какие камеры сгорания применяются в современных двигателях
Камеры сгорания бензиновых двигателей
Если камера сгорания занимает объем над всей поверхностью днища поршня, то возникает слишком большая поверхность охлаждения. Поэтому стремятся создать компактную камеру сгорания в зоне свечи зажигания, а над днищем поршня – образовать зазор между ним и поверхностью головки цилиндра (уже упоминавшуюся ранее зону вытеснителя). Этот зазор выполняет две функции – обеспечивает компактность и малую поверхность камеры сгорания, а к концу хода сжатия способствует созданию интенсивного движения (турбулизации) заряда в ней.
Г. Р. Рикардо определил важность турбулизации заряда уже на начальном этапе развития двигателей внутреннего сгорания [2]. Камера сгорания «Рикардо», примененная в двигателях с боковыми клапанами, значительно улучшила их параметры. Компактная, расположенная над клапанами, она имела небольшую поверхность отвода теплоты к охлаждающей жидкости, а турбулентность, создаваемая вытеснителем, ускоряла сгорание. Завихривание горячего газа около стенок камеры сгорания, хотя и увеличивает отдачу теплоты в них, но при этом позволяет повысить степень сжатия, что с избытком компенсирует некоторый рост тепловых потерь в стенки.
В настоящее время двигатели внутреннего сгорания выполняются с клапанами, расположенными в головке цилиндров, и распределительными валами, размещенными в блоке цилиндров (схема OHV) или в его головке (схема OHC). Камера сгорания при этом образована над днищем поршня. Для упрощения механизма газораспределения клапаны чаще всего располагают на продольной оси двигателя и камера сгорания под ними обычно выполнена ваннообразной. Для облегчения доступа к свече зажигания иногда она расположена сбоку камеры сгорания, а на противоположной свече стороне между поршнем головкой блока цилиндров образован вытеснитель. Заряд, вытесняемый из него в конце сжатия, направлен к свече зажигания и обогащает смесь вблизи нее. Такие ваннообразные (плоскоовальные) камеры сгорания с небольшими изменениями применяют практически у всех современных двигателей.
Так называемая клиновая камера сгорания, полученная из плоскоовальной наклоном клапанов для получения лучшей формы газовых каналов, показана на рис. 1. Свеча зажигания в этом случае сдвинута в сторону выпускного клапана, движение заряда в камере направлено к свече. У клинообразной камеры сгорания большая часть ее объема сконцентрирована возле свечи, благодаря чему сначала должно сгорать наибольшее количество заряда, а в самой удаленной от свечи зоне камеры сгорания, где имеется опасность детонации, должно находиться сравнительно небольшое количество переохлажденной смеси в зазоре вытеснителя. Такая камера обеспечивает мягкое сгорание и низкие тепловые потери. Жесткость работы двигателя оценивается скоростью нарастания давления, т. е. повышением давления в цилиндре при повороте коленчатого вала на Решающее значение имеет участок поворота, соответствующий интервалу между образованием искрового разряда (воспламенение смеси) и ВМТ. Мягким считается процесс сгорания, при котором скорость нарастания давления лежит в пределах 0,2 – 0,6 МПа на 1° угла поворота коленчатого вала. Уровень шума при работе двигателя зависит также от зазоров между поршнем и цилиндром и между валом и его подшипниками.
Рис. 1 Бензиновый двигатель с клиновой камерой сгорания |
---|
Широко применявшаяся ранее полусферическая камера сгорания также претерпевает в настоящее время изменения. Камера такой формы применяется у двигателей спортивных, гоночных автомобилей для достижения высокой удельной мощности. При использовании в головке цилиндра двух распределительных валов и большом угле развала клапанов можно разместить в головке цилиндра клапаны большого диаметра. При этом поверхность камеры сгорания по отношению к ее объему достаточно мала. Обеспечивается также хорошее втекание заряда через клапаны в цилиндр, поскольку ему не препятствуют стенки цилиндра или камеры сгорания. Впускной и выпускной каналы имеют небольшую длину и малую поверхность. Двигатели с такой камерой сгорания имеют довольно высокий КПД. На рис. 2 приведен пример классического исполнения полусферической камеры сгорания.
Рис. 2 Полусферическая камера сгорания |
---|
Для двигателей гоночных автомобилей важным является быстрый процесс сгорания, также обеспечиваемый сильной турбулизацией заряда. При этом ось вращения заряда должна быть параллельна оси коленчатого вала, а ось впускной трубы – максимально возможно приближена к оси впускного клапана. На рис. 3 изображена подобная камера сгорания.
Рис. 3 Бензиновый двигатель «Феррари» с камерой сгорания шатровой формы и малым углом между клапанами |
---|
Если применяется полусферическая камера сгорания в двухклапанном исполнении, то оси клапанов не должны пересекаться с осью цилиндра. Чаще всего клапаны слегка отклонены от оси цилиндра, расположены в сферической части камеры и их углубление в поршень в этом случае невелико. Под выпускным клапаном в днище поршня делается небольшая выемка и зазор между поршнем и головкой обеспечивает завихривание заряда, необходимое для мягкой работы двигателя. Классическая же полусферическая камера сгорания характеризуется жесткой работой двигателя.
Для сжигания сильно обедненных смесей было разработано несколько новых видов камер сгорания. Большей частью они характеризуются стремлением достичь в объеме камеры послойного распределения заряда с образованием вблизи свечи зажигания богатой смеси. Часто эти камеры имеют форму тел вращения и располагаются в днище поршня. Пример подобной камеры приведен на рис. 4. Тангенциальное расположение впускного канала относительно цилиндра обеспечивает вращение заряда вокруг оси цилиндра, усиливающегося еще больше в ВМТ после вытеснения заряда с периферии цилиндра в камеру, диаметр которой меньше диаметра цилиндра. Свеча зажигания располагается в зоне камеры, где смесь обогащена. Головка цилиндра выполнена плоской, и выход потока из клапанной щели не тормозится ни стенкой цилиндра, ни стенкой камеры сгорания. Сразу же после открывания клапана его сечение открыто для прохода газового потока, за исключением зоны вблизи стенки цилиндра, однако это не имеет принципиального значения, так как поворот впускного канала не направлен в эту сторону.
Рис. 4 Бензиновый двигатель с цилиндрической камерой сгорания в днище поршня |
---|
Поршень с расположенной в днище камерой сгорания имеет большую массу и его температура выше, чем температура стенки камеры сгорания, размещенной в головке цилиндра. Последнее вызывает ухудшение теплоотдачи от газа к головке цилиндра и уменьшение потерь теплоты в систему охлаждения.
Размер клапана в головке цилиндра обусловлен диаметром цилиндра. Тарелка клапана не должна выступать за окружность цилиндра, так как при этом растет площадь охлаждения и ухудшается очистка цилиндра. Большие размеры клапана, кроме того, непрактичны, так как значительная часть его периметра заслоняется стенкой камеры сгорания.
Увеличения диаметра впускного клапана можно достичь за счет уменьшения диаметра выпускного клапана, который может быть на 15 % меньше, чем впускной. В момент открытия выпускного клапана давление в цилиндре достаточно высокое, и хорошая очистка цилиндра может быть обеспечена и при уменьшенном сечении клапана. Кроме того, у выпускного клапана меньшего размера также меньше и деформация седла, и он быстрее охлаждается.
Клапаны наибольших размеров можно получить в полусферической камере сгорания, у которой диаметр впускного клапана может достичь 0,64, а выпускного – 0,54 диаметра цилиндра. При меньшем развале осей клапанов, а также при наличии седел клапанов у алюминиевых головок диаметры клапанов на 10 % меньше приведенных выше величин.
Камеры сгорания двигателей
Камеры сгорания В современных бензиновых двигателях с верхним расположением клапанов преимущественно используются камеры сгорания следующих типов: полусферические, полисферические, клиновые, плоскоовальные, грушевид- ные, цилиндрические. Существуют смешанные варианты камер сгорания. Форма камеры сгорания определяется расположением клапанов, формой днища поршня, расположением свечи, а иногда и двух свечей зажигания, наличием вытеснителей. При проектировании двигателя с учетом применяемого топлива и заданной степени сжатия к камерам сгорания предъявляются следующие требования: обеспечение высоких скоростей сгорания, снижения требований к октановому числу топлива, минимальных потерь с охлаждающей жидкостью, низкой токсичности, технологичности производства. Это определяется следующими условиями:
—компактностью камеры сгорания;
—эффективной турбулизацией смеси во время сгорания;
—минимальным отношением площади поверхности
камеры сгорания к рабочему объему цилиндров. Как уже отмечалось, одним из способов повышения эффективного КПД двигателя является увеличение степени сжатия. Основной причиной ограничения степени сжатия является опасность появления аномальных процессов сгорания (детонации, калильного зажигания, грохота и др.). У современных серийных двигателей, имеющих достаточно высокие степени сжатия, дальнейшее их увеличение даст сравнительно небольшой эффект и связано с необходимостью решения ряда проблем. Прежде всего — это возникновение детонации. Именно она определяет требования к величине степени сжатия и форме камеры сгорания. После воспламенения рабочей смеси от искры фронт пламени распространяется по камере сгорания, давление и температура в этой части заряда растут до 50. 70 бар и 2000. 2500 С, в наиболее удаленной от свечи части рабочей смеси происходят предпламенные химические реакции. При невысокой частоте вращения коленчатого вала, особенно в двигателях с большим диаметром цилиндров, время на эти реакции иногда оказывается достаточным, чтобы остаточная часть заряда сгорала с высокими скоростями (до 2000 м/с).
Детонационное сгорание вызывает появление ударных волн, распространяющихся по камере сгорания с высокой скоростью, вызывая металлические стуки, иногда неправильно называемых стуком пальцев. Ударная волна, разрушая пристеночный слой газов с пониженной температурой, способствует повышению теплоотдачи в стенки цилиндра, камеры сгорания, тарелки клапанов, днище поршня, вызывая их перегрев и увеличивая тепловые потери в двигателе. Работа с сильной детонацией приводит к общему перегреву двигателя, ухудшению мощностных и экономических показателей. При длительной езде с интенсивной детонацией начинается эрозия стенок камеры сгорания, оплавление и задиры поршня, повышенный износ верхней части цилиндра из-за срыва масляной пленки, поломка перемычек между канавками поршневых колец и задиры зеркала цилиндра, прогар прокладки головки цилиндров. К числу факторов, влияющих на требования к октановому числу топлива, относится компактность камеры сгорания, характеризуемая степенью нарастания объема сгоревшей части смеси (в % к полному объему камеры сгорания) по мере удаления условного фронта пламени от свечи. Наиболее компактными являются полусферические, шатровые камеры сгорания, имеющие пониженные требования к октановому числу. Однако для повышения степени сжатия до 9,5. 10,5 в полусферических или полисферических камерах иногда приходится днище поршня делать выпуклым, что существенно ухудшает степень компактности и соответственно повышает требования к октановому числу, которые возрастают на 3. 5 единиц. В современных двигателях с 4 клапанами в одном цилиндре свеча располагается в центре камеры сгорания. Это обеспечивает максимальную степень нарастания объема.
Другим параметром, характеризующим антидетонационные качества, является степень турбулизации смеси в процессе сгорания. Интенсивность турбулизации зависит от скорости и направления потока смеси на входе в камеру сгорания. Одним из способов создания интенсивной турбулизации является увеличение площади вытеснителя (объема расположенного между днищем поршня и плоскостью головки цилиндров) с целью турбулизации заряда для увеличения скорости сгорания. Вытеснители имеют клиновые, овальные, грушевидные камеры сгорания. При замене плоскоовальной камеры сгорания на грушевидную, увеличении за счет этого площади вытеснителя при одновременном уменьшении его высоты на двигателях автомобилей УАЗ удалось без изменения требований к ОЧ топлива поднять степень сжатия на 0,5, за счет чего расход топлива уменьшился на 5. 7%, а мощность увеличилась на 4. 5%. У двигателей УЗАМ 331 и у некоторых двигателей грузовых автомобилей (ЗИЛ-508.10) для создания вихревого движения заряда перед впускным клапаном канал выполнялся улиткообразным. Однако при высоких скоростях смеси это приводило к увеличению сопротивления и соответственно снижению мощностных показателей. Поэтому последние модели двигателей УЗАМ выпускаются с обычным впускным каналом. Полусферические, полисферических цилиндрические камеры сгорания практически не имеют вытеснителя, поэтому их антидетонационные качества (по индексу детонации) уступают камерам с вытеснителями. При массовом производстве двигателей за счет отклонения размеров деталей кривошипно-шатунного механизма и объема камеры сгорания фактическая степень сжатия двигателя одной модели может отличаться на значительную величину (в пределах одной единицы). Поэтому для автомобиля одной и той же модели часто требуются бензины с разным октановым числом. Фактическую степень сжатия приблизительно можно определить при помощи компрессометра.
Камера сгорания двигателя
Содержание
Класификация
По принципу действия
Камеры сгорания непрерывного действия в свою очередь класифицируют:
По назначению
По направлению потока воздуха и продуктов сгорания
По конструктивных особенностях корпуса и жаровой трубы
Камеры сгорания периодического действия в свою очередь класифицируют:
По используемому топливу
По конструкции бензиновые камеры сгорания разделяют:
По конструкции дизельные камеры сгорания разделяют:
По способу смесеобразования
Камера сгорания непрерывного действия
Камера сгорания непрерывного действия относятся к числу важнейших узлов авиационных и космических двигательных установок, специальных и транспортных газотурбинных установок, которые находят широкое применение в энергетике, химической промышленности, на ж.-д. транспорте, морских и речных судах.
Принцип работы
Камера сгорания является узлом газотурбинного двигателя (ГТД), в котором происходит приготовление и сжигание топливовоздушной смеси. Для приготовления топливовоздушной смеси в камеру сгорания подводится через форсунки топливо и поступает воздух из компрессора. В процессе запуска двигателя поджог топливовоздушной смеси производится электрической искрой (или пусковым устройством), а при дальнейшей работе процесс горения поддерживается непрерывно вследствие контакта образующейся топливовоздушной смеси с раскаленными продуктами сгорания. Образовавшийся в камере сгорания газ направляется в турбину компрессора.
Устойчивость и совершенство процессов в камере сгорания в значительной степени обеспечивают надежную и экономичную работу газотурбинного двигателя.
Требования, предъявляемые к камере сгорания непрерывного действия
Камера сгорания периодического действия
Камера сгорания работающей на бензине
Конструкции камер сгорания автомобильных двигателей различны. У двигателей с верхним расположением клапанов применяют центральные камеры, а также камеры полуклинового и клинового типов. При нижнем расположении клапанов основной объем камеры сгорания смещен в сторону от оси цилиндра (Г-образная форма); такая конструкция камеры способствует усилению завихрения горючей смеси и улучшает смесеобразование. На современных двигателях широко применяют камеры сгорания полуклинового и клинового типов.
Широко применявшаяся ранее полуклиновая камера сгорания претерпевает в настоящее время изменения. Камера такой формы применяется у двигателей спортивных, гоночных автомобилей для достижения высокой удельной мощности. При использовании в головке цилиндра двух распределительных валов и большом угле развала клапанов можно разместить в головке цилиндра клапаны большого диаметра. При этом поверхность камеры сгорания по отношению к ее объему достаточно мала. Обеспечивается также хорошее втекание заряда через клапаны в цилиндр, поскольку ему не препятствуют стенки цилиндра или камеры сгорания. Впускной и выпускной каналы имеют небольшую длину и малую поверхность. Двигатели с такой камерой сгорания имеют довольно высокий КПД.
Камера сгорания дизельного топлива
У дизельных двигателях требования к форме камеры сгорания определяются процессом смесеобразования. Для создания рабочей смеси в них отводится очень малое время, так как почти сразу после начала впрыска топлива начинается сгорание, и остаток топлива подается уже в горящую среду. Каждая капля топлива должна войти в соприкосновение с воздухом как можно быстрее, чтобы выделение теплоты произошло в начале хода расширения.
Пленочное смесеобразование применяется в ряде конструкций камер сгорания, когда почти все топливо направляется в пристеночную зону. В центральную часть камеры сгорания попадает приблизительно 5–10% впрыскиваемого форсункой топлива. Остальная часть топлива распределяется на стенках камеры сгорания в виде тонкой пленки (10–15 мкм). Первоначально воспламеняется часть топлива, попавшая в центральную часть камеры сгорания, где обычно отсутствует движение заряда и устанавливается наиболее высокая температура. В дальнейшем, по мере испарения и смешения с воздухом, горение распространяется на основную часть топлива, направленную в пристеночный слой. При пленочном смесеобразовании требуется менее тонкое распыливание топлива. Применяют форсунки с одним сопловым отверстием. Давление впрыска топлива не превышает 17–20 МПа.
Пленочное смесеобразование по сравнению с объемным обеспечивает лучшие экономические показатели двигателя, упрощает конструкцию топливной аппаратуры.
Основным недостатком являются низкие пусковые свойства двигателя при низких температурах в связи с малым количеством топлива, участвующего в первоначальном сгорании. Этот недостаток устраняют путем подогрева воздуха на впуске или за счет увеличения количества топлива, участвующего в образовании начального очага сгорания.
Комбинированное смесеобразование получается при меньших диаметрах камеры сгорания, когда часть топлива достигает ее стенки и концентрируется в пристеночном слое. Другая часть капель топлива располагается во внутреннем объеме заряда. На поверхности камеры оседает примерно 50% топлива. При впуске в камере не создается вращательного движения заряда. Заряд приводится в движение при вытеснении его из надпоршневого пространства в камеру сгорания, и создается вихрь. Скорость движения заряда достигает 40–45 м/с.
Отличительной особенностью от пленочного смесеобразования является встречное движение струй топлива и заряда, вытесняемого из надпоршневого пространства, что способствует увеличению количества топлива, взвешенного в объеме камеры сгорания, и сближает процесс с объемным смесеобразованием. Форсунки применяют с распылителями, имеющими 3–5 сопловых отверстий
Камеры сгорания с обьемным смесеобразованием. В дизельных двигателях с такими камерами топливо впрыскивается непосредственно в камеру сгорания форсункой с рабочим давлением 15–30 МПа, имеющей многодырчатые распылители (5–7 отверстий) с малым диаметром сопловых каналов (0.15–0.32 мм). Столь высокие давления впрыска применяются ввиду того, что в данном случае распыливание топлива и перемешивание его с воздухом достигается главным образом за счет кинетической энергии, сообщаемой топливу при впрыске. Для равномерного распределения топлива в камере форсунки таких двигателей часто выполняют с несколькими отверстиями.
Требования ко всем камерам сгорания двигателя
Основные требованиями для всех камер сгорания непрерывного действия являются:
О камерах сгорания и типах смесеобразования
Большинство задач повышения качества смесеобразования в дизельных двигателях во многом решаются путем выбора формы камеры сгорания.
Различают неразделенные камеры сгорания (однополостные) (рис. 1а, б) и разделенные (рис. 1,в).
Неразделенные камеры сгорания представляют собой камеру, образованную днищем поршня, когда он находится в ВМТ, и плоскостью головки цилиндров. Неразделенные камеры сгорания применяют в основном в дизелях тракторов и грузовых автомобилей. Они позволяют повысить экономичность двигателя и его пусковые качества (особенно холодного двигателя).
Вихревая камера работает следующим образом. В головке цилиндров имеется шаровая полость – вихревая камера, соединенная каналом с основной камерой сгорания над поршнем. При движении поршня вверх во время сжатия воздух с большой скоростью входит в вихревую камеру по касательной к ее стенкам.
В результате этого поток воздуха закручивается со скоростью до 200 м/с. В этот раскаленный (700…900 К) воздушный вихрь форсунка впрыскивает топливо, которое воспламеняется и давление в камере резко возрастает.
Газы с недогоревшим топливом по каналу выбрасываются в основную камеру, где происходит догорание оставшегося топлива. Объем вихревой камеры составляет 40…60% общего объема камеры сгорания, т. е. примерно половину объема.
Предкамерные (форкамерные) двигатели имеют камеру из двух частей. Топливо впрыскивается в цилиндрическую предкамеру (форкамеру), и часть его (до 60%) воспламеняется. Процесс горения топлива протекает так же, как и в вихревой камере.
Разделенные камеры сгорания менее чувствительны к составу топлива, работают в широком диапазоне частот вращения коленчатого вала, обеспечивают более качественное смесеобразование и менее жесткую работу путем сокращения периода задержки воспламенения.
Однако их основным недостатком является затруднительный пуск двигателя и увеличенный расход топлива по сравнению с неразделенными камерами сгорания.
Иногда выделяют полуразделенные камеры сгорания ( 20.10.21
Ломаешь голову над тем что означает маркировка двигателя твоей Тойоты? Тогда тебе сюда!
Не знаешь какой двигатель установлен на твоей техниике? Посмотри сюда.
- какие камеры распознают лица в москве
- какие камеры следят за людьми на карантине