что значит свинцово кислотный аккумулятор
Свинцово-кислотный аккумулятор — особенности и характеристики
Свинцово кислотный аккумулятор – источник тока, питающий стартер при запуске двигателя. АКБ является основным источником энергии. Среди преимуществ данного типа аккумуляторных батарей – увеличенный срок службы, составляющий более 500 циклов, высокая удельная мощность, стоимость. Помимо транспортных средств, свинцовые аккумуляторы встречаются в резервных и аварийных источниках энергии стационарного и мобильного типа.
Принцип работы свинцово-кислотного аккумулятора заключается в преобразовании химической и электрической энергий.
Принцип работы
Основа принципа работы герметичного кислотного аккумулятора основана на электрохимической реакции диоксида свинца и свинца, которая происходит в водной суспензии серной кислоты. Во время заряда электроэнергия преобразуется в химическую. Когда АКБ питает внешний источник, химэнергия обратно преобразуется в электрическую, питая бортовую сеть автомобиля, стартер.
На скорость реакции, ёмкость воздействует окружающая температура. Если она увеличивается, предельная мощность увеличивается. Одновременно, возрастает риск деградации элементов, растёт склонность к корродированию.
Особенности устройства
Аккумуляторная батарея состоит из следующих элементов:
Разновидности
АКБ свинцово-кислотного типа делятся по типу электролита и по назначению. Во втором случае жидкость может быть абсорбируемой, жидкой, гелеобразной. Большинство моделей бюджетного, среднего сегмента имеют жидкую среду из раствора серной кислоты.
У более дорогих моделей электролит удерживается в специальном микропористом материале. Такие аккумуляторы имеют повышенную эффективную массу, как правило, устанавливаются в трансопртном средстве с системой рекуперативного торможения или стоп-старт.
По назначению автоаккумуляторы бывают:
Характеристики
При выборе аккумулятора автолюбители смотрят на параметры:
Условия использования
Зависимость емкости аккумулятора от температуры.
Такое поведение обусловлено снижением скорости химической реакции. Поэтому производители в северных широтах рекомендуют оставлять автомобиль в отапливаемом гараже либо подогревать АКБ специальным обогревателем, предусмотренным в ТС. Также существуют специальные модели с интегрированной системой подогрева.
В мороз следует контролировать плотность электролита. Если она будет ниже 1,10 г/см3, образуются кристаллы льда, что приводит к деформации свинцовых пластин, потере гарантии.
Преимущества и недостатки
Популярность таких типов АКБ объясняется следующими факторами:
Помимо достоинств, свинцово-кислотные батареи не лишены негативных моментов:
Эксплуатация
Чтобы свинцово-кислотные аккумуляторы прослужили дольше заявленного гарантийного срока, следует соблюдать некоторые правила эксплуатации.
Работа
Если АКБ обслуживаемый (банки открываются для долива электролита), при движении по неровной поверхности происходит незначительное просачивание электролита из-под крышек н корпус. Для исключения глубокого саморазряда рекомендуется регулярно протирать корпус разведённым в воде хоз. мылом или раствором соды. Таким образом, нейтрализуется электролит.
Следует контролировать и уровень электролита, не допуская оголения пластин (в этом случае увеличивается саморазряд, батареи окисляются).
Хранение
Поверхность АКБ следует содержать в чистоте. Это исключает саморазряда АКБ, что чревато потерей ёмкости, связанной с образованием сульфида повышенной плотности, который хуже вступает в реакцию.
Если автомобиль не используется зимой, следует подготовить аккумулятор, выполнив следующие действия:
В случае необходимости поездки в морозы следует перенести аккумулятор в отапливаемое помещение, и в течение 7—9 часов (например, за ночь) он придёт в пригодное для пуска двигателя состояние.
Правила утилизации
Ни в коем случае не стоит самостоятельно разбирать АКБ, пытаясь достать свинец для вторичного использования в быту. Как и другие батареи, свинцово-кислотный аккумулятор необходимо сдать в специализированный сервис. Как правило, они действуют в местах покупки. В рамках промышленной утилизации может предоставляться скидка на покупку новой батареи.
Вторичная переработка
Свинец, содержащийся в АКБ – токсичный тяжёлый металл, способный нанести серьёзный урон окружающей среде. Свинец и его соли, образованные в результате работы батареи, должны быть утилизированы в промышленных условиях.
Утилизация АКБ происходит на перерабатывающих предприятиях, имеющих все необходимое оборудование.
Как выбрать аккумулятор
Выбор моделей, представленных в магазинах, велик. Чтобы купить свинцово-кислотный АКБ, рекомендуется обращать внимание на следующие нюансы:
Свинцово-кислотная батарея из-за потребительских характеристик – практически безальтернативный вариант для установки в автомобиле. При этом производители предлагают сотни вариантов, отличающихся по цене, техническим характеристикам, ориентированных на разных клиентов.
Кислотные аккумуляторы; чтобы больше не было отвратительно читать то что люди о них пишут
Случайно узрел статью с комментариями к ней, и так злость во мне закипела по поводу безграмотности людей в области кислотных (свинцовых в простонародье) аккумуляторов, что не выдержал и решил написать «гикам» (чтобы быть гиком, как оказывается, мало купить дорогой телефон) краткую статью об аккумуляторах. С рассмотрением тех ошибок, которые мне постоянно мусолят глаза и вызывают праведное желание их исправить.
Начнем с названия. Я очень часто вижу что тремя буквами А-К-Б называют все что можно зарядить, абсолютно любой аккумулятор. Особенно тремя буквами люди любят называть аккумуляторы типа Li-ion. На самом-же деле АКБ аббревиатура от Аккумуляторная Кислотная Батарея. Под ними подразумевается лишь один тип аккумулятора — свинцовый кислотный. С современной точки зрения это название вызывает некоторый когнитивный диссонанс т.к. на данный момент значение слова «батарейка» т.е. гальванического элемента который зарядить нельзя перешло на слово «батарея». И получается как будто бы из-за слова «аккумуляторная» это аккумулятор который зарядить можно, а из-за слова «батарея» это как будто батарейка которую зарядить нельзя. В реальности-же батарея — просто цепь гальванических элементов и со словом «батарейка» имеет общий лишь корень.
Таких ячеек в 12В аккумуляторе 6 шт, в 6В — 3 шт. и т.д. Многих вводит в заблуждение значение напряжения на аккумуляторах. Причем значений напряжения номинального, заряда, разряда. С одной стороны, аккумуляторы называются 12В (и 6В, 24В тоже есть, по-моему, даже 4В изредка встречаются) но на корпусе тех-же аккумуляторов для ИБП производитель указывает напряжение выше 13.5В.
Тут мы видим, что в форсированном режиме напряжение заряда может быть аж 15В.
Все разъяснит кривая напряжения на АКБ:
Слева мы видим напряжение для аккумулятора из 12 ячеек (24В номинальных), 6 (12В номинальных) и, самое полезное, для одной ячейки. Там-же отмечены области нежелательных напряжений при разряде/ заряде. Из кривой можно сделать выводы:
1 Напряжение 12В, 24В и т.д. являются номинальными и показывают лишь число гальванических ячеек (путем деления на два) в батарее. Это просто название для удобства.
2 Напряжение при заряде могут достигать 2.5 В/ ячейку что для 12В аккумулятора соответствует 15В.
3 Напряжение заряженной батареи считается допустимым при значении 2.1-2.2 В/ячейку, что для 12В аккумулятора соответствует 12.6-13.2В.
Теоретически, батарею можно зарядить и до значений 2.4 В/ячейку или даже немного выше, однако, такая зарядка будет негативно сказываться как на состоянии электродов, так и на концентрации электролита. Однажды, перед сдачей в утиль, я легко зарядил 12В батарею до напряжения ок. 14.5В (уже не помню точное значение).
Итак, автор статьи с которой я начал, решил, что напряжение заряда автомобильной АКБ и АКБ от ИБП отличаются. Это неверно, у них одинаковый тип электродов и одинаковая концентрация серной кислоты в электролите (подобранная давным-давно экспериментальным путем, чтобы предоставлять максимальное напряжение и минимальном саморазряде). Однако, что-же происходит в батарее, почему ее нельзя заряжать при слишком высоком значении напряжения?
Почему в автомобильную АКБ нужно подливать воду, а в АКБ от ИБП не нужно? Эти вопросы позволяют нам плавно перейти в область напряжения разложения воды. Как я написал выше, при зарядке аккумулятора происходит электролиз. Однако, не весь ток расходуется на превращение PbSO4 в PbO2 и Pb. Часть тока будет неизбежно расходоваться и на разложение воды, составляющей значительную часть электролита:
Теоретический расчет дает значение напряжения для этой реакции ок. 1.2В. Напоминаю, что напряжение на ячейке при заряде заведомо более 2В. К счастью, активно вода начинает разлагаться только выше 2В, а в промышленности для получения водорода и кислорода из нее процесс ведут и вовсе при 2.1-2.6В (при повышенной температуре). Как бы то ни было, тут мы приходим к выводу, что в конце процесса заряда АКБ будет неизбежно происходить процесс разложения воды в электролите на элементы. Образующиеся кислород и водород попросту улетучиваются из сферы реакции. Про них бытуют следующие мифы:
1. Водород крайне взрывоопасен! Перезарядишь аккумулятор и как минимум лишишься комнаты где тот был!
На самом деле, водорода в процессе электролиза выделяется ничтожно мало по сравнению с объемом комнаты. Водород взрывается при концентрации от 4% в воздухе. Если мы допустим, что электролиз ведется в комнате размером 3*3*3 метра или 27 метров куб., то нам понадобится наполнить помещение 27*0.04=1.1 метров куб. водорода. Для получения такого количества H2 нужно было бы полностью разложить ок. 49 моль воды или 884 грамма ее. Если кто-то наблюдал электролиз, то поймет насколько это много. Или попробуем перейти ко времени. При силе тока в стандартной зарядке для крупногабаритных АКБ в 6А, уравнение Фарадея дает время, необходимое для получения этого количества водорода, аж 437 часов или 18.2 дня. Чтобы наполнить комнату водородом до взрывоопасной концентрации нужно забыть про зарядку на 2 с половиной недели! Но даже если это случится, концентрация серной кислоты просто будет расти пока ее раствор не приобретет слишком высокое сопротивление для жалких 12В зарядки и сила тока не станет ничтожной. Да и водород попросту улетучится.
Очень редко случаются взрывы непосредственно в корпусах крупногабаритных АКБ из-за того, что выделяющийся водород по какой-то причине не может покинуть замкнутого пространства. Но и в этом случае нечего страшного не бывает — чаще всего взрыва хватает только на небольшую деформацию верхней части корпуса, но не на разрыв свинцовых соединений. И АКБ еще может работать дальше даже после таких повреждений.
2. При электролизе может образоваться смертельно ядовитый и, не менее взрывоопасный чем водород, сероводород!
Не наш, периодически попадался миф в англоязычных постах. Теоретически конечно возможно подать такое большое напряжение и создать т.о. такую большую силу тока, что на катоде начнется процесс восстановления сульфат-иона. Напряжение для этого будет достаточным, а продукты восстановления не будут успевать диффундировать подальше от электрода и восстановление будет идти дальше. Но зарядка в пределах десятка-трех вольт и с ограничением силы тока в 6А на такое едва ли способна. Однажды, я наблюдал процесс восстановления сульфата до SO2, да, это возможно; однокурсницы по ошибке что-то сделали не то во время опыта. Но это большая редкость т.к. там концентрация серной кислоты была заметно выше той, что используется в АКБ, была иная конструкция электрода и иной его материал и, естественно, напряжения и сила тока были были непомерными. И SO2 не H2S.
3. При электролизе мышьяк и сурьма из материала решеток будут восстанавливаться до ядовитых арсина и стибина!
Действительно, решетки содержат относительно много сурьмы, мышьяка в современных решетках, вероятно, нет вообще. При работе АКБ та решетка на которой происходит восстановление, т.е. катод, разрушению не может подвергаться. Выделяйся даже каким-то образом стибин, он бы тут-же взаимодействовал с PbSO4, восстанавливая его до металла.
Однако, некоторая практическая неприятность тут есть. Газообразные водород и кислород могут увлекать за собой капельки электролита, создавая аэрозоль серной кислоты. Аэрозоль серной кислоты, даже концентрированной, для человека не опасен и просто вызывает кашель. Однако, серная кислота — кошмар для тканей и бумаги. Стоит даже небольшому количеству серной кислоты попасть на одежду и там обязательно появятся дырки или ткань разорвется по этому месту. Через недели, если кислоты много, через месяц, но одежда истлеет.
Так что газовыделения опасаться не стоит с бытовой точки зрения или стоит, но нужно ориентироваться именно на аэрозоль серной кислоты.
Итак, вода начала разлагаться на водород кислород, ее в электролите становится все меньше, что-же дальше? Если это АКБ в котором электролит просто налит в виде слоя жидкости, то начнется повышение саморазряда из-за повышения концентрации серной кислоты. Занятно, что это будет сопровождаться небольшим повышением напряжения (концентрация кислоты растет) на ячейке. Именно поэтому автовладельцы должны постоянно контролировать концентрацию серной кислоты в своих АКБ (при помощи ареометра) и доливать туда воду. Процедура доливания воды — необходимая часть процесса обслуживания любой АКБ. Кроме одного их типа, и мы сейчас об этом поговорим.
Иметь аккумулятор в котором болтается слой едкой, по отношению к металлам, жидкости конечно-же неудобно, а потому попытки избавиться непосредственно от жидкости предпринимались давно, начались чуть ли не в первой половине 20-го века. К слову сказать, не то чтобы слой серной кислоты прямо плескался вокруг электродов. В реальности она неплохо распределена между электродами и окружающими их сепараторами даже в дешевых моделях. Итак, первым вариантом было использование стекловолокна. Достаточно просто окружить электроды стекловолокном которое пропитано серной кислотой и большинство проблем решится. Этот тип АКБ носит название AGM (absorbent glass mat) и таких АКБ для ИБП подавляющее большинство. Хотя такие АКБ малого форм-фактора и зачастую позиционируются как те, которые можно эксплуатировать в любом положении, с этим нельзя вполне согласиться. Вскрытие крышки стандартного дешевого AGM аккумулятора показывает, что никаких особых крышек там нет, а следовательно, электролит от вытекания удерживают лишь капиллярные силы. Я почти уверен, что если погонять AGM аккумулятор перевернутым вверх дном, то уже после одной зарядки из него польется серная кислота под давление газов.
Второй распространенный тип интереснее, это т.н. гелевые АКБ. А получаются они благодаря следующему. Если подкислять растворимые силикаты, то будет происходить выделение кремневой кислоты:
Если исходный раствор силиката не отличается качеством, то кремневая кислота будет выделяться в виде стекловидной массы, но если он достаточно чист, то кремневая кислота осадится в виде красивого куска однородного полупрозрачного геля. На этом и основан способ получения гелевых АКБ — простое добавление силикатов к электролиту вызывает его затвердение в гелеобразную массу. Соответственно, вытекать оттуда уже нечему и АКБ действительно можно эксплуатировать в любом положении. Сам по себе процесс образования геля не повышает емкости АКБ и не улучшает его качеств, однако, производители его используют при производстве наиболее качественных моделей, а потому эти АКБ отличаются высоким качеством и большей емкостью. Занятно, что в обоих случаях носителем электролита является SiO2 в той или иной форме.
Оба типа АКБ объединяются в славный тип VRLA — valve-regulated lead-acid battery который и применяется в ИБП. Формально они считаются необслуживаемыми и терпящими эксплуатацию в любом положении, но это не совсем так. Более того, многие уже встречались с эффектом, когда буквально несколько мл воды возвращают к жизни, казалось бы, дохлую АКБ от ИБП. Так получается, потому что и эти аккумуляторы не капли не застрахованы от электролиза воды в электролите, а следовательно, и пересыхания. Все происходит точно так-же, как в крупногабаритных АКБ. А вот самые дорогие и крутые необслуживаемые АКБ содержат катализатор для рекомбинации выделяющихся газов обратно в воду и вот уже у них корпус действительно выполнен абсолютно герметичным. Обращаю внимание, что по-настоящему герметичным и необслуживаемым может быть и аккумулятор типа AGM и GEL, но они-же могут ими и не быть и не содержать катализатора рекомбинации кислорода и водорода. Тогда, несмотря на казалось бы продвинутую конструкцию, пользователю придется либо чаще покупать новые аккумуляторы, либо доливать воду при помощи шприца.
Хотелось бы добавить несколько слов о режимах разряда. Производители АКБ указывают какой ток максимально допустим для той или иной модели, но нужно понимать, что аккумулятор — просто смесь химических веществ и ЭДС генерируется исключительно химическим путем. Это не конденсатор который, по электрогидравлической аналогии, можно сравнить с неким механическим сосудом (с гибкой мембраной). Хотя АКБ могут выдавать очень большие значения силы тока, в реальности они лучше всего эксплуатируются как раз при небольших токах, что в разряде, что в заряде. Поэтому ИБП, рассчитанные на заряды небольших АКБ, при работе с крупногабаритными будут заряжать их в наиболее щадящем режиме. Впрочем, в течении далеко не одних суток. Интересно обратить внимание на то, что чем выше мощность ИБП, тем больше аккумуляторов последовательно предпочитает собирать производитель. Тут все логично — большие токи разряда маленькие АКБ выдерживают очень плохо.
1. Малогабаритные и крупногабаритные АКБ идентичны по устройству.
2. Для подавляющего большинства АКБ любого размера доливание воды является необходимой частью текущего обслуживания.
3. Лишь немногие из дорогих моделей АКБ содержат механизм рекомбинации газов и могут быть названы действительно необслуживаемыми.
4. Сам по себе водород, который выделяется при заряде (а это равно постоянной работе в ИБП) АКБ, не является существенной угрозой или проблемой.
5. Нужно очень внимательно работать с АКБ, тщательно избегая пролива даже малейших капель электролита, или лишитесь одежды.
6. Разряд и заряд малыми токами являются наиболее предпочтительными режимами эксплуатации АКБ.
Разновидности свинцово-кислотных аккумуляторных батарей
©При цитировании ссылка на эту страницу и на “Ваш Солнечный Дом” обязательна
Все статьи про аккумуляторы на нашем сайте собраны на странице Путеводитель по аккумулированию.
В статье есть много гиперссылок на ключевых словах. Переходите по ним для более подробной информации.
Общая информация
Серийный выпуск и массовая эксплуатация свинцово-кислотных аккумуляторных батарей были начаты еще в конце 19 века. В начале 20 века они начали широко применяться в автомобилях, развивая далее сферу своего применения, легко перешагнули рубеж тысячелетия и до сих пор продолжают оставаться надежными, долговечными, не требующими высоких эксплуатационных затрат и относительно дешевыми источниками энергии.
По конструкции свинцово-кислотные аккумуляторы бывают обслуживаемые и необслуживаемые. Обслуживаемые требуют в процессе эксплуатации определенного ухода (контроля уровня и плотности электролита). Необслуживаемые – являются герметичными (точнее, герметизированными), работают в любом положении и не требуют ухода.
В международной интерпретации принято обозначение в виде SEALED LEAD ACID BATTERY (герметичная свинцово-кислотная батарея) или сокращенно SLA, а также VRLA – Valve Regulated Lead Acid (свинцово-кислотные с регулируемым клапаном) батареи, имеющие сернокислый электролит в виде геля или связанная в стекловолокне (AGM). Такие аккумуляторные батареи имеют более высокие электрические и эксплуатационные параметры.
Применение такие батареи находят в качестве резервных источников в системах сигнализации и охраны и медицинском оборудовании. Однако самое широкое применение они имеют в источниках бесперебойного питания (ИБП), а также в системах автономного электроснабжения на базе возобновляемых источников энергии.
Основные типы свинцово-кислотных аккумуляторов
Есть следующие основные типы свинцовых аккумуляторных батарей, которые можно применять в системах автономного электроснабжения:
Ниже приведена более подробная информация по герметизированным аккумуляторам.
Аккумуляторные батареи с технологией AGM
AGM батареи – герметичные, необслуживаемые, не требуют вентилируемого помещения для установки. Батареи AGM прекрасно работают в буферном режиме, т.е. в режиме подзарядки. В таком режиме служат до 10-12 лет (батареи напряжением 12В) или даже до 18 лет (батареи напряжением 2В). Если же их использовать в циклическом режиме (т.е. постоянно заряжать-разряжать на хотя бы 30%-40% от емкости), то их срок службы сокращается. Смотрите замечания по определению срока службы аккумуляторов.
AGM аккумуляторы обычно используются в резервных системах электроснабжения, т.е. там, где батареи в основном находятся на подзаряде, и иногда, во время перебоев в электроснабжении, отдают запасенную энергию.
Тем не менее, в последнее время появились AGM батареи, которые рассчитаны на более глубокие разряды и цикличные режимы работы. Конечно, они не “дотягивают” до гелевых, но работают удовлетворительно и с автономных системах электроснабжения, в т.ч. и солнечных. Смотрите более подробно о таких аккумуляторах. AGM аккумуляторы обычно имеют максимальный разрешенный ток заряда 0,3С, и конечное напряжение заряда 14,8-15В. Для их заряда лучше применять специальные зарядные устройства для герметизированных аккумуляторов.
Гелевые аккумуляторные батареи
Гелевые аккумуляторные батареи имеют ряд преимуществ по сравнению с аккумуляторами с технологией AGM при сохранении всех их достоинств – герметичности, необслуживаемости, практическом отсутствии вредных газовыделений при работе, большой срок службы.
Гелевые батареи лучше выдерживают циклические режимы заряда-разряда. Их применение более желательно в системах автономного электроснабжения. Однако они дороже AGM батарей и тем более стартерных.
Гелевые аккумуляторы имеют примерно на 10-30% больший срок службы, чем AGM аккумуляторы. Также, они менее болезненно переносят глубокий разряд. Одним из основных преимуществ гелевых аккумуляторов перед AGM является существенно меньшая потеря емкости при понижении температуры аккумулятора. К недостаткам можно отнести необходимость строгого соблюдения режимов заряда.
Поэтому гелевые аккумуляторы рекомендуется применять там, где требуется обеспечить долгий срок службы при более глубоких режимах разряда, а также, если температура аккумуляторов опускается ниже 5 градусов Цельсия.
Плюсы гелевых аккумуляторов
Плюсов этой технологии действительно много:
Модификация гелевых аккумуляторов – герметичные аккумуляторы с трубчатыми электродами типа OPzV. Они имеют намного лучшие показатели по сравнению с другими видами свинцово-кислотных аккумуляторов. Подробно эти аккумуляторы рассматриваются здесь.
Гибридные AGM-гель аккумуляторы
Успех гелевых аккумуляторов, а также стремление производителей иметь преимущества гелевых аккумуляторов при цене AGM аккумуляторов привело к созданию гибридных AGM-гель аккумуляторов. В этих аккумуляторах действительно присутствует гель, но он намного более жидкий и мелкодисперсный, и не может самостоятельно держать форму. Поэтому в таких аккумуляторах применяется AGM сепаратор. По характеристикам такие аккумуляторы оказываются ближе к AGM аккумуляторам – как по сроку службы в циклах и годах, так и по устойчивости к глубоким разрядам.
Но наличие электролите в виде геля позволило производителям и продавцам называть такие аккумуляторы “гелевыми”. На многих таких аккумуляторах просто написано “Гелевые” или “Gel”. Цена таких аккумуляторов намного дешевле, чем настоящих гелевых. Неосведомленный покупатель, наслышанный о преимуществах гелевых аккумуляторов, покупает такие гибридные аккумуляторы из-за существенно более низкой цены.
К сожалению, на российском рынке в последнее время практически все аккумуляторы, называемые “гелевыми”, в реальности являются гибридными AGM-гелевыми, с соответствующими характеристиками. Такие аккумуляторы продаются под брендами Delta (тип Gel, GX, Solar), MNB-Battery (тип MNG), Корд, Восток, Вектор и многими другими. В линейке аккумуляторов Prosolar гибридные аккумуляторы имеют суффикс AG в названии модели.
Карбоновые аккумуляторы
Электролит: в карбоновых батареях используют коллоидный электролит (добавление SiO2 (гель) в электролит в небольшом количестве).
Во втором поколении углерод добавляют в активную массу отрицательной пластины, как и в саму решетку.
Разница между первым и вторым поколением: 1е поколение нельзя разряжать большими токами, но можно полностью заряжать. 2е поколение можно разряжать большими токами, но не рекомендуется полностью заряжать.
Заряжать карбоновые батареи рекомендуется до 90-100% (PSOC). Разряжать до 30% от номинала. Желательно не разряжать до 100% от номинальной ёмкости. В идеале работа батареи должна быть следующим образом: разряд со 100% от номинальной ёмкости до 30% от номинальной ёмкости, затем заряд до 90% от номинальной ёмкости, затем разряд до 30% от номинальной ёмкости и так далее. DOD (глубина разряда) обычно 60% от номинальной ёмкости. В этом режиме 4800 циклов заряд-разряд. Если снимать 80% от номинальной ёмкости, то 3800 циклов заряд-разряд.
Коллоидный электролит полимерного состава позволяет сбалансировать пропорцию электролита с сепаратором AGM, устранить явление расслоения, улучшить теплопроводность и ионную проводимость батареи и избежать риска терморазгона.
Инженеры компании Hitachi (CSB battery) утверждают, что их карбоновые батареи могут совершать 2400 циклов полного разряда аккумулятора. У литиевых батарей количество циклов примерно 3000. Обратите внимание, что количество циклов карбоновых батарей соответствует количеству циклов литиевых аккумуляторов.
Рассмотрим плюсы карбоновых батарей, которые заявляют их производители:
Ограничения карбоновых батарей
К недостаткам новой технологии можно отнести, то что они хуже держат емкость при высокой токоотдаче. Например, не рекомендуется использовать карбоновые аккумуляторы как стартовые или для лебедок. Нужно помнить, что они разрабатывались как тяговые для равномерной отдачи электричества на всем этапе разряда. При высокой токоотдаче их емкость падает не равномерно! Таким образом, если устройство потребляет большие токи за короткий промежуток времени, лучше применить традиционную AGM/Gel батарею.
Применение карбоновых аккумуляторов
Карбоновые батареи надо использовать в устройствах, где нужна повышенная цикличность. Карбоновые батареи идеально подходят для систем альтернативной энергетики. Они легко и быстро заряжаются, отлично держат заряд и выдают стабильное напряжение. Поэтому, если решили собрать энергосистему на ветрогенераторах или солнечных батареях для личного пользования или под зеленый тариф – это то, что нужно. Также благодаря «длительности жизни» в буферном режиме их можно рекомендовать для систем резервного питания в телекоммуникационной сфере: серверные шкафы, ЦОД и офисы.
Кроме этого, карбоновые аккумуляторы будут востребованы для применения в гольф-карах, инвалидных колясках и подобных устройствах.
Совсем не рекомендуется их устанавливать в ИБП (UPS ).
Какой тип аккумулятора выбрать – AGM, гелевый или с жидким электролитом?
Определяющими факторами при выборе аккумуляторных батарей для вашей системы являются цена, условия, при которых будет работать батарея (температура, условия обслуживания, наличие специального помещения и т.п.), а также ожидаемый срок службы аккумуляторной батареи.
Сравнение AGM, OPzV и OPzS аккумуляторов*
*Источник: IBT Innovative Battery Technology
Рекомендации по применению свинцово-кислотных аккумуляторов
Для того, чтобы понимать параметры аккумуляторов и делать правильный их выбор, нужно знать их основные параметры и характеристики. Основные характеристики описаны в статье “Основные характеристики аккумуляторов“
Безопасная эксплуатация
Для безопасной эксплуатации аккумуляторных батарей необходимо придерживаться следующих правил:
Почти все герметичные аккумуляторы могут на какое-то время устанавливаться на боку. Некоторые производители даже разрешают эксплуатировать батареи в положении на боку. Поэтому ориентируйтесь на рекомендации производителя при выборе метода установки батарей.
Режимы циклирования
Для работы в циклических режимах нужно использовать специальные аккумуляторы, которые более безболезненно переносят глубокий разряд. Такие аккумуляторы обычно имеют более толстые пластины и в них применяются специальные технологии для продления срока их службы при регулярных глубоких разрядах. Также, еще одной особенностью автономных систем является то, что в них аккумуляторы заряжаются определенный период времени, и за это период они должны успеть полностью зарядиться. В буферном режиме это не представляет проблемы, так как большую часть времени эксплуатации аккумуляторы находятся на подзаряде. Именно в таком режиме обеспечиваются заявляемые производителем сроки службы в 10-18 лет.
Для автономных систем электроснабжения нужно выбирать аккумуляторы “глубокого разряда” (например ProSolar серий D или DG, а еще лучше аккумуляторы OPzV). Если можно выделить специальное помещение для аккумуляторов с соблюдение всех условий (вентиляция, пожаробезопасность) и есть обученный персонал, которые может обслуживать аккумуляторы с жидким электролитом, можно применять аккумуляторы глубокого разряда с жидким электролитом – OPzS, тяговые для электрических машин или другие с повышенным допустимым разрядом (например, Rolls).
Если такие условия не выполняются, лучше остановиться на герметичных аккумуляторах – они немного дороже, но гораздо проще в эксплуатации.