какие железоуглеродистые сплавы называют ферритными чугунами

Железоуглеродистые сплавы (структурный и фазовый составы).

№ 105. Как называется структура, представляющая собой твердый раствор углерода в

А-железе?

А) Перлит. В) Цементит. С) Феррит. D) Аустенит.

№ 106. Как называется структура, представляющая собой твердый раствор углерода в у-железе?

А) Цементит. В) Феррит. С) Аустенит. D) Ледебурит.

А) Феррит. В) Аустенит. С) Ледебурит. D)Цементит.

№ 108. Как называется структура, представляющая собой механическую смесь феррита и цементита?

А) Перлит. В) δ-феррит. С) Аустенит. D) Ледебурит.

№ 109. Как называется структура, представляющая собой механическую смесь аустенита и цементита?

№ 110. На каком участке диаграммы железо-цементит протекает эвтектоидная реакция?

А) В области QPSKL. В) В области SECFK.C)Ha линии ECF. D) На линии PSK.

№ 111. На каком участке диаграммы железо-цементит протекает эвтектиче­ская реакция?

А) На линии ECF.В) В области SECFK. С) В области EIBC. D) На линии PSK.

№ 112. Какой процесс протекает на линии HIB диаграммы железо-углерод?

А) Исчезают кристаллы 5-феррита. В) Образование перлита. С) Перитектическая реакция

D) Завершается кристаллизация доэвтектоидных сталей.

№ 113. Какая из структурных составляющих железоуглеродистых сплавов обладает при комнатной температуре наибольшей пластичностью?

А) Аустенит. В) Феррит. С) Цементит. D) Перлит.

№ 114. Какая из структурных составляющих железоуглеродистых сплавов обладает наибольшей твердостью?

А) Аустенит. В) Перлит. С) Феррит. D) Цементит.

какие железоуглеродистые сплавы называют ферритными чугунами. Смотреть фото какие железоуглеродистые сплавы называют ферритными чугунами. Смотреть картинку какие железоуглеродистые сплавы называют ферритными чугунами. Картинка про какие железоуглеродистые сплавы называют ферритными чугунами. Фото какие железоуглеродистые сплавы называют ферритными чугунами

какие железоуглеродистые сплавы называют ферритными чугунами. Смотреть фото какие железоуглеродистые сплавы называют ферритными чугунами. Смотреть картинку какие железоуглеродистые сплавы называют ферритными чугунами. Картинка про какие железоуглеродистые сплавы называют ферритными чугунами. Фото какие железоуглеродистые сплавы называют ферритными чугунами

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

какие железоуглеродистые сплавы называют ферритными чугунами. Смотреть фото какие железоуглеродистые сплавы называют ферритными чугунами. Смотреть картинку какие железоуглеродистые сплавы называют ферритными чугунами. Картинка про какие железоуглеродистые сплавы называют ферритными чугунами. Фото какие железоуглеродистые сплавы называют ферритными чугунами

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Источник

Чугун

Чугуном называют железоуглеродистые сплавы (содержащие также то или иное количество примесей и легирующих элементов), затвердевающие с образованием эвтектики. Следовательно, в отличие от стали, чугун не может приобрести однофазное строение (например, аустенитное) при термической обработке. Согласно диаграмме состояния сплавов Fe—С (рис. 1), область чугуна охватывает сплавы, содержащие свыше 2,11% С. Практически же в качестве указанного граничного содержания углерода принято считать 2% С. С повышением содержания легирующих элементов эта граница, как правило, смещается в сторону меньших концентраций углерода. Так, многие высокохромистые, высококремнистые (например, ферросилиды), высокоалюминиевые сплавы железа содержат значительное количество эвтектики и условно считаются чугуном, несмотря на весьма низкое содержание углерода.

Присутствие эвтектики в структуре чугуна обусловливает его использование исключительно в качестве литейного сплава (работы по прокатке чугуна, особенно высокопрочного с шаровидным графитом, дали некоторые положительные результаты, но промышленного применения не нашли; перспективной является прокатка низкоуглеродистого низкокремнистого белого чугуна).

Чугун менее прочен и более хрупок, чем сталь, но дешевле стали и хорошо отливается в формы. Поэтому чугун широко используют для изготовления литых деталей. Углерод в чугуне может содержаться в виде цементита (Fe3C) или графита. Цементит имеет светлый цвет, обладает большой твердостью и трудно поддается механической обработке. Графит, наоборот, темного цвета и достаточно мягок. В зависимости от того, какая форма углерода преобладает в структуре, различают два основных вида чугуна: белый и серый.

По степени эвтектичности чугун подразделяют на доэвтектический, эвтектический и заэвтектический (см. рис. 1). Неправомерно принято отождествлять степень эвтектичности чугуна со степенью «насыщенности». Последняя относится как к чугуну, так и к стали и отражает лишь отношение содержания углерода в сплаве к эвтектическому или, с учетом влияния кремния и фосфора на смещение эвтектической точки влево.

Чугун считается эвтектическим, когда углеродный эквивалент равен 4,2—4,3%.

По содержанию дополнительных компонентов чугун подразделяют на нелегированный, низколегированный, средне- и высоколегированный. Нелегированным считают чугун, содержащий до 3,5—4% Si, до 1,5—2% Мп, до 0,3% Р, до 0,2— 0,25% S и до 0,1% таких элементов, как Cr, Ni, Си. В низколегированном чугуне содержание каждого из перечисленных легирующих элементов обычно не превышает 1,0—1,5%, в среднелегированном оно может достигать 7%, а в высоколегированном превышает 7—10%. Добавки сотых и даже тысячных долей процента таких элементов, как магний, азот, бор, висмут, считаются легирующими (микролегирование, модифицирование).

По степени графитизации чугун подразделяют на белый (практически не графитизированный), отбеленный или половинчатый (частично графити-зированный) и серый (в значительной степени или полностью графитизированный). Ковким называют чугун, полученный из белого путем его графитизации в твердом состоянии при термической обработке.

Белый чугун представляет собой сплав, в котором весь или практически весь избыточный углерод, не находящийся в твердом растворе в железе, присутствует в виде цементита Fe3C (или специальных карбидов в легированном чугуне). В нелегированном чугуне цементит представляет собой метастабильную фазу, способную распадаться с образованием железа и графита. На рисунке выше линии метастабильных равновесий (цементитная система) PSK, ES, ECF и CD показаны сплошными, а линии стабильных равновесий (графитная система) P`S`К`, E`S`, E`C`F` и C`D` —- пунктирными (в физической химии металлов принят обратный порядок обозначения).

В неполностью графитизированном сером чугуне эвтектоидное превращение протекает не в стабильной (графитной), а в метастабильной (цементитной системе) и аустенит превращается не в феррито-графитный эвтектоид, а в феррито-цементит-ную смесь — перлит. При этом наличие перлитного цементита и даже небольшого количества вторичного цементита (выпадающего из аустенита при его охлаждении в соответствии с линией метастабильного равновесия ES на рисунке выше) не является признаком отбела серого чугуна.

В производственной практике чаще всего наблюдаются случаи, когда эвтек-тоидное превращение протекает частично в стабильной и частично в метастабильной системах. Получающийся перлито-ферритный чугун обладает свойствами, приближающимися к свойствам перлитного или ферритного серого чугуна в зависимости от процентного содержания феррита и перлита в структуре металлической основы.

При отжиге белого чугуна на ковкий графит выделяется в виде более компактных включений, в результате чего металл приобретает определенные пластические свойства (откуда и название этого вида чугуна). Как и серый чугун, ковкий чугун может быть полностью и неполностью графитизированным и подразделяется соответственно на ферритный, феррито-перлитный и перлитный. Ледебуритного или вторичного цементита в ковком чугуне не должно быть (за исключением отдельных изолированных, так называемых «остаточных» карбидов). Половинчатый ковкий чугун промышленного применения не нашел.

В конце сороковых годов был изобретен метод модифицирования чугуна магнием, церием (а в настоящее время также иттрием и рядом других элементов), при котором графитные включения приобретают шаровидную или близкую к ней форму. Такой сплав фактически является разновидностью серого чугуна, однако ввиду приобретения им ряда специфических свойств (сочетания высокой прочности и пластичности, повышенной ударной вязкости) его классифицируют отдельно под названием «высокопрочный» чугун (ВЧ) или чугун с шаровидным графитом (ЧШГ). В зависимости от использованного модификатора его также называют магниевым, либо цериевым чугуном. В зарубежной литературе его часто называют «пластичным» чугуном (ductile iron). Высокопрочный чугун так же подразделяется на перлитный, перлито-ферритный и ферритный. В промышленности используют также отбеленный чугун с шаровидным графитом.

Часто модифицирование магнием или церием приводит к практически полному отбелу чугуна. После графитизирующего отжига в металле образуются шаровидные включения графита. Такой материал фактически представляет собой разновидность ковкого чугуна. Однако ввиду ряда специфических особенностей (кратковременности отжига, обусловленной высоким содержанием кремния в металле и отсутствием инкубационного периода) его классифицируют в одной группе с высокопрочным чугуном.

Таким образом, значительно графитизированный чугун условно подразделяют на серый (СЧ), ковкий (КЧ) и высокопрочный (ВЧ), хотя в ряде случаев провести между ними границу очень трудно.

Серый, ковкий и высокопрочный чугун классифицируют по механическим свойствам. Согласно общей классификации принято следующее деление:

По специальным свойствам чугун подразделяют на износостойкий, антифрикционный, коррозионностойкий, жаростойкий, немагнитный.

По твердости чугун подразделяют на:

Мягкий чугун HB269

По прочности чугун подразделяют на:

Обыкновенной прочности 2

Повышенной прочности = 20-38 кГ/мм 2

Высокой прочности > 38кГ/мм 2

В белом чугуне почти весь углерод содержится в связанном состоянии в форме цементита. Такой чугун имеет в изломе светло-серый цвет, очень тверд, почти не поддается механической обработке и поэтому не применяется для изготовления деталей, а используется для переделки в сталь и для изготовления деталей из ковкого чугуна. Такой чугун называется также передельным.

Серый чугун в изломе темно-серого цвета, мягок, хорошо обрабатывается инструментами и поэтому широко применяется в машиностроении. Температура плавления серого чугуна 1100— 1250° С. Чем больше в чугуне углерода, тем ниже температура плавления. Основное количество углерода в сером чугуне содержится в виде графита, равномерно распределенного среди зерен основного сплава.

В сером чугуне, по сравнению с белым, содержится больше кремния и меньше марганца, так как кремний способствует графитизации углерода в чугуне, а марганец, наоборот, вызывает образование связанного углерода — цементита.

Примерный состав серого чугуна: 3—3,6% углерода; 1,6—2,5% кремния; 0,5—1% марганца; 0,05—0,12% серы; 0,1—0,8% фосфора. Сера является вредной примесью в чугуне, затрудняет его сварку и понижает прочность; она повышает вязкость чугуна в расплавленном состоянии и увеличивает его литейную усадку.

Фосфор делает чугун более жидкоплавким и улучшает его свариваемость, но одновременно повышает хрупкость и твердость. Поэтому содержание серы и фосфора в чугуне не должно превышать указанных пределов.

Ковкий чугун по механическим свойствам занимает промежуточное положение между чугуном и сталью, отличается от серого чугуна большей вязкостью и меньшей хрупкостью. Для получения деталей из ковкого чугуна их отливают из белого чугуна, а затем подвергают термообработке, например длительному отжигу или «томлению» в песке при 800—850° С. При этом выделяется свободный углерод в форме мелких округленных частиц, располагающихся в виде обособленных скоплений (хлопьев) между кристаллами железа. При температуре выше 900—950° С углерод переходит в цементит и деталь теряет свойства ковкого чугуна. Поэтому детали после сварки приходится вновь подвергать полному циклу термообработки для получения в шве и околошовной зоне структуры ковкого чугуна.

Легированный чугун обладает особыми свойствами — кислотоупорностью, высокой прочностью при ударных нагрузках и др. Эти свойства чугун получает в результате легирования хромом, никелем.

Модифицированный чугун получают из серого чугуна, вводя в жидкий чугун специальные добавки, называемые модификаторами — силикокальций, ферросилиций, силикоалюминий и др. Количество вводимых модификаторов не превышает 0,1 — 0,5%, при этом температура жидкого чугуна должна быть не ниже 1400° С.

При модификации состав чугуна почти не изменяется, но зерна графита принимают мелкопластинчатый, слегка завихренный вид, и располагаются изолированно друг от друга. От этого структура чугуна становится однородной, плотной, повышаются его прочность, износо- и коррозиоустойчивость.

По ГОСТ 1412—54 модифицированный чугун обозначается так же, как и серый, но с добавлением буквы М, например: МСЧ2848.

Высокопрочный и сверхпрочный чугуны имеют, графит шаровой формы. Это достигается введением в жидкий чугун при 1400° С чистого магния или его сплавов с медью и ферросилицием, с последующей модификацией силикокальцием или ферросилицием. Сверхпрочный чугун имеет временное сопротивление при растяжении 50—65 кгс/мм 2 (при изгибе 80—120 кгс/мм 2 ) и относительное удлинение 1,5—3%.

Механические и технологические свойства: чугун является своеобразным композитным материалом, механические и эксплуатационные свойства которого зависят от характеристик металлической основы (прочность, пластичность, твердость и др.), а также формы, размеров, количества и распределения графитовых включений. При этом решающее значение в ряде случаев имеет либо графит, либо металлическая основа. Например, модуль упругости чугуна в решающей степени зависит от формы и величины графитовых включений, а твердость в основном определяется свойствами металлической основы. Такие свойства, как временное сопротивление разрыву, ударная вязкость, длительная прочность, зависят как от свойств металлической основы, так и от формы или размеров и количества графитовых включений.

Получение той или иной структуры чугуна в отливках зависит от многих факторов: химического состава чугуна, вида шихтовых материалов, технологии плавки и внепечной обработки металла, скорости кристаллизации и охлаждения расплава в форме, а следовательно, толщины стенки отливки, теплофизических свойств материала формы и др. Структуру металлической основы чугуна можно изменять также термической обработкой отливок, общие закономерности влияния которой аналогичны возникающим при термической обработке углеродистой стали, а особенности связаны с сопутствующими изменениями металлической основы процессами графитизации.

Среди элементов химического состава С и Si определяют формирование структуры чугуна, а при заданной технологии литья приведенный размер стенки отливки Rnp характеризует скорость ее охлаждения — отношение площади сечения стенки к периметру).

Источник

Лекция №3. Железоуглеродистые сплавы

Лекция №3. Железоуглеродистые сплавы

Сплавы железа с углеродом (стали и чугуны) являются наиболее распространенными материалами. Они называются черными металлами и составляют около 95% от производства металлов. Диаграмма состояния железоуглеродистых сплавов дает представление о строении сталей и чугунов.

3.1. Диаграмма состояния железо – углерод

Прежде чем рассматривать превращения в сплавах этой системы, рассмотрим свойства и строение компонентов и фаз системы, а также области их существования.

Цементит (Ц) – химическое соединение Fe 3 C- карбид железа, образующийся при содержании углерода 6,67%. Температура плавления 1600°С. Имеет белый, блестящий цвет, хрупкий, твердый. Может быть первичный, вторичный, третичный. Область цементита DFKL.

Имеется еще жидкая фаза, располагающаяся выше линии ликвидус. Железо хорошо растворяет углерод, образуя однородную жидкую фазу – Ж.

Железо, взаимодействуя с углеродом, образует ряд химических соединений: Fe 3 C, Fe 2 C, FeC и др. Поскольку химическое соединение в диаграммах состояния может быть рассмотрено как компонент, то диаграмму железо-углерод обычно изображают только до содержания углерода 6,67%, при котором образуется карбид железа Fe 3 C (устойчивое химическое соединение). Поскольку практическое значение имеет только эта часть диаграммы железо-углерод, то этот участок диаграммы называют диаграммой состояния железо – цементит.

какие железоуглеродистые сплавы называют ферритными чугунами. Смотреть фото какие железоуглеродистые сплавы называют ферритными чугунами. Смотреть картинку какие железоуглеродистые сплавы называют ферритными чугунами. Картинка про какие железоуглеродистые сплавы называют ферритными чугунами. Фото какие железоуглеродистые сплавы называют ферритными чугунами

Рис. 3.1. Диаграмма состояния железо – углерод (железо – цементит)

Температуры, при которых происходят фазовые и структурные превращения в сплавах системы Fe – Fe 3 C, т. е. критические точки, имеют условное обозначение. Все критические точки обозначаются буквой А. При нагреве к А добавляют букву «с», то есть Ас, а при охлаждении – «r», то есть Ar.

Все сплавы системы Fe-Fe 3 C по структурному признаку делят на две большие группы: стали и чугуны.

Углеродистыми сталями называют сплавы железа с углеродом до концентрации 2,14%С. Это теоретическое определение. На практике в сталях, как правило, не содержится углерода более 1,5%. Их подразделяют на: доэвтектоидные стали – (содержащие от 0,025% до 0,8%С, Ф + П), эвтектоидную – (0,8%С, П), заэвтектоидные – (0,8%. 2,14%С, П + Ц II ), рис. 3.2.

какие железоуглеродистые сплавы называют ферритными чугунами. Смотреть фото какие железоуглеродистые сплавы называют ферритными чугунами. Смотреть картинку какие железоуглеродистые сплавы называют ферритными чугунами. Картинка про какие железоуглеродистые сплавы называют ферритными чугунами. Фото какие железоуглеродистые сплавы называют ферритными чугунами

Рис. 3.2. Микроструктуры углеродистых сталей:

а – доэвтектоидная; б – эвтектоидная; в – заэвтектоидная

В доэвтектоидной стали феррит выявляется в микроструктуре в виде светлых полей, а перлит – в виде полей полосчатого (темного) строения (рис.3.2а), где общий светлый фон – феррит, а темные места – тени от выступающих цементитных пластин.

Количество перлита в структуре стали возрастает пропорционально увеличению содержания углерода, это происходит до содержания углерода 0,8%, когда он становится единственной структурной составляющей эвтектоидной стали (рис. 3.2б).

Микроструктура заэвтектоидной стали состоит из перлита и цементита вторичного, который при медленном охлаждении выделяется в виде сетки по границам зерен перлита (рис. 3.2в).

какие железоуглеродистые сплавы называют ферритными чугунами. Смотреть фото какие железоуглеродистые сплавы называют ферритными чугунами. Смотреть картинку какие железоуглеродистые сплавы называют ферритными чугунами. Картинка про какие железоуглеродистые сплавы называют ферритными чугунами. Фото какие железоуглеродистые сплавы называют ферритными чугунами

Рис. 3.3. Микроструктуры чугунов:

а– доэвтектический; б – эвтектический; в – заэвтектический

Кроме этого выделяют технически чистое железо (до 0,025%С, Ф + Ц III ).

При охлаждении железоуглеродистых сплавов углерод может не только химически взаимодействовать с железом, но и выделяться в форме графита. Иначе говоря, жидкий раствор, феррит и аустенит могут находиться в равновесии не только с цементитом, но и графитом, и тогда диаграмма состояния будет железо – графит.

3.2. Углерод и постоянные примеси в стали, их влияние на ее свойства

Фазовый состав любой стали в равновесном состоянии – феррит + цементит. Количество цементита возрастает пропорционально росту содержания углерода, и поскольку цементит – твердая, хрупкая фаза, то повышаются прочностные свойства стали (до 0,9%С), твердость, снижаются пластичность и ударная вязкость. С повышением содержания углерода ухудшаются технологические свойства – падают свариваемость, обрабатываемость резанием, деформируемость в горячем и холодном состоянии. На каждые 0,1% С повышается на 20°С порог хладноломкости. Кроме железа и углерода в стали всегда присутствует постоянные примеси.

К постоянным примесям относятся марганец – Mn, кремний – Si, сера – S, фосфор – P.

Кремний и марганец являются технологическими примесями и находятся в углеродистых сталях в количестве 0,35…0,40% и 0,5…0,8% соответственно. Раскисляя сталь, Si и Mn улучшают её свойства и являются полезными примесями. Растворяясь в феррите, Si и Mn упрочняют его, повышают предел упругости, причем Mn связывает серу и парализует ее вредное влияние.

Сера резко ухудшает свойства стали, выше допустимого предела (0,06%) способна образовывать с железом легкоплавкую эвтектику FeS + Fe и вызывать красноломкость.

Фосфор допускается до 0,045%, растворяясь в феррите, упрочняет его и охрупчивает при низких температурах – резко повышает порог хладноломкости. Сера и фосфор являются вредными примесями.

Кроме постоянных примесей в сплавах железо-углерод имеются скрытые и случайные примеси.

Случайными называют примеси цветных металлов (Cu, Pb, Sn, Sb и др.), внесенные в сталь вместе с шихтовыми материалами.

3.3. Классификация и маркировка сталей

По химическому составу стали могут быть углеродистыми и легированными. Углеродистые содержат железо, углерод и примеси, а легированные содержат дополнительно легирующие элементы, введенные в сталь с целью изменения ее свойств.

По содержанию углерода углеродистые и легированные стали делят на низкоуглеродистые (до 0,25%С), среднеуглеродистые (0,25…0,7%С) и высокоуглеродистые (более 0,7%С).

По назначению различают стали конструкционные, идущие на изготовление конструкций, сооружений, деталей машин и инструментальные, идущие на изготовление различного инструмента.

Инструментальные углеродистые стали могут быть качественные и высококачественные (Р, S ≤0,035%).

По раскислению – в зависимости от степени раскисления при выплавке стали могут быть спокойными (сп), полуспокойными (пс) и кипящими (кп), что и указывают в марке.

По выплавке – конверторные, мартеновские, электростали.

Углеродистые стали. Углеродистые конструкционные стали обыкновенного качества а зависимости от назначения и гарантируемых свойств делятся на три группы А, Б и В.

Стали группы А имеют гарантируемые механические свойства. Они используются в состоянии поставки без горячей обработки. Они маркируются буквами Ст. и цифрами, обозначающими порядковый номер марки. Выпускается семь марок сталей этой группы: Ст.0, Ст.1, Ст.2…Ст.6. В зависимости от раскисления ставятся буквы «сп», «пс», «кп». Например, Ст.1сп, Ст.3кп, Ст.5пс. С увеличением номера стали увеличивается содержание углерода (от 0,1 до 0,5% С, исключение – Ст.0 ≈ 0,23% С).

Стали группы Б имеют гарантируемый химический состав. Эти стали подвергаются горячей обработке (ковке, сварке, термообработке, упрочнению ТМО и т. д.). При этом механические свойства не сохраняются, а химический состав важен для определения режима обработки. Они маркируются: БСт. 1… БСт.6.

Стали группы В имеют гарантируемые механические свойства и химический состав и используются, как и сталь группы Б. В марках этой стали на первое место ставится буква В: ВСт.1…ВСт.5. Углеродистая сталь обыкновенного качества – дешевая, ее выплавка составляет около 80 % всего производства углеродистых сталей.

Из сталей Ст.1, Ст.2, Ст. 3 группы А изготавливают крепеж, балки и т.д., из Ст.1,Ст.2,Ст.3 групп Б, В – цементуемые изделия, малонагруженные валы, детали машин, Ст.4 – используют в судостроении, Ст.5, Ст.6 – идут на изготовление средненагруженных деталей (валы, пружины, рессоры, крепеж)

Углеродистые качественные конструкционные стали маркируются двузначными цифрами, указывающими среднее содержание углерода в сотых долях процента и буквами, показывающими степень раскисления стали: сталь 08, сталь 10кп, сталь 20 и т. д. При содержании в стали 0,7- 1% Mn в марке стали добавляется буква Г: 15Г, 30Г, 65Г и т.д. Качественные стали поставляют по химическому составу и по механическим свойствам.

Низкоуглеродистые конструкционные стали это малопрочные, высокопластичные стали, используемые для изготовления малонагруженных и цементуемых деталей, работающих на износ: шестерни, валы, втулки, прокладки и т.д.

Среднеуглеродистые стали более прочные и менее пластичные. Из них изготавливают: шпиндели, штоки, шатуны.

Высокоуглеродистые стали прочные с упругими свойствами, износостойкие. Из них изготавливают наиболее ответственные детали – пружины, рессоры и т.д.

Углеродистые инструментальные качественные стали маркируются буквой «У» и цифрой, обозначающей содержание углерода в десятых долях процента: У7, У8 …У13. В высококачественных сталях в конце марки ставится буква А – У7А.

Легированные стали. Легированной называют сталь, содержащую специально введенные в нее легирующие элементы с целью изменения строения и свойств. Легирующие элементы могут образовывать с железом твердые растворы – легированный феррит и легированный аустенит, и химическое соединение – легированный цементит или специальные карбиды.

Легированные стали классифицируются:

по равновесной структуре: доэвтектоидные стали (с избыточным ферритом), эвтектоидные (перлитная структура) и заэвтектоидные (с избыточным карбидом) – эти стали составляют перлитный класс, ледебуритные, аустенитные, ферритные;

по составу: никелевые, хромистые, хромоникелевые и т.д.;

по назначению: конструкционные, инструментальные, с особыми свойствами;

по количеству легирующих элементов: низколегированные стали до 5%, среднелегированные – 5…10%, высоколегированные – более 10% легирующих элементов;

по качеству: качественные, высококачественные, особовысококачественные;

Маркируются легированные стали с помощью букв и цифр, указывающих примерный химический состав стали.

Для некоторых групп сталей применяют другую маркировку.

3.4. Классификация и маркировка чугунов

Чугуном называют железоуглеродистые сплавы, содержащие более 2,14%С. В практике машиностроения в большинстве случаев используют чугун с содержанием 2,5…4,0% С.

Чугуны классифицируются по назначению, степени графитизации или структуре, форме графита, микроструктуре металлической основы, химическому составу.

По назначению группы подразделяются на передельные (идут на переработку в сталь) и литейные (для изготовления отливок).

По структуре чугуны подразделяются на белый, серый и половинчатый, в зависимости от формы выделения С.

Белым называют чугун, в котором при нормальных условиях весь углерод находится в связанном состоянии, главным образом в форме цементита. На изломе у этого чугуна белый цвет и характерный металлический блеск. Наличие большого количества высокотвердого цементита обусловливает высокую хрупкость и плохую обработку резанием. Белый чугун в основном перерабатывают в сталь или при помощи термообработки трансформируют в ковкий чугун, иногда применяют как очень износостойкий материал.

Серым называют чугун, в котором весь углерод или большая его часть находятся в виде графита, а в связанном состоянии (в форме цементита) углерода содержатся не более 0,8%. На изломе он имеет серый цвет.

В половинчатом чугуне часть углерода находится в виде графита, но при этом не менее 2%С присутствует в форме цементита.

По форме графита чугун подразделяется на серый – с пластинчатым графитом различной степени завихренности и толщины пластинок; ковкий – с хлопьевидными включениями графита; высокопрочный – с шаровидными включениями графита.

По химическому составу чугуны подразделяются на нелегированные, низко-, средне- и высоколегированные, содержащие соответственно 3…3,5%, 7…10% и более 10% легирующих элементов.

В промышленном чугуне кроме углерода обязательно содержатся кремний, марганец, сера и фосфор.

Кремний способствует графитизации чугуна и специально добавляется, его содержание в чугунах от 0,5% до 4,5%.

Марганец препятствует графитизации и способствует получению в структуре Fe 3 С, содержание Мn в чугунах от 0,4 до 1,3%.

Сера является нежелательным элементом, она снижает жидкотекучесть, отбеливает чугун. Содержание S допускается не более 0,08…0,12%.

Фосфор – полезная примесь, улучшает жидкотекучесть, увеличивает твердость и износостойкость чугуна. Содержание P – 0,3…0,8%.

На структуру чугуна кроме углерода и кремния существенно влияет скорость охлаждения отливок. При быстром охлаждении получается белый чугун, при медленном – серый. Наибольшее применение находит серый чугун.

Серый чугун содержит до 3,8%С, при этом в форме цементита находится не более 0,8%С, а остальной углерод находится в виде графитовых пластинок – чешуек.

Металлической основой серого чугуна может быть Φ, Φ+Π, Π, при этом структура не влияет на пластичность серого чугуна (все равно низкая), но оказывает влияние на его твердость и прочность.

Графит имеет низкую механическую прочность, и места его залегания можно рассматривать как внутренние надрезы, трещины, нарушения сплошности. Чем больше графита и чем крупнее включения, тем ниже механические характеристики. Для измельчения включений графита проводят модифицирование жидкого чугуна путем добавления в него силикокальция, алюминия и ферросилиция.

Серый чугун широко применяют в машиностроении. Это дешевый металл с хорошими литейными свойствами. Он легко обрабатывается режущим инструментом, обладает хорошими антифрикционными и демферирующими свойствами.

какие железоуглеродистые сплавы называют ферритными чугунами. Смотреть фото какие железоуглеродистые сплавы называют ферритными чугунами. Смотреть картинку какие железоуглеродистые сплавы называют ферритными чугунами. Картинка про какие железоуглеродистые сплавы называют ферритными чугунами. Фото какие железоуглеродистые сплавы называют ферритными чугунамикакие железоуглеродистые сплавы называют ферритными чугунами. Смотреть фото какие железоуглеродистые сплавы называют ферритными чугунами. Смотреть картинку какие железоуглеродистые сплавы называют ферритными чугунами. Картинка про какие железоуглеродистые сплавы называют ферритными чугунами. Фото какие железоуглеродистые сплавы называют ферритными чугунами

Рис. 3.4. Влияние металлической основы и формы включений

графита на свойства чугуна

Серые чугуны маркируются буквами СЧ (серый чугун) и цифрами, показывающими предел прочности при растяжении (временное сопротивление при растяжении σ в ). Например: СЧ12, СЧ18, СЧ21, СЧ36, СЧ40 и т.д.

Чугуны СЧ12 – СЧ18 используют для изготовления неответственных деталей: крышек, корпусов подшипников, фундаментных плит и т.п.

Чугун, начиная с СЧ21, используют для изготовления станин мощных станков, ответственных деталей, зубчатых колес и т.п.

При быстром охлаждении отливок графитизация может произойти только в середине отливки, а поверхность приобретает структуру белого или половинчатого чугуна. Такие отливки из серого чугуна называют отбеленными, они обладают хорошим сопротивлением износу, из них изготавливают валки и шары для мельниц, тормозные колодки и т.д.

Высокопрочный чугун содержит около 3,0…3,6%С. Его получают добавлением в жидкий чугун магния (0,03…0,07%) или других щелочных или щелочноземельных металлов. При этом выделяющийся графит приобретает шаровидную форму, такой графит меньше ослабляет металлическую основу, и механические свойства чугуна улучшаются – повышается его пластичность и увеличивается твердость. Металлическая основа высокопрочного чугуна также может быть различной: Ф, Ф+П, П.

Высокопрочные чугуны маркируются буквами ВЧ и цифрами, показывающими предел прочности при растяжении в кгс/мм 2 и относительное удлинение в %, например: ВЧ38-47, ВЧ40-10, ВЧ50-2,5, ВЧ60-2 и т.д.

Из высокопрочных чугунов изготавливают оборудование прокатных станов, кузнечно-прессовое оборудование, корпуса двигателей внутреннего сгорания, крупные валы и другие ответственные детали.

Ковкий чугун содержит: 2,2…3,0%С, 0,7…1,5%Si, 0,2…0,6%Mn, менее 0,2%Р и менее 0,1%S. Термин «ковкий чугун» является условным и отражает повышенную пластичность этого чугуна при растяжении по сравнению с другими видами.

Ковкий чугун получают путем отжига отливок из белого чугуна, в результате чего цементит распадается и графит выделяется в виде хлопьев.

При отжиге изделия из белого чугуна нагревают выше температуры А 1 (950…1000°С), выдерживают около 15 часов, медленно охлаждают в течение 30 часов в зоне А 1 (температуры эвтектоидного превращения) с 760°С до 720°С и затем охлаждают до комнатной температуры.

какие железоуглеродистые сплавы называют ферритными чугунами. Смотреть фото какие железоуглеродистые сплавы называют ферритными чугунами. Смотреть картинку какие железоуглеродистые сплавы называют ферритными чугунами. Картинка про какие железоуглеродистые сплавы называют ферритными чугунами. Фото какие железоуглеродистые сплавы называют ферритными чугунами

Рис. 5.4. Схемы отжига белого чугуна на ферритный (1) и перлитный (2) ковкие чугуны

При t = 950°С происходит распад цементита Fe 3 С →3Fe + Г, а затем при t = 760…720°С – распад аустенита А→ Ф + Г.

В результате всех превращений структура ковкого чугуна будет состоять из зерен Ф и равномерно распределенных хлопьев Г. Поскольку в таком чугуне находится довольно много графита, излом получается темным и его называют черносердечным (Ф + Г) – ковкий ферритный чугун.

Ковкий чугун маркируют буквами КЧ и цифрами предела прочности и относительного удлинения, например: КЧ30-6, КЧ50-4, КЧ60-3 и т.д.

Из ковких ферритных чугунов изготавливают как изделия, работающие при высоких статических и динамических нагрузках (картеры редукторов, ступицы, кроки), так и менее ответственные детали (хомуты, гайки, фланцы муфт).

Из ковкого перлитного чугуна делают вилки карданных валов, звенья и рамки конвейеров, втулки, тормозные колодки.

Ковкий чугун применяют для деталей небольшого сечения, работающих при ударных и вибрационных нагрузках.

Легированные и специальные чугуны получают введением присадок легирующих элементов. В качестве присадок применяют Cr, Ti, V и др. Специальные чугуны отличаются содержанием кремния и марганца.

Маркируются чугуны по-разному, например, антифрикционные: АЧС-1, АЧК-1, АЧВ-1 или АЧС-2, АЧК-2 и т.д., кремнистые (14-18% Si): С-15, С-17, жаростойкие: ЖЧХ-20 (20% Cr), ЖЧХ-22 и т.д.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *