информация о том, что какой-то индус работал в интернете с компьютером без монитора в течение нескольких лет. Но это вызывает законные сомнения, ведь для тех систем еще не были разработаны голосовые помощники.
Сейчас в той же системе Windows 10 есть Cortana, и то на территории постсоветского пространства недоступная. В Android или в «яблочных» системах есть свои «фишки». Но все это основано исключительно на визуальном представлении.
К устройствам ввода-вывода относятся и системы BIOS или их осовремененные версии в виде UEFI, которые являются одними из ключевых структур, представляющих собой некие определители корректного распознавания и функционирования «железа» на стадии загрузки компьютерной системы.
Сама первичная система отвечает за начальную загрузку (причем еще до старта ОС, установленной на стационарном ПК или ноутбуке. Устройства вывода и ввода данных, в частности, параметры процессора, оперативной памяти или видеокарты, определяются изначально при включении. И именно в этой системе можно произвести установку специализированных параметров, которые в дальнейшем и повлияют на работоспособность компьютера (например, старт со съемного носителя, секвенция загрузки, режим работы жесткого диска, включение виртуальных компонентов и т. д.).
Вход осуществляется при помощи нажатия соответствующих клавиш, но для большинства стационарных ПК-терминалов можно использовать Del (на мониторе при старте появится соответствующая строка в середине или внизу экрана).
Клавиатура
Устройства вывода и ввода нельзя рассматривать и без клавиатурных модулей. Сегодня существует столько их модификаций, что даже трудно себе представить (стандартные, игровые, мультимедийные).
Тем не менее далеко не каждый пользователь задумывается над тем, каким именно образом производится ввод данных. Большинство совершенно не понимает, что нажатие на определенную клавишу вызывает обращение к определенным ячейкам памяти с присвоением двоичного кода каждой литере, а соответственно, и команде используемого символа. Что же касается раскладок, тут есть свои нюансы, поскольку при смене языка кодировка тоже меняется. А за это отвечают таблицы кодов (UTF, KOI8-R и т. д.), без которых присвоение используемому символу определенного кода будет просто невозможным.
Манипуляторы
Рассматривая устройства вывода и ввода, нельзя не затронуть и компьютерные манипуляторы, к каковым относятся мыши, джойстики, рули, педали, шлемы и другие современные управляющие устройства.
Нетрудно понять, что само устройство на основе драйверов и запрограммированных алгоритмов способно управлять любой системой, будь то ОС или игра, запущенная в ее среде. Так, скажем, набирающие популярность шлемы виртуальной реальности можно описать и как средство ввода данных в игре, и как инструмент отображения результата определенных действий в игровом процессе.
Акустика
Еще одним средством, служащим для восприятия окружающей нас информации, есть звук. По этой части за его воспроизведение отвечает звуковая система компьютера, которая тоже является частью средств ввода, вывода и восприятия информации.
Устройства можно разделить на интегрированные, устанавливаемые в слоты PCI и внешние. Качество саунда напрямую зависит от устанавливаемого оборудования, а вывод звука может включать в себя не только поддержку своих собственных драйверов, но и возможности более широкие. К примеру, ранее для полноценной работы с использованием аудио- и MIDI-редакторов требовалась поддержка звуковым модулем режима Full Duplex. По крайней мере, программы любой версии Cubase требовали именно этого. Даже мост DirectX, предусмотренный в любой системе Windows, не спасал.
Сегодня многие устройства вывода и ввода в этом ракурсе работают на основе так называемых драйверов ASIO, среди которых стоит особо выделить ASIO4All v2, FL Studio ASIO и другие модификации. Суть их ввода и вывода сводится к тому, чтобы использовать возможности проигрывания партии на подключаемой клавиатуре любого MIDI-стандарта с воспроизведением через выбранный канал DAW (виртуальной студии) звука инструмента, присоединяемого к ней посредством интерфейсов VST, DX или RTAS.
Принтеры, сканеры и другие устройства
Естественно, информацию можно отобразить не только на мониторе. Одними из самых, как считается, совершенных средств визуализации являются принтеры и сканеры.
Читать документ в печатном виде многим людям намного удобнее, нежели наблюдать такую же картинку на экране компьютерного монитора. Даже чтение обычных печатных изданий зачастую оказывается более удобным, чем осмысливание аналогичного текста или картинок, представленных на интернет-ресурсах.
Сканеры способны распознавать графическую информацию, преобразовывая ее в любой другой формат, подлежащий изменению в каком-то определенном выбранном редакторе. Эти процессы тоже с абсолютной уверенностью можно назвать вводом и выводом. Посудите сами, ведь сначала документ задается на обработку устройством (ввод), а потом выдается результат сканирования (вывод), пусть даже с преобразованием выходного формата.
Краткие итоги
Если подвести некую черту, думается, уже понятно, что именно представляют собой устройства вывода и ввода. На самом деле устройств, связанных с этими процессами, можно насчитать намного больше. Но ввиду невозможности описания их всех некоторые из них не затрагивались вовсе. Тем не менее любой человек, пусть даже далекий от компьютерной техники, сможет сделать выводы о том, что представляют собой такие методы и девайсы.
Глава 1. Компьютер. Программное и аппаратное обеспечение
Устройства ввода/вывода информации. Подключение периферийных устройств.
Последовательные порты и параллельный порт
Число таких контроллеров соответствует числу подключенных к процессору устройств ввода и вывода. Так, для управления работой клавиатуры и мыши используется свой отдельный контроллер. Известно, что даже хорошая машинистка не способна набирать на клавиатуре больше 300 знаков в минуту, или 5 знаков в секунду. Чтобы определить, какая из ста клавиш нажата, процессор, не поддержанный контроллером, должен был бы опрашивать клавиши со скоростью 500 раз в секунду. Конечно, по его меркам это не бог весть какая скорость. Но это значит, что часть своего времени процессор будет тратить не на обработку уже имеющейся информации, а на ожидание нажатий клавиш клавиатуры.
Таким образом, использование специальных контроллеров для управления устройствами ввода-вывода, усложняя устройство компьютера, одновременно разгружает его центральный процессор от непроизводительных трат времени и повышает общую производительность компьютера.
Устройства ввода информации
Клавиатура. Универсальным устройством ввода информации является клавиатура (рис. 5). Клавиатура позволяет вводить числовую и текстовую информацию. Стандартная клавиатура имеет 104 клавиши и 3, информирующих о режимах работы световых индикатора в правом верхнем углу.
Координатные устройства ввода. Для ввода графической информации и для работы с графическим интерфейсом программ используются координатные устройства ввода информации: манипуляторы (мышь, трекбол), сенсорные панели тачпад и графические планшеты – см. рис. 7., см. рис. 8.
Рис. 7. Графический планшет
Рис. 8. Манипуляторы: оптическая беспроводная мышь и трекбол
В оптико-механических манипуляторах мышь и трекбол основным рабочим органом является массивный шар (металлический, покрытый резиной). У мыши он вращается при перемещении ее корпуса по горизонтальной поверхности, а у трекбола вращается непосредственно рукой.
Вращение шара передается двум пластмассовым валам, положение которых с большой точностью считывается инфракрасными оптопарами), есть парами «светоизлучатель-фотоприемник») и затем преобразуется в электрический сигнал, управляющий движением указателя мыши на экране монитора. Главным «врагом» мыши является загрязнение, а способом борьбы с ним — использование специального «мышиного» коврика.
В настоящее время широкое распространение получили оптические мыши, в которых нет механических частей. Источник света, размещенный внутри мыши, освещает поверхность, а отраженный свет фиксируется фотоприемником и преобразуется в перемещение курсора на экране.
Разрешающая способность мышей обычно составляет около 600 dpi (dot per inch — точек на дюйм). Это означает, что при перемещении мыши на 1 дюйм ( 1 дюйм = 2,54 см) указатель мыши на экране перемещается на 600 точек.
Манипуляторы имеют обычно две кнопки управления, которые используются при работе с графическим интерфейсом программ. В настоящее время появились мыши с дополнительным колесиком, которое располагается между кнопками. Оно предназначено для прокрутки вверх или вниз не умещающихся целиком на экране изображений, текстов или Web-страниц.
Современные модели мышей и трекболов часто являются беспроводными, то есть подключаются к компьютеру без помощи кабеля (рис. 8).
В портативных компьютерах вместо манипуляторов используется сенсорная панель тачпад (от английского слова TouchPad), которая представляет собой панель прямоугольной формы, чувствительную к перемещению пальца и нажатию пальцем. Перемещение пальца по поверхности сенсорной панели преобразуется в перемещение курсора на экране монитора. Нажатие на поверхность сенсорной панели эквивалентно нажатию на кнопку мыши.
Для рисования и ввода рукописного текста используются графические планшеты. С помощью специальной ручки можно чертить, рисовать схемы, добавлять заметки и подписи к электронным документам. Качество графических планшетов характеризуется разрешающей способностью, которая измеряется в Ipi (lines per inch — линиях на дюйм) и способностью реагировать на силу нажатия пера.
В хороших планшетах разрешающая способность достигает 2048 Ipi (перемещение пера по поверхности планшета на 1 дюйм соответствует перемещению на 2048 точек на экране монитора), а количество воспринимаемых градаций нажатий на перо составляет 1024.
Сканер. Для оптического ввода в компьютер и преобразования в компьютерную форму изображений (фотографий, рисунков, слайдов), а также текстовых документов используется сканер (рис. 9.).
Сканируемое изображение освещается белым светом (черно-белые сканеры) или тремя цветами (красным, зеленым и синим). Отраженный свет проецируется на линейку фотоэлементов, которая движется, последовательно считывает изображение и преобразует его в компьютерный формат. В отсканированном изображении количество различаемых цветов может достигать десятков миллиардов.
Системы распознавания текстовой информации позволяют преобразовать отсканированный текст из графического формата в текстовый. Такие системы способны распознавать текстовые документы на различных языках, представленные в различных формах (например, таблицах) и с различным качеством печати (начиная от машинописных документов).
Разрешающая способность сканеров составляет 600 dpi и выше, то есть на полоске изображения длиной 1 дюйм сканер может распознать 600 и более точек.
Цифровые камеры и ТВ-тюнеры. Последние годы все большее распространение получают цифровые камеры (видеокамеры и фотоаппараты — рис. 10.). Цифровые камеры позволяют получать видеоизображение и фотоснимки непосредственно в цифровом (компьютерном) формате.
Цифровые видеокамеры могут быть подключены к компьютеру, что позволяет сохранять видеозаписи в компьютерном формате.
Для передачи «живого» видео по компьютерным сетям используются недорогие Web-камеры, разрешающая способность которых обычно не превышает 640×480 точек.
Цифровые фотоаппараты позволяют получать высокаче-ственные фотографии с разрешением до 2272×1704 точек (всего до 3,9 млн пикселей). Для хранения фотографий используются модули flash-памяти илл жесткие диски очень маленького размера. Запись изображений на жесткий диск компьютера может осуществляться путем подключения камеры к компьютеру.
Если установить в компьютер специальную плату (ТВ-тюнер) и подключить к ее входу телевизионную антенну, то появляется возможность просматривать телевизионные передачи непосредственно на компьютере.
Звуковая карта. Звуковая карта производит преобразование звука из аналоговой формы в цифровую. Для ввода звуковой информации используется микрофон, который подключается к входу звуковой карты. Звуковая карта имеет также возможность синтезировать звук (в ее памяти хранятся звуки различных музыкальных инструментов, которые она может воспроизводить).
Многие звуковые платы имеют специальный игровой порт (GAME-порт), к которому подключаются игровые манипуляторы (джойстики), которые предназначены для более удобного управления ходом компьютерных игр.
Устройства вывода информации
Монитор. Монитор является универсальным устройством вывода информации и подключается к видеокарте, установленной в компьютере.
Изображение в компьютерном формате (в виде последовательностей нулей и единиц) хранится в видеопамяти, размещенной на видеокарте. Изображение на экране монитора формируется путем считывания содержимого видеопамяти и отображения его на экран.
Частота считывания изображения влияе влияет на стабильность изображения на экране. В современных мониторах обновление изображения происходит обычно с частотой 75 и более раз в секунду, что обеспечивает комфортность восприятия изображения пользователем компьютера (человек не замечает мерцание изображения). Для сравнения можно напомнить, что частота смены кадров в кино составляет 24 кадра в секунду.
В настольных компьютерах обычно используются мониторы на электронно-лучевой трубке (ЭЛТ) — рис. 11. Изображение на экране монитора создается пучком электронов, испускаемых электронной пушкой. Этот пучок электронов разгоняется высоким электрическим напряжением (десятки киловольт) и падает на внутреннюю поверхность экрана, покрытую люминофором (веществом, светящимся под воздействием пучка электронов).
Система управления пучком заставляет пробегать его построчно весь экран (создает растр), а также регулирует его интенсивность (соответственно яркость свечения точки люминофора). Пользователь видит изображение на экране монитора, так как люминофор излучает световые лучи в видимой части спектра. Качество изображения тем выше, чем меньше размер точки изображения (точки люминофора), в высокаче-ственных мониторах размер точки составляет 0,22 мм.
Однако монитор является также источником высокого статического электрического потенциала, электромагнитного и рентгеновского излучений, которые могут оказывать неблагоприятное воздействие на здоровье человека. Современные мониторы практически безопасны, так как соответствуют жестким санитарно-гигиеническим требованиям, зафиксированным в международном стандарте безопасности ТСО’99.
Рис. 11. ЭЛТ монитора
Рис. 12. Монитор на ЖК
В портативных и карманных компьютерах применяют плоские мониторы на жидких кристаллах (ЖК). В последнее время такие мониторы стали использоваться и в настольных компьютерах.
LCD (Liquid Crystal Display, жидкокристаллические мониторы. — рис. 12.) сделаны из вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности, оптических), связанных с упорядоченностью в ориентации молекул. Молекулы жидких кристаллов под воздействием электрического напряжения могут изменять свою ориентацию и вследствие этого изменять свойства светового луча, проходящего сквозь них.
Преимущество ЖК-мониторов перед мониторами на ЭЛТ состоит в отсутствии вредных для человека электромагнитных излучений и компактности.
Мониторы могут иметь различный размер экрана. Размер диагонали экрана измеряется в дюймах ( 1 дюйм = 2,54 см) и обычно составляет 15, 17 и более дюймов.
Принтеры. Принтеры предназначены для вывода на бумагу (создания «твердой копии») числовой, текстовой и графической информации. По своему принципу действия принтеры делятся на матричные, струйные и лазерные.
Матричные принтеры (рис. 13.) — это принтеры ударного действия. Печатающая головка матричного принтера состоит из вертикального столбца маленьких стержней (обычно 9 или 24), которые под воздействием магнитного поля «выталкиваются» из головки и ударяют по бумаге (через красящую ленту). Перемещаясь, печатающая головка оставляет на бумаге строку символов.
Рис. 13. Матричный принтер
Рис. 14. Струйный принтер
Недостатки матричных принтеров состоят в том, что они печатают медленно, производят много шума и качество печати оставляет желать лучшего (соответствует примерно качеству пишущей машинки).
В последние годы широкое распространение получили черно-белые и цветные струйные принтеры (рис. 14.). В них используется чернильная печатающая головка, которая под давлением выбрасывает чернила из ряда мельчайших отверстий на бумагу. Перемещаясь вдоль бумаги, печатающая головка оставляет строку символов или полоску изображения.
Струйные принтеры могут печатать достаточно быстро (до нескольких страниц в минуту) и производят мало шума. Качество печати (в том числе и цветной) определяется разрешающей способностью струйных принтеров, которая может достигать фотографического качества 2400 dpi. Это означает, что полоска изображения по горизонтали длиной в 1 дюйм формируется из 2400 точек (чернильных капель).
Лазерные принтеры (рис. 15) обеспечивают практически бесшумную печать. Высокую скорость печати (до 30 страниц в минуту) лазерные принтеры достигают за счет постраничной печати, при которой страница печатается сразу целиком.
Высокое типографское качество печати лазерных принтеров обеспечивается за счет высокой разрешающей способности, которая может достигать 1200 dpi и более.
Плоттер. Для вывода сложных и широкоформатных графических объектов (плакатов, чертежей, электрических и электронных схем и пр.) используются специальные устройства вывода — плоттеры (рис. 16.). Принцип действия плоттера такой же, как и струйного принтера.
Рис. 15. Лазерный принтер
Акустические колонки и наушники. Для прослушивания звука используются акустические колонки или наушники, которые подключаются к выходу звуковой платы.
Ключевой принцип работы клавиатуры заключается в том, что она воспринимает нажатия клавиш и преобразует их в двоичный код, индивидуальный для каждой клавиши.
Мышь не позволяет вводить числовую и буквенную информацию, но удобна для работы с графическими объектами, изображенными на экране.
Принцип действия сканера напоминает работу человеческого глаза. Освещенный специальным источником света, находящимся в самом сканере, лист бумаги с текстом или рисунком «осматривается» микроскопическим «электронным глазом». Диаметр участка изображения, воспринимаемого таким «глазом», составляет 1/20 миллиметра и соответствует диаметру человеческого волоса. Яркость считываемой в данный момент точки изображения кодируется двоичным числом и передается в компьютер. Для того чтобы осмотреть стандартный лист бумаги, «электронному глазу» приходится строку за строкой обходить его, передавая закодированную информацию об освещенности каждой точки изображения в компьютер.
На цветных мониторах каждому знакоместу может соответствовать свой цвет символа и фона, что позволяет выводить красивые цветные надписи на экран. На монохромных мониторах для выделения отдельных частей текста и участков экрана используется повышенная яркость символов, подчеркивание и инверсное изображение.
Графический режим предназначен для вывода на экран графической информации (рисунки, диаграммы, фотографии и т. п.). Разумеется в этом режиме можно выводить и текстовую информацию в виде различных надписей, причем эти надписи могут иметь произвольный шрифт, размер и др.
Первые принтеры создавали изображение из множества точек, получающихся под действием иголок, ударяющих через красящую ленту по бумаге и оставляющих на ней след. Иголки закреплены в печатающей головке и приводятся в движение электромагнитами. Сама же головка движется горизонтально, печатая строку за строкой. Количество иголок составляет 8 или 24 при одной и той же высоте печатающей головки. Во втором случае их делают тоньше, а получаемое изображение оказывается более «мелкозернистым».
Принцип, лежащий в основе струйной печати с использованием жидких чернил, состоит в нанесении капелек чернил непосредственно на поверхность бумаги, пленки или ткани. Импульсная печатающая головка струйного принтера, подобно головке матричного принтера, состоит из вертикального ряда камер, способных нанести на бумагу одну или несколько вертикальных полосок. Число камер, входящих в состав головки, может достигать 48. Это позволяет получать очень качественное изображение.
Существуют как черно-белые, так и цветные струйные принтеры. Последние, кроме головки с черными чернилами, имеют еще печатную головку с чернилами трех цветов.
Кроме матричных и струйных принтеров, широкое распространение получили и, так называемые, лазерные принтеры. Принцип их работы достаточно сложен и требует глубокого знания физики, поэтому нами рассматриваться не будет. Эти принтеры при своей относительно высокой стоимости очень экономичны в эксплуатации и намного менее требовательны к качеству бумаги, по сравнению со струйными принтерами.
КЛАВИАТУРА
Клавиатура IBM PC служит для ввода информации в компьютер. На клавиатуре можно выделить три поля:
— алфавитно-цифровое поле (слева);
— управляющие клавиши;
— поле дополнительной клавиатуры (справа; может отсутствовать).
Управляющие клавиши имеют следующее назначение:
Матричные принтеры используют комбинации маленьких штырьков, которые бьют по красящей ленте, благодаря чему на бумаге остаётся отпечаток символа. Каждый символ, печатаемый на принтере, формируется из набора 9, 18 или 24 игл, сформированных в виде вертикальной колонки. Недостатками этих недорогих принтеров являются их шумная работа и невысокое качество печати.
Лазерные принтеры работают примерно так же, как ксероксы. Компьютер формирует в своей памяти «образ» страницы текста и передает его принтеру. Информация о странице проецируется с помощью лазерного луча на вращающийся барабан со светочувствительным покрытием, меняющим электрические свойства в зависимости от освещённости.
Лазерный принтер
После засветки на барабан, находящийся под электрическим напряжением, наносится красящий порошок — тонер, частицы которого налипают на засвеченные участки поверхности барабана. Принтер с помощью специального горячего валика протягивает бумагу под барабаном; тонер переносится на бумагу и «вплавляется» в неё, оставляя стойкое высококачественное изображение. Цветные лазерные принтеры пока очень дороги.
Струйные принтеры генерируют символы в виде последовательности чернильных точек. Печатающая головка принтера имеет крошечные сопла, через которые на страницу выбрызгиваются быстросохнущие чернила. Эти принтеры требовательны к качеству бумаги. Цветные струйные принтеры создают цвета, комбинируя чернила четырех основных цветов — ярко-голубого, пурпурного, желтого и черного.
Принтер связан с компьютером посредством кабеля принтера, один конец которого вставляется своим разъёмом в гнездо принтера, а другой — в порт принтера компьютера. Порт — это разъём, через который можно соединить процессор компьютера с внешним устройством.
Каждый принтер обязательно имеет свой драйвер — программу, которая способна переводить (транслировать) стандартные команды печати компьютера в специальные команды, требующиеся для каждого принтера.
Плоттер (графопостроитель) — устройство, которое чертит графики, рисунки или диаграммы под управлением компьютера.
Роликовый плоттер
Плоттеры используются для получения сложных конструкторских чертежей, архитектурных планов, географических и метеорологических карт, деловых схем. Плоттеры рисуют изображения с помощью пера.
Роликовые плоттеры прокручивают бумагу под пером, а планшетные плоттеры перемещают перо через всю поверхность горизонтально лежащей бумаги.
Плоттеру, так же, как и принтеру, обязательно нужна специальная программа — драйвер, позволяющая прикладным программам передавать ему инструкции: поднять и опустить перо, провести линию заданной толщины и т.п.
Сканер — устройство для ввода в компьютер графических изображений. Создает оцифрованное изображение документа и помещает его в память компьютера
Планшетный сканер
Если принтеры выводят информацию из компьютера, то сканеры, наоборот, переносят информацию с бумажных документов в память компьютера. Существуют ручные сканеры, которые прокатывают по поверхности документа рукой, и планшетные сканеры, по внешнему виду напоминающие копировальные машины.
Если при помощи сканера вводится текст, компьютер воспринимает его как картинку, а не как последовательность символов. Для преобразования такого графического текста в обычный символьный формат используют программы оптического распознавания образов.
Что такое модем и факс-модем?
Модем — устройство для передачи компьютерных данных на большие расстояния по телефонным линиям связи.
Цифровые сигналы, вырабатываемые компьютером, нельзя напрямую передавать по телефонной сети, потому что она предназначена для передачи человеческой речи — непрерывных сигналов звуковой частоты.
Модем обеспечивает преобразование цифровых сигналов компьютера в переменный ток частоты звукового диапазона — этот процесс называется модуляцией, а также обратное преобразование, которое называется демодуляцией. Отсюда название устройства: модем — модулятор/демодулятор.
Рис. 2.24. Схема реализации модемной связи
Для осуществления связи один модем вызывает другой по номеру телефона, а тот отвечает на вызов. Затем модемы посылают друг другу сигналы, согласуя подходящий им обоим режим связи. После этого передающий модем начинает посылать модулированные данные с согласованными скоростью (количеством бит в секунду) и форматом. Модем на другом конце преобразует полученную информацию в цифровой вид и передает её своему компьютеру. Закончив сеанс связи, модем отключается от линии.
Рис. 2.25 Внешний модем
Управление модемом осуществляется с помощью специального коммутационного программного обеспечения.
Модемы бывают внешние, выполненные в виде отдельного устройства, и внутренние, представляющие собой электронную плату, устанавливаемую внутри компьютера. Почти все модемы поддерживают и функции факсов.
Факс — это устройство факсимильной передачи изображения по телефонной сети. Название «факс» произошло от слова «факсимиле» (лат. fac simile — сделай подобное), означающее точное воспроизведение графического оригинала (подписи, документа и т.д.) средствами печати
Модем, который может передавать и получать данные как факс, называется факс-модемом.
Что такое манипуляторы?
Манипуляторы (мышь, джойстик и др.) — это специальные устройства, которые используются для управления курсором.
Мышь имеет вид небольшой коробки, полностью умещающейся на ладони. Мышь связана с компьютером кабелем через специальный блок — адаптер, и её движения преобразуются в соответствующие перемещения курсора по экрану дисплея. В верхней части устройства расположены управляющие кнопки (обычно их три), позволяющие задавать начало и конец движения, осуществлять выбор меню и т.п.
Джойстик — обычно это стержень-ручка, отклонение которой от вертикального положения приводит к передвижению курсора в соответствующем направлении по экрану монитора. Часто применяется в компьютерных играх. В некоторых моделях в джойстик монтируется датчик давления. В этом случае, чем сильнее пользователь нажимает на ручку, тем быстрее движется курсор по экрану дисплея.
Трекбол — небольшая коробка с шариком, встроенным в верхнюю часть корпуса. Пользователь рукой вращает шарик и перемещает, соответственно, курсор. В отличие от мыши, трекбол не требует свободного пространства около компьютера, его можно встроить в корпус машины.
Дигитайзер — устройство для преобразования готовых изображений (чертежей, карт) в цифровую форму. Представляет собой плоскую панель — планшет, располагаемую на столе, и специальный инструмент — перо, с помощью которого указывается позиция на планшете. При перемещении пера по планшету фиксируются его координаты в близко расположенных точках, которые затем преобразуются в компьютере в требуемые единицы измерения.