что значит моногибридное и дигибридное скрещивание
Закономерности наследования, установленные Г. Менделем, их цитологические основы (моно- и дигибридное скрещивание)
Содержание:
В результате многочисленных скрещиванием Г. Менделем растений, относящихся к чистым линиям, были выведены несколько закономерностей наследования генов.
Моногибридное скрещивание
Моногибридным называется такое скрещивание, в результате которого изучается проявление одного признака. При этом прослеживаются наследственные закономерности пары вариантов по одному признаку. Развитию данных проявлений способствуют пары аллельных генов.
К примеру, признак «окраски венчика цветка» гороха может проявляться в двух вариациях: белый и красный. Другие признаки, присущие данным организмам, во внимание не берутся.
Схемой моногибридного скрещивания является:
На основе полученных результатов Г. Мендель сформировал свой первый закон: Скрещивание гомозиготных родительских форм, которые различаются по одному альтернативному признаку, гибриды первого поколения в генотипе и фенотипе проявляют единообразие.
От самоопыления (скрещивания) полученных гибридов первого поколения между собой был получен следующий результат:
Приблизительно полученное соотношение равно 1:3 или 3:1. Обнаруженную закономерность назвали законом расщепления (второй закон Менделя). Его трактовка такова: Скрещивание гетерозиготных гибридов, полученных в первом поколении, приводит к преобладанию во втором поколении признаков по соотношению 1:2:1 (генотип) и 3:1(фенотип).
Для определения генотипа особи, полученной от перекрестного скрещивания, часто прибегают к анализирующему скрещиванию. Анализирующим скрещивание называют скрещивание, когда неизвестный генотип скрещивают с гомозиготным по рецессивному гену организмом.
Становится виден механизм расщепления гомозиготных особей по доминантному гену. Полученные результаты привели Г. Менделя к выводу, что не происходит смешивания наследственных факторов при образовании гибридов, но сохраняется их неизменный вид. Так как возникновению между поколениями связей помогают гаметы, то вероятнее всего, что при их образовании происходит попадание только одного фактора из пары. Оплодотворение же способствует восстановлению пары. Такое предположение назвали правилом чистоты гамет.
Правило чистоты гамет: Гаметогенез приводит к разделению генов у одной пары.
Несмотря на это, очевидно, что существующие между живыми организмами отличия базируются на наличии многих признаков, поэтому для установления наследственных закономерностей необходим анализ пары и более признаков по потомству.
Дигибридное скрещивание
Дигибридным скрещиванием именуют скрещивание организмов, которые различаются по двум признакам. В случае скрещивания форм, отличающихся по большему количеству признаков, употребляют термин – полигибридное скрещивание.
Схематично дигибридное скрещивание выглядит так:
Г. Мендель скрещивал между собой две чистые линии гороха, которые различались по двум признакам:
Как видно из приведенной схемы, образовалось несколько комбинаций гамет для простоты представления которых, рекомендуется пользоваться решеткой американского генетика – Пеннета. Она позволяет наглядно представить все виды комбинаций генов в гаметах и результаты их слияния.
Горизонтальная часть такой таблицы отражает мужские гаметы, а женские записаны в вертикальном столбце. Таким образом, образуется 4 вида гамет: АВ, Аb, аВ и аb. При этом количество зигот, которые могут возникнуть при случайном слиянии этих гамет, равно 4*4=16. Именно столько клеток и отражает решетка Пеннета.
Приведенная таблица отражает 9 видов генотипов, повторяющихся в 16 сочетаниях. Эти 9 генотипов проявляются в виде 4 фенотипов:
Численно представленное соотношение выглядит так: 9 желтых, гладких : 3 желтых, морщинистых : 3 зеленых, гладких : 1 зеленый, морщинистый.
При отдельном рассмотрении полученных результатов, видно, что по каждому из изученных признаков сохраняется соотношение 3:1, характерное моногибридному скрещиванию. Из этого, Г.Мендель заключил, что в результате дигибридного скрещивания признаки и гены наследуются независимо друг от друга. Данный вывод стали именовать «законом независимого наследования признаков», который действует при расположении генов по разным хромосомам.
Формулировка данного закона звучит так: каждой паре аллельных генов (с альтернативными признаками) свойственно независимое друг от друга наследование.
Основу комбинативной изменчивости, передающейся по наследству, составляет «закон независимого комбинирования генов», работающий у живых организмов в результате их скрещивания. Стоит отметить, что закономерности дигибридного скрещивания работают исключительно для генов, которые локализованны в разных парах гомологичных хромосом. Причиной этому служит независимое друг от друга комбинирование в клетке негомологичных хромосом.
Дигибридное скрещивание имеет и цитологические основы. Так, в профазу I мейоза гомологичным хромосомам свойственна конъюгация и расхождение в анафазе. Расхождение хромосом происходит от средней части клетки (экватор), причем к каждому полюсу отходит по одной хромосоме. В результате такого расхождения происходит независимое комбинирование негомологичных хромосом в свободном и независимом порядке. Оплодотворение приводит к восстановлению в зиготе диплоидного хромосомного набора, в результате чего гомологичные хромосомы, оказавшиеся в процессе мейоза в разных половых клетках родителей, соединяются вновь.
Таким образом, закон независимого наследования признаков демонстрирует дискретный характер генов. Это видно в ходе независимого комбинирования аллелей у разных генов. Дискретностью гена определяют свойство, которое заключается в его контролировании благодаря наличию либо отсутствию специальной биохимической реакции, которая влияет на подавление либо развитие определенных признаков внутри живого организма. Вероятнее всего, что несколько генов определяют какое-либо одно свойство или один признак (длина колосьев пшеницы, окраска глаз дрозофилы, форма куриных гребней и прочее).
Основные закономерности наследственности, установленные Г. Менделем. Моногибридное и дигибридное скрещивания
Основные закономерности наследственности, установленные г. Менделем. Моногибридное и дигибридное скрещивания
Моногибридное скрещивание
Моногибридное скрещивание: скрещивание двух сортов гороха и цитологические основы моногибридного скрещивания
Закон единообразия гибридов первого поколения (доминирования)
Скрещивание, в котором родительские особи анализируются по одной паре альтернативных признаков, называется моногибридным, по двум – дигибридным, по трем и больше – полигибридным.
Г. Мендель для исследований выбирал два сорта гороха, которые четко отличались по какому-нибудь признаку: желтая или зеленая окраска семян, гладкая или морщинистая поверхность семени, расположение цветков вдоль всего стебля или на его концах и т. д. Выращивал такие растения ряд поколений, пока не убеждался, что они размножаются в чистоте – чистые линии. Мендель использовал метод гибридизации. Он скрещивал такие растения между собой и получал поколение, имеющее лишь один из этих признаков. Второй не развивался. То есть ученый получил единообразие в первом поколении растений. Признак, сохраняющийся и подавляющий другой, называют доминантным, подавляемый – рецессивным.
Явление единообразия гибридов первого поколения и проявление в нем только одного из альтернативных признаков – доминантного, имеет название закона доминирования или первого закона Менделя.
Формулировка: при скрещивании гомозиготных особей, которые отличаются по одной паре альтернативных признаков, все гибриды первого поколения единообразны по фенотипу и генотипу.
Закон расщепления признаков
При самоопылении гибридов первого поколения во втором гибридном поколении Мендель наблюдал растения с признаками родителей (доминантным и рецессивным). Соотношение их составляло: 3 – растения с доминантным признаком, 1 – с рецессивным. Например, во втором поколении из 926 растений 705 имели красные цветки, а 224 – белые (соотношение 3,15:1), из 8023 семян гороха 6022 были желтые, а 2001 – зеленые (3,01:1) и т. д.
Явление расщепления признаков при скрещивании гибридов первого поколения имеет название закона расщепления или второго закона Менделя.
Формулировка: при скрещивании двух гетерозиготных особей (гибридов первого поколения) у потомков наблюдается расщепление 3:1 по фенотипу и 1:2:1 по генотипу.
Соотношение особей с доминантным и рецессивным признаками тем точнее приближается к 3:1, чем больше численность изучаемого потомства, Менделевские законы доминирования и расщепления являются универсальными. Им подчиняются все живые организмы, независимо от простоты или сложности их организации.
Гипотеза чистоты гамет
Образование «чистых» гамет
Мендель обратил внимание на то, что из зеленого семени, полученного во втором поколении, вырастали растения лишь с зелеными семенами. Растения, которые имели желтые семена, образовывали или только желтые семена, или желтые и зеленые. Мендель приходил к выводу, что семена с рецессивным признаком подобны как по фенотипу, так и по наследственному признаку (гомозиготные). Семена с доминантным признаком подобны по фенотипу, но могут отличаться по наследственным свойствам (гомозиготные и гетерозиготные). То есть ре-цессивный ген не исчезает и не изменяется. Аллельные гены, которые находятся в гетерозиготном состоянии, не сливаются. Мендель назвал эту закономерность гипотезой «чистоты гамет».
Позднее гипотеза получила цитологическое подтверждение. Гибридный организм образует «чистые» гаметы, так как каждая из них не может нести одновременно два аллельных гена (желтого и зеленого цветов), а несет лишь один. В процессе образования половых клеток каждая из них из двух гомологичных хромосом образует одну.
Дигибридное скрещивание
Дигибридное скрещивание. Независимое наследование признаков и фенотипический радикал дигибридного скрещивания
Закон независимого комбинирования признаков
Простейшим из разновидностей полигибридного скрещивания является дигибридное.
Г. Мендель скрестил растения гороха посевного с желтым гладким семенем (доминантные признаки) и зеленым морщинистым (рецессивные признаки). Растения разводились в «чистоте», то есть являлись гомозиготами по обоим признакам.
В первом поколении он получил растения, которые имели желтые гладкие семена – единообразие первого поколения по доминантным признакам.
При скрещивании гибридов первого поколения (самоопылении) наблюдалось расщепление: 315 семян желтых гладких, 108 зеленых гладких, 101 желтое морщинистое, 32 зеленых морщинистых.
Во втором поколении образовалось четыре фенотипа в соотношении 9:3:3:1. Произошло независимое расщепление признаков: соотношение желтых и зеленых семян 3:1 соответственно, гладких и морщинистых – 3:1. Эта закономерность получила название независимого комбинирования признаков или третьего закона Менделя.
Третий закон Менделя. Четыре фенотипа в соотношении 9:3:3:1
Формулировка: при скрещивании гибридов первого поколения, гетерозиготных по признакам, наблюдается независимое наследование и комбинирование признаков, если определяющие их гены расположены в разных гомологичных хромосомах.
Кроме семян, которые имели комбинации состояний признаков родительских форм, появились две группы с новыми комбинациями (желтое морщинистое и зеленое гладкое семена) – рекомбинанты. Рекомбинация – это объединение аллелей разных генов в гаметах гибридных особей, которые отличаются от подобных соединений в гаметах родителей.
Цитологические основы законов наследственности и статистический характер законов наследственности
Менделем законы были открыты в то время, когда еще были неизвестны процессы митоза и мейоза, существование хромосом и генов. В наше время возможно цитологическое подтверждение этих законов. Менделевский закон независимого распределения признаков можно объяснить изученными особенностями передвижения хромосом во время мейоза.
Известно, что соматические клетки, как правило, имеют двойной набор хромосом, то есть каждая гомологичная хромосома имеет себе пару. В хромосомах находятся гены. Доминантный признак обозначают большой латинской буквой, рецессивный – соответствующей маленькой. Гомозиготный по доминантному гену организм имеет две гомологичные хромосомы с геном А (генотип – АА), гомозиготный рецессивный – две гомологичные хромосомы с геном а (генотип – аа). При скрещивании образуется гетерозиготный организм Аа.
Это можно записать в виде схемы. Результат получения единообразного первого поколения можно записать так. Например, желтая окраска семени – А, зеленая – а.
При самоопылении или перекрестном опылении двух гетерозиготных растений возможны четыре соединения генов в зиготах (второй закон Менделя):
Для определения классов потомков удобно пользоваться решеткой Р. Пеннета. Для этого по горизонтали записывают гаметы одной особи (отцовской), по вертикали – второй (материнской).
♀\♂ | A | a |
A | AA | Aa |
a | Aa | aa |
Аналогично можно продемонстрировать цитологические основы и статистический характер закона независимого комбинирования состояний признаков.
А – желтая окраска семян гороха посевного, а – зеленая,
В – гладкая форма семян, b– морщинистая.
P: ♀ AABB × ♂ aabb
G: AB ab
F1: Aa Bb
Результатом скрещивания являются растения, которые имеют желтое гладкое семя. Гибридное растение с генотипом АавВb может образовывать четыре типа гамет: АВ, Ab, аВ, ab (2 2 = 4).
♀\♂ | AB | Ab | aB | ab |
AB | AABB желтые гладкие | AABb желтые гладкие | AaBB желтые гладкие | AaBb желтые гладкие |
Ab | AABb желтые гладкие | AAbb желтые морщинистые | AaBb желтые гладкие | Aabb желтые морщинистые |
aB | AaBB желтые гладкие | AaBb желтые гладкие | aaBB зеленые гладкие | aaBb зеленые гладкие |
ab | AaBb желтые гладкие | Aabb желтые морщинистые | aaBb зеленые гладкие | Aabb зеленые морщинистые |
Законы Менделя
С него часто начинаются генетические задачи (в качестве первого скрещивания). Этот закон гласит о том, что при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения будут единообразны по данным признакам.
Анализирующее скрещивание
Анализируя полученное потомство, можно сделать вывод о генотипе гибридной особи.
Неполное доминирование
«При скрещивании гетерозиготных гибридов (Aa) первого поколения F1 во втором поколении F2 наблюдается расщепление по данному признаку: по генотипу 1 : 2 : 1, по фенотипу 3 : 1″
В нем речь идет о дигибридном скрещивании, то есть мы исследуем не один, а два признака у особей (к примеру, цвет семян и форма семян). Каждый ген имеет два аллеля, поэтому пусть вас не удивляют генотипы AaBb 🙂 Важно заметить, что речь в данном законе идет о генах, которые расположены в разных хромосомах.
Запомните III закон Менделя так: «При скрещивании особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга, комбинируясь друг с другом во всех возможных сочетаниях.
Очевидно, что расщепление по фенотипу среди гибридов второго поколения составляет: 9:3:3:1.
Пример решения генетической задачи №1
Доминантный ген отвечает за развитие у человека нормальных глазных яблок. Рецессивный ген приводит к почти полному отсутствию глазных яблок (анофтальмия). Гетерозиготы имеют глазное яблоко малых размеров (микрофтальмия). Какое строение глазных яблок будет характерно для потомства, если оба родителя страдают микрофтальмией?
Пример решения генетической задачи №2
Полидактилия и отсутствие малых коренных зубов передаются как аутосомно-доминантные признаки. Гены, отвечающие за развитие этих признаков, расположены в разных парах гомологичных хромосом. Какова вероятность рождения детей без аномалий в семье, где оба родителя страдают обеими болезнями и гетерозиготны по этим парам генов.
В данном случае мы построим решетку Пеннета, которая сделает генотипы потомства более наглядными. Вы видите, что на потомстве буквально нет ни одного живого места: почти все 16 возможных потомков больны либо одним, либо другим заболеванием, кроме одного, aabb. Вероятность рождения такого ребенка очень небольшая 1/16 = 6.25%.
Пример решения генетической задачи №3
У голубоглазой близорукой женщины от брака с кареглазым мужчиной с нормальным зрением родилась кареглазая близорукая девочка и голубоглазый мальчик с нормальным зрением. Ген близорукости (A) доминантен по отношению к гену нормального зрения (a), а ген кареглазости (D) доминирует над геном голубоглазости (d). Какова вероятность рождения в этой семье нормального кареглазого ребенка?
Первый этап решения задачи очень важен. Мы учли описания генотипов родителей и, тем не менее, белые пятна остались. Мы не знаем гетерозиготна (Aa) или гомозиготная (aa) женщина по гену близорукости. Такая же ситуация и с мужчиной, мы не можем точно сказать, гомозиготен (DD) он или гетерозиготен (Dd) по гену кареглазости.
Аутосомно-доминантный тип наследования
Я не забыл о том, что по ходу изучения генетики вас надо научить видеть различные варианты наследования на генеалогическом древе (родословной) =) Из предыдущей статьи мы узнали о том, как выглядит и чем характеризуется аутосомно-рецессивный тип наследования, сейчас поговорим об аутосомно-доминантном, с которым мы столкнулись в задачах выше.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Моно- и дигибридное скрещивание. Законы Менделя
теория по биологии 🌿 основы генетики
Гибридологический метод
Создателем современной генетики считается австрийский биолог, ботаник и монах Грегор Мендель. Свои исследования Г. Мендель проводил на горохе. Ученый использовал гибридологический метод. Вы, наверное, сталкивались с понятием «гибрид», его часто указывают на упаковках семян. Гибрид – потомство, полученное в результате скрещивания особей, отличных по одному или нескольким признакам. На рынке можно встретить инжирный персик, а в животноводстве – мула (гибрид лошади и осла). Самцы мула стерильны и потомства не приносят.
Вернемся к Грегору Менделю и гороху. Как говорилось ранее, он использовал в своих опытах горох, но не любой, а только чистые линии – группы организмов, имеющих некоторые признаки, которые полностью передаются потомству в силу генетической однородности всех особей. В качестве такого признака был выбран цвет горошин: одна линия была только зеленая во всех поколениях, а друга – желтая.
Таким образом Мендель скрещивал разные родительские особи гороха и далее подсчитывал результаты по некоторым признакам: количество гороха с желтой/зеленой кожурой, гладкие горошины и морщинистые, карликовое растение/нормальное/высокое и так далее. Ученый использовал 22 чистых линии и около 10.000 растений бобового.
Моногибридное скрещивание
Такое скрещивание было выбрано первым для опытов. Моногибридное скрещивание – скрещивание особей, отличающихся друг от друга лишь одним признаком. Ген, в котором заключена информация об этом одном из признаков называется аллельным геном или аллелью.
В зависимости от комбинации генов в паре, организм может быть гомозиготным или гетерозиготным. В первом случае оба гена несут одну разновидность признака, во втором – две разные. Гомозиготами будут являться горох, оба аллели которого несут окраску только желтого или только зеленого цвета. Гетерозиготами – те, у которых один ген несет желтый цвет, а другой – зеленый.
Есть доминантные и рецессивные гены. Первые преобладают, вторые – подавляются. Посмотрим на схему моногибридного скрещивания выше и разберемся в некоторых правилах записи.
Здесь мы видим 2 признака: цвет и текстуру кожуры. Разные типы признаков обозначаются разными буквами. Например, желтый – А, зеленый – В. Доминантные признаки записываются заглавными буквами, а рецессивные – строчными. Один ген аллели – одна буква.
Исходя из этого, монозиготы могут быть либо аа (рецессивная гомозигота), либо АА (доминантная монозигота).
Запись начинается с родителей, в задачах пишется «Р:» и перечисляются предки. Между ними ставится знак скрещивания «х».
Следующей строкой идут гаметы, обозначаются «G:» и перечисляются гаметы каждого из родителей.
Затем пишется потомство. Если это первое поколение, то «F1», если дальше, то цифра соответствует очередности. Здесь должны быть все версии потомков. Так как при скрещивании монозигот у нас были только гаметы А и а, то вариант всего один: Аа. Это гетерозигота. Так как по условию желтый цвет доминирует над зеленым, то горошины будут желтыми.
Законы Менделя
В результате такого скрещивания Мендель открыл закон единообразия гибридов первого поколения. Он гласит: при скрещивании двух гомозиготных организмов, отличающихся друг от друга только по одному признаку, все гибриды первого поколения будут иметь признак одного из родителей, и поколение по этому признаку будет единообразно.
Далее Мендель продолжил изучать потомство гороха, теперь он скрестил то самое единообразное поколение.
Так Мендель вывел закон расщепления. Из него следует, что при скрещивании потомков первого поколения, во втором снова появляются особи с рецессивным признаком, эти особи составляют 1: 4 часть от всего числа потомков второго поколения.
Фенотип – внешнее проявление признака.
Исходя из этого же скрещивания, Мендель вывел еще один закон. Закон чистоты гамет: при образовании гамет в каждую пару попадает только один из двух «элементов наследственности», отвечающих за данный признак. На эту мысль его натолкнуло именно появление одной части зеленых горошин. Мендель сделал выводы о том, что гены из пары не пропадают бесследно, а передаются в следующее поколение.
Ранее мы говорили о том, что доминирующий признак подавляет рецессивный. Если у гороха генотип Аа, где доминирующий цвет желтый, то горошины будут этого цвета. Однако, все не всегда так однозначно.
Если скрестить пурпурные и белые цветы ночной красавицы, то гетерозиготное потомство приобретет отличный от родителей цвет: розовый. По закону неполного доминирования при скрещивании доминантной и рецессивной гомозигот, все особи в потомстве проявят либо признаки родителей, либо промежуточный признак.
Если скрещиваются организмы, отличающиеся друг от друга не по одному признаку (моногибридное), а по двум, то скрещивание называется дигибридным.
Для своих опытов в этом направлении Мендель взял горох двух цветов и двух фактур.
Независимое наследование признаков
Родители были доминантной и рецессивной гомозиготами. В первом поколении горошины желтые и гладкие, гетерозиготы. Так как при скрещивании двух гетерозигот по обоим признакам от каждого родителя по 4 варианта гамет, то удобно воспользоваться решеткой Пеннета. Для этого гаметы одного родителя записывают по горизонтали, а второго – по вертикали. Затем на пересечениях заполняются ячейки решетки.
Если пересчитать количество потомков каждого фенотипа, то получится следующее:
9 шт. – желтый гладкий
3 шт. – желтый морщинистый
3 шт. – зеленый гладкий
1 шт. – зеленый морщинистый
Так Мендель пришел к закону независимого наследования признаков, из которого следует, что при дигибридном скрещивании гены и признаки, за которые отвечают эти гены, наследуются независимо друг от друга.
pазбирался: Надежда | обсудить разбор | оценить
pазбирался: Надежда | обсудить разбор | оценить
АаВв – Высокий, гладкий эндосперм.
G2: АВ, Ав, аВ, ав ; ав
F2: АаВв, Аавв, ааВв, аавв
АаВв — Высокий, гладкий эндосперм.
Аавв — Высокий, шероховатый эндосперм.
ааВв — Низкий, гладкий эндосперм.
аавв — Низкий, шероховатый эндосперм.
Томас Морган установил, что при неполном сцеплении гетерозигота дает 4 типа гамет (см. схему второго скрещивания), но с разной вероятностью:
Аавв — Высокий, шероховатый эндосперм.
ааВв — Низкий, гладкий эндосперм.
аавв — Низкий, шероховатый эндосперм.
АаВв — Высокий, гладкий эндосперм.
Аавв — Высокий, шероховатый эндосперм – 123 или 124.
ааВв — Низкий, гладкий эндосперм – 123 или 124.
аавв — Низкий, шероховатый эндосперм – 26 или 27.
АаВв — Высокий, гладкий эндосперм – 26 или 27.
При анализирующем скрещивании образуется 4 типа генотипов и фенотипов в результате кроссинговера.
Ответ: пункты 4 и 6 (или схема из п. 8), пункты 9 и 10.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Анализирующее скрещивание – скрещивание с особью с рецессивными аллелями генов.
Независимое наследование – значит, доминирование абсолютное, промежуточного признака нет. То есть, проявляется доминантный признак и при доминантной гомозиготе, и при гетерозиготе.
F: АаВв, Аавв, ааВв, аавв
АаВв – проявляются оба доминантных признака.
Аавв – проявляется доминантный признак, обозначенный буквой «А» и рецессивный признак, обозначенный буквой «В».
ааВв — проявляется доминантный признак, обозначенный буквой «В» и рецессивный признак, обозначенный буквой «А».
аавв — проявляются оба рецессивных признака.
Следовательно, все 4 варианта фенотипов потомков различаются.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Начнем с очевидного: признак с полом не сцеплен, так как мы видим на схеме и черные квадраты, и черные круги (то есть и мужчин с проявлением этого признака, и женщин с проявлением этого признака)
Признак проявляется в каждом поколении, значит, он доминантный.
Раз признак доминантный, то генотип женщины (1) аа, ведь признак у нее не проявляется.
Теперь мужчина (2): раз у детей пары (1) и (2) есть те, у кого признак не проявляется, то мужчина (2) – гетерозигота. В противном случае, так как у него признак проявляется, он должен был быть доминантной гомозиготой. Тогда все его дети были бы с этим признаком.
Женщина (3) имеет проявление признака, ее муж – не имеет, но не у всех детей признак проявляется. Значит, муж –рецессивная гомозигота, а жена – гетерозигота
Женщина (4) и мужчина (5) – рецессивные гомозиготы, так как признаки у них не проявляются.
Женщина (6) и ее муж –гетерозиготы, так как у обоих признак проявляется, но у их ребенка признак не проявляется.
Мужчина (7) — рецессивная гомозигота, так как признак у него не проявляется.
Какова вероятность рождения ребёнка с признаком, выделенным на рисунке чёрным цветом, у мужчины 5, если будущая жена будет иметь данный признак?
Жена может иметь данный признак в двух случаях.
Первый: генотип жены Аа.
Аа – проявление признака.
Аа — нет проявления признака.
Второй случай: генотип жены АА.
Аа – проявление признака.
1) Признак доминантный (окрашенный символ), с полом не сцеплен (т.к встречается у большего числа особей, независимо от их пола)
2) генотипы: 1 – аа, 2 – Аа, 3 – Аа, 4 – аа, 5 – аа, 6 – Аа, 7 – аа
3) Если генотип жены будет АА, то вероятность рождения ребенка с этим признаком составит 100%, а если генотип будет Аа, то 50%
Ответ: см. «конечный ответ»
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Дальтонизм – разновидность нарушения восприятия цветов, обусловленная генетическим отклонением. Ген дальтонизма является рецессивным и сцепленным с полом, он находится в Х-хромосоме. Так как мужской пол имеет набор половые хромосом ХУ, то в случае, если Х-хромосома несет рецессивный аллель по признаку дальтонизма, то человек будет иметь это нарушение. Так как у женщин набор ХХ, то вероятность иметь оба рецессивных аллеля ниже, чем один у мужчин, поэтому женщины имеют дальтонизм существенно реже, чем мужчины. Однако, они могут быть носителями этого гена.
Являются «выпадающими» варианты 1 и 5.
Ген дальтонизма находится не в аутосоме, а в половой клетке.
Передаются от матери к сыну:
Допустим, мать здорова, но носитель, отец здоров
Нас интересуют только сыновья: Х H У, Х h У. Они получат Х-хромосому от матери, а У-хромосому от отца. Ген дальтонизма находится в Х-хромосоме, поэтому 5) вариант ошибочный.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Разбираемся в условии.
«Моногибридное скрещивание» — один признак. «Гетерозиготы» имеют набор Аа. «Полное доминирование» — значит, нет среднего фенотипического проявления признака.
АА – проявится доминантный признак.
2 Аа – проявится доминантный признак.
аа – проявится рецессивный признак.
Значит, в 3 из 4 случаев проявится доминантный признак, это ¾ = 75%.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Раз первое поколение драконов серого цвета, а родители черный и белый драконы, то произошло неполное доминирование.
Гомозигота — особь, дающая один сорт гамет.
Запишем первую часть решения:
Аа – серый цвет дракона.
Теперь скрещивание серого дракона с черным.
АА – черный цвет дракона.
Аа – серый цвет дракона.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Дигетерозиготный – 2 признака, притом есть и доминантный и рецессивный аллели, то есть АаВв
Гомозиготный по рецессивным признакам – только рецессивные аллели, то есть аавв
Запишем решение в виде задачи.
Определяем генотипы потомства:
F1: АаВв; Аавв; ааВв; аавв
Определим фенотипы потомства:
АаВв – проявятся оба доминантных признака.
Аавв – проявится первый доминантный признак и второй рецессивный признак.
ааВв — проявится первый рецессивный признак и второй доминантный признак.
аавв — проявятся оба рецессивных признака.
Следовательно, 4 фенотипа
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
При скрещивании самки дрозофилы с нормальными крыльями, красными глазами и самца с растопыренными крыльями, белыми глазами всё гибридное потомство было единообразным по форме крыльев и окраске глаз.
При скрещивании самки дрозофилы с растопыренными крыльями, белыми глазами и самца с нормальными крыльями, красными глазами в потомстве получились самки с нормальными крыльями, красными глазами и самцы с нормальными крыльями, белыми глазами.
Составьте схемы скрещиваний. Определите генотипы родительских особей, генотипы и фенотипы, пол потомства в двух скрещиваниях. Объясните фенотипическое расщепление во втором скрещивании.
Форма крыльев – аутосомный признак.
Цвет глаз – сцепленный с полом признак.
Самец и самка, про которых идет речь в первом абзаце, имеют разный цвет глаз. Самец гетерогаметен. Исходя из пункта 2) нашего решения, мы знаем, что скрещиваются гомозиготы, доминантная и рецессивная.
Если у самки будут рецессивные признаки, а у самца доминантный:
Потомство не единообразно по признаку цвета глаз. А это противоречит условию. Значит, самка имеет доминантный признак.
«При скрещивании самки дрозофилы с нормальными крыльями, красными глазами и самца с растопыренными крыльями, белыми глазами…»
P1: ♀ ВВХ А Х А * ♂ bbХ а У
F1: ♀ BbХ А Х а ; ♂ ВВХ А У
Определим фенотипы потомства:
♀ BbХ А Х а – нормальные крылья, красные глаза.
♂ ВВХ А У — нормальные крылья, красные глаза.
Потомство единообразно, соответствует условию.
«При скрещивании самки дрозофилы с растопыренными крыльями, белыми глазами и самца с нормальными крыльями, красными глазами…»
P2: ♀ bbХ а Х а * ♂ ВВХ А У
F2: ♀ BbХ А Х а ; ♂ ВbХ а У
Определим фенотипы потомства:
♀ BbХ А Х а — нормальные крылья, красные глаза.
♂ ВbХ а У — нормальные крылья, белые глаза.
Сравниваем с условием: «… в потомстве получились самки с нормальными крыльями, красными глазами и самцы с нормальными крыльями, белыми глазами.». Все совпало.
Ответ: Между первым и вторым признаками независимое наследование; по признаку окраски глаз сцеплен с Х-хромосомой.
Ответ: В бланк выписываем таблицу «ген-признак», схемы скрещиваний из пунктов 5) и 6) и ответ на теоретический вопрос из пункта 7).
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
А) Разберем условие задачи.
Запишем все в виде задачи, использую первый вариант генотипа отца:
Б) Р: ♀ i 0 i 0 Rr х ♂ I B I B Rr
G: i 0 R i 0 r ; I B R I B r
F1: I B i 0 RR; I B i 0 Rr; I B i 0 Rr; I B i 0 rr
I B i 0 RR – третья группа крови, резус-фактор положительный.
I B i 0 Rr — третья группа крови, резус-фактор положительный.
I B i 0 Rr — третья группа крови, резус-фактор положительный.
I B i 0 rr — третья группа крови, резус-фактор отрицательный.
Вероятность рождения ребенка с отрицательным резус-фактором ¼, 25%.
Запишем все в виде задачи, использую второй вариант генотипа отца:
В) Р: ♀ i 0 i 0 Rr х ♂ I B i 0 Rr
G: i 0 R i 0 r ; I B R I B r i 0 R i 0 r
F1: I B i 0 RR; I B i 0 Rr; I B i 0 Rr; I B i 0 rr; i 0 i 0 RR; i 0 i 0 Rr; 0 i 0 Rr; 0 i 0 rr
I B i 0 RR — третья группа крови, резус-фактор положительный.
2 I B i 0 Rr — третья группа крови, резус-фактор положительный.
I B i 0 rr — третья группа крови, резус-фактор отрицательный.
i 0 i 0 RR — первая группа крови, резус-фактор положительный.
2 i 0 i 0 Rr — первая группа крови, резус-фактор положительный.
i 0 i 0 rr — первая группа крови, резус-фактор отрицательный.
Вероятность рождения ребенка с отрицательным резус-фактором 2/8, 25%.
Ответ: пункты Б) и В)
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Запишем в виде задачи:
Мы получили 3 вида генотипов, рассмотрим фенотипы.
АА – проявится доминантный признак.
Аа – проявится доминантный признак.
аа – проявится рецессивный признак.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Распишем это как задачу:
Выписываем особей, которые скрещиваются.
Мы выписали генотипы потомков, но вопрос про фенотипы. В условии сказано, что доминирование неполное. Это значит, что доминантный признак в гетерозиготе (Аа) не будет проявляться строго как доминантный, это будет среднее между доминантным (А) и рецессивным (а).
Проанализируем полученных потомков:
Аа — генотип, который мы получили дважды. Это гетерозигота, проявится признак отличающийся и от доминантного, и от рецессивного.
аа — рецессивная гомозигота, проявится только рецессивный признак.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Для начала вспомним о том, что дальтониками могут быть только мужчины, однако женщины могут быть носителями гена дальтонизма. Притом он рецессивный.
Теперь Анна. Так у нее есть потомки-дальтоники, то она – носитель. Так как она здорова, то ее генотип – гетерозигота — Х А Х а
Р1: ♀ Х А Х а х ♂ Х А Y
♀ Х А Х А – вторая дочь Анны и Павла, так как ее пять сыновей здоровы.
Генотип ее сыновей — Х А Y
♀ Х А Х а — первая дочь Анны и Павла, так как у нее есть дети-дальтоники.
Генотип ее сыновей – Х а Y
Генотип первого сына-дальтоника Анны и Павла — ♂Х а Y
Генотип его здоровых сыновей — Х А Y
Генотип его дочерей – либо Х А Х а
Генотип второго сына Анны и Павла — Х А Y
Генотип его сыновей — Х А Y
PS: использовать букву А или D – не принципиально.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Так как в первом поколении все томаты шаровидные и красные, то эти признаки являются доминантными
Ген | Признак |
А | Шаровидная форма |
а | Грушевидная форма |
В | Красные |
в | Желтые |
Определим генотипы скрещиваемых сортов:
Желтые грушевидные – аавв
Красные шаровидные – либо АаВв, либо ААВВ
Так как первое поколение – красные и шаровидные, то скрещиваемый сорт не может быть гетерозиготой, его генотип — ААВВ
Найдем генотип первого поколения:
Красные шаровидные. С условием сходится.
Произведем скрещивание полученных томатов:
G2: АВ Ав ав аВ; АВ Ав ав аВ
Найдем генотип второго поколения. Для этого составим решетку Пеннета:
АВ | Ав | ав | аВ | |
АВ | ААВВ К,Ш | ААВв К,Ш | АаВв К,Ш | АаВВ К,Ш |
Ав | ААВв К,Ш | ААвв К,Г | Аавв К,Г | АаВв К,Ш |
ав | АаВв К,Ш | Аавв К,Г | аавв Ж,Г | ааВв Ж,Ш |
аВ | АаВВ К,Ш | АаВв К,Ш | ааВв Ж,Ш | ааВВ Ж,Ш |
Посчитаем соотношение фенотипов:
Красный шаровидный – 9 шт
Красный грушевидный – 3 шт
Желтый шаровидный – 3 шт
Желтый грушевидный – 1 шт
9 — красные шаровидные,
3 — красные грушевидные,
3 — желтые шаровидные,
1 — желтые грушевидные.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Ген | Признак |
А | Карие глаза |
а | Голубые глаза |
В | Правша |
в | Левша |
Определим генотип мужа: аавв
Определим генотип жены: либо ААВВ, либо АаВв
Определим генотип ребенка: аавв
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Составим для удобства табличку:
Ген | Признак |
i 0 i 0 | Первая группа |
I A i 0 или I A I A | Вторая группа |
I B i 0 или I B I B | Третья группа |
I A I B | Четвертая группа |
Определим генотипы родителей:
Р: I A i 0 х I B I B
Теперь найдем варианты потомства:
F1: I A I B ; I B i 0
I A I B – IV группа
I B i 0 — III группа
Детей со второй группой крови быть не может, значит, вероятность 0%
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Для начала составляем табличку ген /признак, просто для удобства:
Черепаховой окраске соответствует генотип Х А Х В
Ген | Признак |
Х А | Черная окраска |
Х В | Рыжая окраска |
Х А Х В | Черепаховая окраска |
Определим генотипы родителей:
Р: ♀ Х А Х В х ♂ Х В Y
Теперь найдем варианты потомства:
F1: Х А Х В ; Х А Y; Х В Х В ; Х В Y
Здесь же можно под генотипами подписывать окраски, чтобы ничего не потерять.
Выберем котят с рыжей окраской: ♀ Х В Х В ; ♂ Х В Y
Наследование, сцепленное с полом, что и является кодоминированием.
Теперь чистовой вариант:
По условию: Х А — черная; Х В — рыжая, тогда Х А Х В — черепаховая
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Для начала определим характер наследования признака. Так как признак проявляется через поколение, а не в каждом, то делаем вывод, что признак рецессивный.
Признак проявляется только у мужчин. Значит, признак сцеплен с полом, а именно, с Y-хромосомой. Он сцеплен с Х а — хромосомой.
Теперь разберемся с генотипом людей первого поколения. Мы уже установили, что признак рецессивный. Для проявления такого признака в следующем поколении женщин необходимо, чтобы у женщины в первом поколении была рецессивная хромосома. У нас во втором поколении нет людей, с проявляющимся признаком. Следовательно, так как генотип мужчины в первом поколении Х а Y (так как у него признак проявился), то у женщины генотип –Х А Х А
Найдем генотип женщины №6:
Выпишем генотипы родителей
Р: ♀ Х А Х а х ♂ Х А Y
Найдем первое поколение, выберем женщин и мужчину, который является носителем признака.
F1: ♀Х А Х А ; Х А Y; ♀Х А Х а ; ♂Х а Y
Генотип мужчины №7: Х а Y
Теперь определим возможное потомство:
Генотип отца Х А Y, так как в условии указано, что в его семье данного признака не наблюдалось
Р: ♀ Х А Х А х ♂ Х А Y
0% потомства с данным признаком
Р: ♀ Х А Х а х ♂ Х А Y
F1: Х А Х А ; Х А Y; Х А Х а ; ♂Х а Y
25% потомства с проявлением данного признака
Что должно быть в чистовике:
Её муж Х А Y, т.к. по условию в семье её супруга этот признак никогда не наблюдался.
то вероятность рождения ребёнка с исследуемым признаком 25% Х а Y мальчики
Схема решения задачи:
F1Х А Х А ;Х А Х a ;Х А Y;Х a Y
Схема решения задачи:
(Допускается иная генетическая символика)
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Для начала определим характер наследования признака. Так как признак проявляется через поколение, а не в каждом, то делаем вывод, что признак рецессивный.
Признак проявляется только у мужчин. Значит, признак сцеплен с полом, а именно, с Y-хромосомой. Он сцеплен с Х а — хромосомой.
Получаем:
Что писать в чистовик:
Генотипы людей, обозначенных на схеме цифрами 3, 4, 8, 11:
3 — женщина-носитель — Х А Х а
4 — мужчина без признака — Х А Y
8 — мужчина с признаком — Х а Y
11 — женщина-носитель — Х А Х а
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Если признак сцеплен с Y-хромосомой, значит, на Х-хромосоме он никак не отражается.
Женский пол гомозиготен: ХХ, а мужской гетерозиготен: ХY.
Решение задач с половыми хромосомами практически не отличается от решения задач с аутосомами.
Составим табличку ген и признак, которую также следует составлять и для задач про аутосомные хромосомы, если указаны признаки и это важно.
ген | признак |
Х | Здорова |
Y a | Болен |
Буква над Y обозначает, что с этой хромосомой сцеплен ген. Признаки бывают доминантными и рецессивными, они обозначаются заглавными и маленькими буквами, могут относиться как к Х-хромосоме, так и к Y-хромосоме, зависит от задачи.
F1: ХХ — девочка, здорова
ХY a — мальчик, болен
Мальчики, родившиеся у этой пары, будут 100% больны, значит 0% здоровы.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Анализирующее дигибридное скрещивание, значит, у второй особи рецессивная дигомозигота: aabb.
Здесь можно обойтись без решетки Пеннета.
Поколения обозначаются буквой F.
F1: AaBb; Aabb; aaBb; aabb
Все четыре варианта фенотипов разные, так что относятся они друг к другу как 1:1:1:1.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Составим решетку Пеннета. Для это выпишем гаметы одной особи в столбик, гаметы другой — в строку, получим таблицу:
Найдем дигетерозиготы в таблице:
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Раз растения дигетерозиготны, то это значит, что по обоим признакам у них одна аллель доминантная, а вторая-рецессивная.
Получаем генотипы AaBb и AaBb.
Гаметы в задачах обозначаются буквой G, притом без запятых, в кружочках, указываются вначале гаметы одной особи, потом ставится точка с запятой (;), пишутся гаметы другой особи, тоже в кружочках.
Скрещивание обозначается значком «х».
Выпишем гаметы, для этого переберем все сочетания:
Гаметы у первой и второй особи получились одинаковыми, так генотип их был тоже одинаков. Значит, у нас получилось 4 разных типа гамет:
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
У нас есть две пары аллельных хромосом:
Это все гомозиготы. Можно составить лишь одну комбинацию: ab.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить