какие значения могут принимать логические величины

Логический тип данных в языке Паскаль и их значения: определение, примеры

Содержание:

Информатика изучает различные языки программирования. Паскаль является одним из таких языков. Он используется для передачи и обработки информации компьютером. Основные символы – величины, операнды, совокупные выражения. Каждая величина представляет определенную разновидность формы. Высказывание имеет три вида форм:

Иерархия знаков и логическая переменная в Паскале

Каждый переменный знак или выражение составляет часть иерархии, выстроенной в программном языке. Группа порядковых включает следующие структуры:

Группа структурированных конструктивов состоит из файлов, записей, множеств, строк, массивов. К отдельному классу относят категорию указателей.

Логический тип в Паскале имеет большое значение в решении разнообразных задач. Чаще применяется для флагов. Есть и другие сферы использования.

Какие значения могут принимать переменные логического типа

В большинстве версий Pascal используются две переменные логического типа: ПРАВДА, ЛОЖЬ. Они указываются на английском языке как True, False. Относятся к типу данных Boolean. В некоторых версиях применяется логический тип данных, представленный в таблице.

Стандартный вид является самым распространенным. Для некоторых ситуаций другие варианты более адаптированы.

Логический тип данных – виды операций, примеры решения задач

Каждое обозначение логическое и в Паскале, и в других языках программирования. Простейшая структура:

Рассмотрим выполнение заданий на примерах.

f=3>5, f1=3 5, 5 > 3 верное. Четверку нельзя приравнять к 5, 5 больше тройки.

f=4>2AND5=5AND3<>4,
f1=6 5AND(4=4)

Из данного примера следует, что F=TRUE, все ограничения соответствуют действительности. F1=FALSE, так как второе условие неправдивое.

Источник

Логические величины, операции и выражения

Урок 21. Информатика 10 класс (ФГОС)

какие значения могут принимать логические величины. Смотреть фото какие значения могут принимать логические величины. Смотреть картинку какие значения могут принимать логические величины. Картинка про какие значения могут принимать логические величины. Фото какие значения могут принимать логические величины

какие значения могут принимать логические величины. Смотреть фото какие значения могут принимать логические величины. Смотреть картинку какие значения могут принимать логические величины. Картинка про какие значения могут принимать логические величины. Фото какие значения могут принимать логические величины

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

какие значения могут принимать логические величины. Смотреть фото какие значения могут принимать логические величины. Смотреть картинку какие значения могут принимать логические величины. Картинка про какие значения могут принимать логические величины. Фото какие значения могут принимать логические величины

какие значения могут принимать логические величины. Смотреть фото какие значения могут принимать логические величины. Смотреть картинку какие значения могут принимать логические величины. Картинка про какие значения могут принимать логические величины. Фото какие значения могут принимать логические величины

какие значения могут принимать логические величины. Смотреть фото какие значения могут принимать логические величины. Смотреть картинку какие значения могут принимать логические величины. Картинка про какие значения могут принимать логические величины. Фото какие значения могут принимать логические величины

Конспект урока «Логические величины, операции и выражения»

На этом уроке мы с вами вспомним, что такое логические величины, проанализируем такие логические операции, как конъюнкция, дизъюнкция и инверсия. Также поработаем с логическими выражениями.

В курсе информатики вы уже проходили логические величины, выражения и операции. Давайте вспомним, что такое высказывание. Высказывание – это повествовательное предложение на любом языке, в котором что-либо утверждается или отрицается. То есть любое высказывание можно определить, как истинное или ложное.

Рассмотрим следующие предложения:

· Клавиатура предназначена для ввода текстовой информации и команд управления компьютером.

· При приёме информации происходит процесс переноса информации от источника к приёмнику.

Эти предложения будут относится к высказываниям, так как можно точно сказать истины они или ложны. Первое высказывание является истинным, а второе – ложным.

А вот следующие предложения:

· Не поднимай телефон!

Не являются высказываниями, так как в определении сказано, что высказывание – это повествовательно предложение.

Для построения высказываний могут использоваться знаки различных формальных языков: математики, физики, химии и других.

Числовые выражения не являются высказываниями. Но, в то же время, если из двух выражений составить одно и соединить их знаком равенства или неравенства, то новое выражение будет высказыванием.

какие значения могут принимать логические величины. Смотреть фото какие значения могут принимать логические величины. Смотреть картинку какие значения могут принимать логические величины. Картинка про какие значения могут принимать логические величины. Фото какие значения могут принимать логические величины

Логические высказывания бывают простыми и составными.

Простое высказывание – это высказывание, в котором никакая его часть сама не является высказыванием.

Сложное или же составное высказывание – это высказывание, которое строится из простых с помощью логических операций.

Логические величины – это понятия, выражаемые словами Истина (True), Ложь (False). Истинность высказывания выражается через логические величины.

Логическая переменная – это символически обозначенная логическая величина. То есть логическая величина может обозначаться, например, буквой латинского алфавита. Сама же буква будет являться переменной логической величины. В свою очередь, она может принимать только значение Истина или Ложь.

Логическое выражение – это простое или сложное высказывание. Сложное высказывание, как мы уже знаем, строиться из простых при помощи логических операций (связок).

К логическим операциям относятся конъюнкция, дизъюнкция и инверсия (отрицание). Давайте рассмотрим каждую логическую операцию.

Итак, первая логическая операция – конъюнкция – логическое умножение.

Конъюнкция – это логическая операция, которая объединяет два высказывания в одно новое, которое будет являться ложным тогда, когда хотя бы одно из исходных высказываний ложно. Конъюнкция – это двухместная операция, то есть в ней должны присутствовать две логические переменные.

какие значения могут принимать логические величины. Смотреть фото какие значения могут принимать логические величины. Смотреть картинку какие значения могут принимать логические величины. Картинка про какие значения могут принимать логические величины. Фото какие значения могут принимать логические величины

В естественном языке конъюнкция соответствует союзу «И». В алгебре конъюнкция может обозначаться с помощью нескольких знаков: знака амперсанда «&», знака конъюнкции «/\», а также знака умножения «·». В языках программирования для обозначения конъюнкции используется английский союз «AND», знак амперсанда «&» или же двойной знак амперсанда «&&».

Следующая операция – дизъюнкция. Ещё её называют логическим сложением.

Дизъюнкция – это логическая операция, которая объединяет два высказывания в одно новое, которое будет истинным тогда, когда хотя бы одно исходное высказывание истинно. Дизъюнкция также является двухместной операцией, то есть в ней должны присутствовать две логические переменные.

какие значения могут принимать логические величины. Смотреть фото какие значения могут принимать логические величины. Смотреть картинку какие значения могут принимать логические величины. Картинка про какие значения могут принимать логические величины. Фото какие значения могут принимать логические величины

В различных сферах применения, дизъюнкция обозначается по-разному. В естественном языке это союз «ИЛИ». В алгебре высказываний используется следующий знак: «V». Или знак «+». В программировании в основном используется английское «OR». Но в некоторых языках программирования дизъюнкция обозначается следующими знаками: «|», «||».

И последняя логическая операция – инверсия – отрицание.

Отрицание – это логическая операция, которая преобразует исходное высказывание в новое, значение которого противоположно исходному. А вот отрицание является унарной (одноместной) операцией.

какие значения могут принимать логические величины. Смотреть фото какие значения могут принимать логические величины. Смотреть картинку какие значения могут принимать логические величины. Картинка про какие значения могут принимать логические величины. Фото какие значения могут принимать логические величины

Давайте посмотрим, как обозначается инверсия в различных сферах её применения. В естественном языке инверсии соответствуют речевой оборот «неверно, что» и частица «не». В алгебре высказывания инверсия обозначается следующими знаками: «¬», «ˉ». А вот в сфере программирования используется английское слово «NOT».

Давайте составим таблицу истинности для всех логических операций. В ней И – это истина, Л – Ложь.

В первых двух столбцах предоставлены всевозможные исходные данные А и B.

какие значения могут принимать логические величины. Смотреть фото какие значения могут принимать логические величины. Смотреть картинку какие значения могут принимать логические величины. Картинка про какие значения могут принимать логические величины. Фото какие значения могут принимать логические величины

В третьем столбце будет идти ¬А.

Как мы с вами знаем из определения операция отрицания преобразует исходное выражение в новое, значение которого противоположно исходному. То есть, если А было истинно, при отрицании оно станет ложным. И наоборот, если выражение было ложным, то оно станет истинным. Заполним третий столбец таблицы исходя из данных первого.

какие значения могут принимать логические величины. Смотреть фото какие значения могут принимать логические величины. Смотреть картинку какие значения могут принимать логические величины. Картинка про какие значения могут принимать логические величины. Фото какие значения могут принимать логические величины

Далее идёт конъюнкция. Здесь мы будем смотреть на значения, которые принимают выражения А и B. Мы с вами знаем, что при конъюнкции новое высказывание будет являться ложным тогда, когда хотя бы одно из исходных высказываний ложно. То есть, исходя из данных нашей таблицы, в первой строке оба высказывания истины, значит и новое будет истинно. А вот все остальные будут ложными, так как во второй строке ложно высказывание B, в третьей – А, а в четвёртой – оба.

какие значения могут принимать логические величины. Смотреть фото какие значения могут принимать логические величины. Смотреть картинку какие значения могут принимать логические величины. Картинка про какие значения могут принимать логические величины. Фото какие значения могут принимать логические величины

И последний, пятый столбец – дизъюнкция. Снова будем брать значения выражений А и B. Новое высказывание будет истинным тогда, когда хотя бы одно исходное высказывание истинно. Значит в первых трёх строках 5 столбца новые выражения будут истинны, так как в первой строке истинны оба высказывания А и B, во второй – А, в третьей – B. А вот в четвёртой строке мы можем видеть, что значения А и B оба ложны, значит и новое выражение будет ложно.

какие значения могут принимать логические величины. Смотреть фото какие значения могут принимать логические величины. Смотреть картинку какие значения могут принимать логические величины. Картинка про какие значения могут принимать логические величины. Фото какие значения могут принимать логические величины

Логическая формула – это формула, которая содержит только логические величины и знаки логических операций. Результатом вычисления такой формулы будет являться истина или ложь.

При выполнении операций в формуле нужно придерживаться следующего порядка:

Но также стоит помнить, что операции в скобках выполняются в первую очередь. Если же у нас идут несколько равнозначных операций подряд, то выполнение их будет происходить слева направо.

Давайте разберёмся на примере. Вычислить значение логической формулы, если логические переменные имеют следующие значения: А – Истина, B – истина, C – Ложь.

Перейдём к решению. Для начала проставим над каждой операцией номер порядка, в котором она будет исполняться.

В первую очередь будут выполняться операции в скобках. А первой будет ¬C.

Затем дизъюнкция: B V ¬C.

После этого будем выполнять конъюнкцию: A & (B V ¬C).

А затем оставшуюся дизъюнкцию: A & (B V ¬C) V B.

Давайте запишем наши вычисления пошагово:

Первое действие – отрицание. Переменная С имеет значение Ложь. Смотрим на таблицу истинности и видим, что при отрицании мы получим значение Истина.

какие значения могут принимать логические величины. Смотреть фото какие значения могут принимать логические величины. Смотреть картинку какие значения могут принимать логические величины. Картинка про какие значения могут принимать логические величины. Фото какие значения могут принимать логические величины

Вторым действием выполняется дизъюнкция. B = Истине, ¬C = Истине. При дизъюнкции двух истин мы получим истину.

какие значения могут принимать логические величины. Смотреть фото какие значения могут принимать логические величины. Смотреть картинку какие значения могут принимать логические величины. Картинка про какие значения могут принимать логические величины. Фото какие значения могут принимать логические величины

Третье действие. Конъюнкция. А = Истине, B V ¬C = Истине. При конъюнкции двух истин мы получим истину.

какие значения могут принимать логические величины. Смотреть фото какие значения могут принимать логические величины. Смотреть картинку какие значения могут принимать логические величины. Картинка про какие значения могут принимать логические величины. Фото какие значения могут принимать логические величины

И четвёртое действие – дизъюнкция. При дизъюнкции двух истин снова получим истину.

какие значения могут принимать логические величины. Смотреть фото какие значения могут принимать логические величины. Смотреть картинку какие значения могут принимать логические величины. Картинка про какие значения могут принимать логические величины. Фото какие значения могут принимать логические величины

Таким образом значение логической формулы равно истине.

A & (B V ¬C) V B = ИСТИНА

А сейчас рассмотрим логические функции на области числовых значений. Изучением числовых значение занимается алгебра чисел, а логических функций – алгебра логики. Две этих науки могут пересекаться в том случае, если необходимо проверить принадлежность значений алгебраических выражений некоторому множеству. Если нам нужно, например, проверить принадлежность значения числовой переменной А к множеству отрицательных чисел, то это можно выразить через высказывание: «А меньше нуля». В алгебре это можно записать следующим образом: A

Если в отношение входят переменные числовые величины, то и значение отношения будет логической переменной.

Идём дальше. Отношение также можно рассматривать как логическую функцию от числовых аргументов. Например, F (x) = x –2;

Источник

Логические выражения

Теория к заданию 23 из ЕГЭ по информатике

Алгебра логики

Алгебра логики

Алгебра логики (англ. algebra of logic) — один из основных разделов математической логики, в котором методы алгебры используются в логических преобразованиях.

Основоположником алгебры логики является английский математик и логик Дж. Буль (1815–1864), положивший в основу своего логического учения аналогию между алгеброй и логикой. Любое высказывание он записывал с помощью символов разработанного им языка и получал «уравнения», истинность или ложность которых можно было доказать, исходя из определенных логических законов, таких как законы коммутативности, дистрибутивности, ассоциативности и др.

Современная алгебра логики является разделом математической логики и изучает логические операции над высказываниями с точки зрения их истинностного значения (истина, ложь). Высказывания могут быть истинными, ложными или содержать истину и ложь в разных соотношениях.

Логическое высказывание — это любое повествовательное предложение, в отношении которого можно однозначно утверждать, что его содержание истинно или ложно.

Например, «3 умножить на 3 равно 9», «Архангельск севернее Вологды» — истинные высказывания, а «Пять меньше трех», «Марс — звезда» — ложные.

Очевидно, что не всякое предложение может быть логическим высказыванием, т. к. не всегда есть смысл говорить о его ложности или истинности. Например, высказывание «Информатика — интересный предмет» неопределенно и требует дополнительных сведений, а высказывание «Для ученика 10-А класса Иванова А. А. информатика — интересный предмет» в зависимости от интересов Иванова А. А. может принимать значение «истина» или «ложь».

Кроме двузначной алгебры высказываний, в которой принимаются только два значения — «истинно» и «ложно», существует многозначная алгебра высказываний. В такой алгебре, кроме значений «истинно» и «ложно», употребляются такие истинностные значения, как «вероятно», «возможно», «невозможно» и т. д.

В алгебре логики различаются простые (элементарные) высказывания, обозначаемые латинскими буквами (A, B, C, D, …), и сложные (составные), составленные из нескольких простых с помощью логических связок, например таких, как «не», «и», «или», «тогда и только тогда», «если … то». Истинность или ложность получаемых таким образом сложных высказываний определяется значением простых высказываний.

Обозначим как А высказывание «Алгебра логики успешно применяется в теории электрических схем», а через В — «Алгебра логики применяется при синтезе релейно-контактных схем».

Тогда составное высказывание «Алгебра логики успешно применяется в теории электрических цепей и при синтезе релейно-контактных схем» можно кратко записать как А и В; здесь «и» — логическая связка. Очевидно, что поскольку элементарные высказывания А и В истинны, то истинно и составное высказывание А и В.

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение.

Логических значений всего два: истина (TRUE) и ложь (FALSE). Это соответствует цифровому представлению — 1 и 0. Результаты каждой логической операции можно записать в виде таблицы. Такие таблицы называют таблицами истинности.

Основные операции алгебры логики

1. Логическое отрицание, инверсия (лат. inversion — переворачивание) — логическая операция, в результате которой из данного высказывания (например, А) получается новое высказывание (не А), которое называется отрицанием исходного высказывания, обозначается символически чертой сверху ($A↖<->$) или такими условными обозначениями, как ¬, ‘not’, и читается: «не А», «А ложно», «неверно, что А», «отрицание А». Например, «Марс — планета Солнечной системы» (высказывание А); «Марс — не планета Солнечной системы» ($A↖<->$); высказывание «10 — простое число» (высказывание В) ложно; высказывание «10 — не простое число» (высказывание B ) истинно.

Операция, используемая относительно одной величины, называется унарной. Таблица значений данной операции имеет вид

A¬A
истиналожь
ложьистина

какие значения могут принимать логические величины. Смотреть фото какие значения могут принимать логические величины. Смотреть картинку какие значения могут принимать логические величины. Картинка про какие значения могут принимать логические величины. Фото какие значения могут принимать логические величины

2. Конъюнкция (лат. conjunctio — соединение) — логическое умножение, операция, требующая как минимум двух логических величин (операндов) и соединяющая два или более высказываний при помощи связки «и» (например, «А и В»), которая символически обозначается с помощью знака ∧ (А ∧ В) и читается: «А и В». Для обозначения конъюнкции применяются также следующие знаки: А ∙ В; А & В, А and В, а иногда между высказываниями не ставится никакого знака: АВ. Пример логического умножения: «Этот треугольник равнобедренный и прямоугольный». Данное высказывание может быть истинным только в том случае, если выполняются оба условия, в противном случае высказывание ложно.

Таблица истинности операции имеет вид

ABA ∧ B
истиналожьложь
ложьистиналожь
ложьложьложь
истинаистинаистина
ABA ∧ B
100
010
000
111

Высказывание АВ истинно только тогда, когда оба высказывания — А и В истинны.

Геометрически конъюнкцию можно представить следующим образом: если А, В — это некоторые множества точек, то АВ есть пересечение множеств А и В.

какие значения могут принимать логические величины. Смотреть фото какие значения могут принимать логические величины. Смотреть картинку какие значения могут принимать логические величины. Картинка про какие значения могут принимать логические величины. Фото какие значения могут принимать логические величины

3. Дизъюнкция (лат. disjunction — разделение) — логическое сложение, операция, соединяющая два или более высказываний при помощи связки «или» (например, «А или В»), которая символически обозначается с помощью знака ∨ В) и читается: «А или В». Для обозначения дизъюнкции применяются также следующие знаки: А + В; А or В; А | B. Пример логического сложения: «Число x делится на 3 или на 5». Это высказывание будет истинным, если выполняются оба условия или хотя бы одно из условий.

Таблица истинности операции имеет вид

ABAB
истиналожьистина
ложьистинаистина
ложьложьложь
истинаистинаистина
ABAB
101
011
000
111

Высказывание АВ ложно только тогда, когда оба высказывания — А и В ложны.

Геометрически логическое сложение можно представить следующим образом: если А, В — это некоторые множества точек, то АВ — это объединение множеств А и В, т. е. фигура, объединяющая и квадрат, и круг.

какие значения могут принимать логические величины. Смотреть фото какие значения могут принимать логические величины. Смотреть картинку какие значения могут принимать логические величины. Картинка про какие значения могут принимать логические величины. Фото какие значения могут принимать логические величины

4. Дизъюнкция строго-разделительная, сложение по модулю два — логическая операция, соединяющая два высказывания при помощи связки «или», употребленной в исключающем смысле, которая символически обозначается с помощью знаков ∨ ∨ или ⊕ (А ∨ ∨ В, АВ) и читается: «либо А, либо В». Пример сложения по модулю два — высказывание «Этот треугольник тупоугольный или остроугольный». Высказывание истинно, если выполняется какое-то одно из условий.

Таблица истинности операции имеет вид

АВАB
истиналожьистина
ложьистинаистина
ложьложьложь
истинаистиналожь
АВАB
101
011
000
110

Высказывание А ⊕ В истинно только тогда, когда высказывания А и В имеют различные значения.

5. Импликация (лат. implisito — тесно связываю) — логическая операция, соединяющая два высказывания при помощи связки «если. то» в сложное высказывание, которое символически обозначается с помощью знака → (АВ) и читается: «если А, то В», «А влечет В», «из А следует В», «А имплицирует В». Для обозначения импликации применяется также знак ⊃ (A ⊃ B). Пример импликации: «Если полученный четырехугольник квадрат, то около него можно описать окружность». Эта операция связывает два простых логических выражения, из которых первое является условием, а второе — следствием. Результат операции ложен только тогда, когда предпосылка есть истина, а следствие — ложь. Например, «Если 3 * 3 = 9 (А), то Солнце — планета (В)», результат импликации А → В — ложь.

Таблица истинности операции имеет вид

АВАВ
истиналожьложь
ложьистинаистина
ложьложьистина
истинаистинаистина
АВАВ
100
011
001
111

Для операции импликации справедливо утверждение, что из лжи может следовать все что угодно, а из истины — только истина.

6. Эквивалентность, двойная импликация, равнозначность (лат. aequalis — равный и valentis — имеющий силу) — логическая операция, позволяющая из двух высказываний А и В получить новое высказывание А ≡ В, которое читается: «А эквивалентно B». Для обозначения эквивалентности применяются также следующие знаки: ⇔, ∼. Эта операция может быть выражена связками «тогда и только тогда», «необходимо и достаточно», «равносильно». Примером эквивалентности является высказывание: «Треугольник будет прямоугольным тогда и только тогда, когда один из углов равен 90 градусам».

Таблица истинности операции эквивалентности имеет вид

АВАВ
истиналожьложь
ложьистиналожь
ложьложьистина
истинаистинаистина
АВАВ
100
010
001
111

Операция эквивалентности противоположна сложению по модулю два и имеет результат «истина» тогда и только тогда, когда значения переменных совпадают.

Зная значения простых высказываний, можно на основании таблиц истинности определить значения сложных высказываний. При этом важно знать, что для представления любой функции алгебры логики достаточно трех операций: конъюнкции, дизъюнкции и отрицания.

Сложение по модулю дваА ⊕ В$(A↖ <->∧B) ∧ (A ∧ B↖<->)$
ИмпликацияА → В$A↖ <->∨ B$
ЭквивалентностьА ∼ В$(A↖ <->∧ B↖<->) ∨ (A ∧ B)$

Приоритет выполнения логических операций следующий: отрицание («не») имеет самый высокий приоритет, затем выполняется конъюнкция («и»), после конъюнкции — дизъюнкция («или»).

С помощью логических переменных и логических операций любое логическое высказывание можно формализовать, т. е. заменить логической формулой. При этом элементарные высказывания, образующие составное высказывание, могут быть абсолютно не связаны по смыслу, но это не мешает определять истинность или ложность составного высказывания. Например, высказывание «Если пять больше двух (А), то вторник всегда наступает после понедельника (В)» — импликация АВ, и результат операции в данном случае — «истина». В логических операциях смысл высказываний не учитывается, рассматривается только их истинность или ложность.

Рассмотрим, например, построение составного высказывания из высказываний А и В, которое было бы ложно тогда и только тогда, когда оба высказывания истинны. В таблице истинности для операции сложения по модулю два находим: 1 ⊕ 1 = 0. А высказывание может быть, например, таким: «Этот мяч полностью красный или полностью синий». Следовательно, если утверждение А «Этот мяч полностью красный» — истина, и утверждение В «Этот мяч полностью синий» — истина, то составное утверждение — ложь, т. к. одновременно и красным, и синим мяч быть не может.

Примеры решения задач

Пример 3. Для каких из приведенных слов ложно высказывание ¬(первая буква гласная ∧ третья буква гласная) ⇔ строка из 4 символов? 1) асса; 2) куку; 3) кукуруза; 4) ошибка; 5) силач.

Решение. Рассмотрим последовательно все предложенные слова:

1) для слова асса получим: ¬(1 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;

2) для слова куку получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;

3) для слова кукуруза получим: ¬ (0 ∧ 0) ⇔ 0, 1 ⇔ 0 — высказывание ложно;

4) для слова ошибка получим: ¬ (1 ∧ 1) ⇔ 0, 0 ⇔ 0 — высказывание истинно;

5) для слова силач получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 0 — высказывание ложно.

Логические выражения и их преобразование

Под логическим выражением следует понимать такую запись, которая может принимать логическое значение «истина» или «ложь». При таком определении среди логических выражений необходимо различать:

Логические выражения могут включать в себя функции, алгебраические операции, операции сравнения и логические операции. В этом случае приоритет выполнения действий следующий:

В логическом выражении могут использоваться скобки, которые изменяют порядок выполнения операций.

Пример. Найти значение выражения:

Решение. Порядок подсчета значений:

1) b a + a b > a + b, после подстановки получим: 3 2 + 2 3 > 2 + 3, т. е. 17 > 2 + 3 = истина;

2) A ∧ B = истина ∧ ложь = ложь.

Следовательно, выражение в скобках равно (b a + a b > a + b ∨ A ∧ B) = истина ∨ ложь = истина;

3) 1≤ a = 1 ≤ 2 = истина;

Из логических элементов составляются электронные логические схемы, выполняющие более сложные логические операции. Набор логических элементов, состоящий из элементов НЕ, ИЛИ, И, с помощью которых можно построить логическую структуру любой сложности, называется функционально полным.

Построение таблиц истинности логических выражений

Для логической формулы всегда можно записать таблицу истинности, т. е. представить заданную логическую функцию в табличном виде. В этом случае таблица должна содержать все возможные комбинации аргументов функции (формулы) и соответствующие значения функции (результаты формулы на заданном наборе значений).

Если функция принимает значение 1 при всех наборах значений переменных, она является тождественно-истинной; если при всех наборах входных значений функция принимает значение 0, она является тождественно-ложной; если набор выходных значений содержит как 0, так и 1, функция называется выполнимой. Приведенный выше пример является примером тождественно-истинной функции.

Зная аналитическую форму логической функции, всегда можно перейти к табличной форме логических функций. С помощью заданной таблицы истинности можно решить обратную задачу, а именно: для заданной таблицы построить аналитическую формулу логической функции. Различают две формы построения аналитической зависимости логической функции по таблично заданной функции.

1. Дизъюнктивно нормальная форма (ДНФ) — сумма произведений, образованных из переменных и их отрицаний для ложных значений.

Алгоритм построения ДНФ следующий:

Пример. Построить функцию, определяющую, что первое число равно второму, используя метод ДНФ. Таблица истинности функции имеет вид

X1X2F(X1, X2)
111
010
100
001

Решение. Выбираем наборы значений аргументов, в которых функция равна 1. Это первая и четвертая строки таблицы (строку заголовка при нумерации не учитываем).

2. Конъюнктивно нормальная форма (КНФ) — произведение сумм, образованных из переменных и их отрицаний для истинных значений.

Алгоритм построения КНФ следующий:

Примеры решения задач

Пример 1. Рассмотрим предыдущий пример, т. е. построим функцию, определяющую, что первое число равно второму, используя метод КНФ. Для заданной функции ее таблица истинности имеет вид

X1X2F(X1, X2)
111
010
100
001

Решение. Выбираем наборы значений аргументов, в которых функция равна 0. Это вторая и третья строки (строку заголовка при нумерации не учитываем).

Таким образом, получена запись логической функции в КНФ.

Пример 2. Построить логическую функцию для заданной таблицы истинности:

X1X2F(X1, X2)
111
100
011
000

Решение. Используем алгоритм ДНФ для построения исходной функции:

X1X2F(X1, X2)
111X1 ∧ X2
100
011$↖<->$ ∧ X2
000

Пример 3. Для приведенной таблицы истинности построить логическую функцию, используя метод ДНФ.

Формула достаточно громоздка, и ее следует упростить:

Таблицы истинности для решения логических задач

Составление таблиц истинности — один из способов решения логических задач. При использовании такого способа решения, условия, которые содержит задача, фиксируются с помощью специально составленных таблиц.

Примеры решения задач

Пример 1. Составить таблицу истинности для охранного устройства, которое использует три датчика и срабатывает при замыкании только двух из них.

Решение. Очевидно, что результатом решения будет таблица, в которой искомая функция Y(X1, X2, X3) будет иметь значение «истина», если какие-либо две переменные имеют значение «истина».

X1X2X3Y(X1, X2, X3)
1110
1101
1011
1000
0111
0100
0010
0000

Пример 2. Составить расписание уроков на день, учитывая, что урок информатики может быть только первым или вторым, урок математики — первым или третьим, а физики — вторым или третьим. Возможно ли составить расписание, удовлетворив всем требованиям? Сколько существует вариантов расписания?

Решение. Задача легко решается, если составить соответствующую таблицу:

1-й урок2-й урок3-й урок
Информатика110
Математика101
Физика011

Из таблицы видно, что существуют два варианта искомого расписания:

Пример 3. В спортивный лагерь приехали трое друзей — Петр, Борис и Алексей. Каждый из них увлекается двумя видами спорта. Известно, что таких видов спорта шесть: футбол, хоккей, лыжи, плавание, теннис, бадминтон. Также известно, что:

Какими видами спорта увлекается каждый из мальчиков?

Решение. Составим таблицу и отразим в ней условия задачи, заполнив соответствующие клетки цифрами 0 и 1 в зависимости от того, ложно или истинно соответствующее высказывание.

Так как видов спорта шесть, получается, что все мальчики увлекаются разными видами спорта.

Из условия 4 следует, что Борис не увлекается ни лыжами, ни теннисом, а из условий 3 и 5, что Петр не умеет играть в футбол, хоккей, теннис и бадминтон. Следовательно, любимые виды спорта Петра — лыжи и плавание. Занесем это в таблицу, а оставшиеся клетки столбцов «Лыжи» и «Плавание» заполним нулями.

ФутболХоккейЛыжиПлаваниеБадминтонТеннис
Петр001100
Борис000
Алексей00

Из таблицы видно, что в теннис может играть только Алексей.

Из условий 1 и 2 следует, что Борис не футболист. Таким образом, в футбол играет Алексей. Продолжим заполнять таблицу. Внесем в пустые ячейки строки «Алексей» нули.

ФутболХоккейЛыжиПлаваниеБадминтонТеннис
Петр001100
Борис0000
Алексей100001

Окончательно получаем, что Борис увлекается хоккеем и бадминтоном. Итоговая таблица будет выглядеть следующим образом:

ФутболХоккейЛыжиПлаваниеБадминтонТеннис
Петр001100
Борис010010
Алексей100001

Ответ: Петр увлекается лыжами и плаванием, Борис играет в хоккей и бадминтон, а Алексей занимается футболом и теннисом.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *