ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

ГСомСтрия. Π£Ρ€ΠΎΠΊ 1. ВригономСтрия

Π‘ΠΌΠΎΡ‚Ρ€ΠΈΡ‚Π΅ бСсплатныС Π²ΠΈΠ΄Π΅ΠΎ-ΡƒΡ€ΠΎΠΊΠΈ ΠΏΠΎ Ρ‚Π΅ΠΌΠ΅ β€œΠ’Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡβ€ Π½Π° ΠΊΠ°Π½Π°Π»Π΅ ЁТику ΠŸΠΎΠ½ΡΡ‚Π½ΠΎ.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

Π’ΠΈΠ΄Π΅ΠΎ-ΡƒΡ€ΠΎΠΊΠΈ Π½Π° ΠΊΠ°Π½Π°Π»Π΅ ЁТику ΠŸΠΎΠ½ΡΡ‚Π½ΠΎ. Подпишись!

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ страницы:

ВригономСтрия Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅

Рассмотрим ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. Для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· острых ΡƒΠ³Π»ΠΎΠ² Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊ Π½Π΅ΠΌΡƒ ΠΊΠ°Ρ‚Π΅Ρ‚ ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

Бинус ΡƒΠ³Π»Π° – ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚Π° ΠΊ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π΅.

sin Ξ± = ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊΠ°Ρ‚Π΅Ρ‚ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π°

ΠšΠΎΡΠΈΠ½ΡƒΡ ΡƒΠ³Π»Π° – ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚Π° ΠΊ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π΅.

cos Ξ± = ΠŸΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊΠ°Ρ‚Π΅Ρ‚ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π°

ВангСнс ΡƒΠ³Π»Π° – ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚Π° ΠΊ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰Π΅ΠΌΡƒ (ΠΈΠ»ΠΈ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ синуса ΠΊ косинусу).

tg Ξ± = ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊΠ°Ρ‚Π΅Ρ‚ ΠŸΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊΠ°Ρ‚Π΅Ρ‚

ΠšΠΎΡ‚Π°Π½Π³Π΅Π½Ρ ΡƒΠ³Π»Π° – ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚Π° ΠΊ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅ΠΌΡƒ (ΠΈΠ»ΠΈ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ косинуса ΠΊ синусу).

ctg Ξ± = ΠŸΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊΠ°Ρ‚Π΅Ρ‚ ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊΠ°Ρ‚Π΅Ρ‚

tg ∠ A = sin ∠ A cos ∠ A = C B A C

ctg ∠ A = cos ∠ A sin ∠ A = A C C B

tg ∠ B = sin ∠ B cos ∠ B = A C C B

ctg ∠ B = cos ∠ B sin ∠ B = C B A C

ВригономСтрия: ВригономСтричСский ΠΊΡ€ΡƒΠ³

ВригономСтрия Π½Π° окруТности – это довольно интСрСсная абстракция Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Если ΠΏΠΎΠ½ΡΡ‚ΡŒ основной ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚ Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠ³ΠΎ β€œΡ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΎΠ³ΠΎ круга”, Ρ‚ΠΎ вся тригономСтрия Π±ΡƒΠ΄Π΅Ρ‚ Π²Π°ΠΌ подвластна. Π’ описании ΠΊ Π²ΠΈΠ΄Π΅ΠΎ Π΅ΡΡ‚ΡŒ динамичСская модСль тригономСтричСского ΠΊΡ€ΡƒΠ³Π°.

ВригономСтричСский ΠΊΡ€ΡƒΠ³ – это ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠ³ΠΎ радиуса с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π² Π½Π°Ρ‡Π°Π»Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Рассмотрим ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ A O B :

cos Ξ± = O B O A = O B 1 = O B

sin Ξ± = A B O A = A B 1 = A B

Π˜Ρ‚Π°ΠΊ, косинус ΡƒΠ³Π»Π° – ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚ΠΎΡ‡ΠΊΠΈ A ΠΏΠΎ оси x (ось абсцисс), синус ΡƒΠ³Π»Π° – ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚ΠΎΡ‡ΠΊΠΈ A ΠΏΠΎ оси y (ось ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚).

Π”Π°Π²Π°ΠΉΡ‚Π΅ рассмотрим Π΅Ρ‰Π΅ ΠΎΠ΄ΠΈΠ½ случай, ΠΊΠΎΠ³Π΄Π° ΡƒΠ³ΠΎΠ» Ξ± – Ρ‚ΡƒΠΏΠΎΠΉ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ большС 90 Β° :

Π•Ρ‰Ρ‘ ΠΎΠ΄Π½ΠΎ Π·Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅.

Бинус Ρ‚ΡƒΠΏΠΎΠ³ΠΎ ΡƒΠ³Π»Π° – ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, Π° косинус – ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ.

ОсновноС тригономСтричСскоС тоТдСство

sin 2 Ξ± + cos 2 Ξ± = 1

Π”Π°Π½Π½ΠΎΠ΅ тоТдСство – Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ O A B :

A B 2 + O B 2 = O A 2

sin 2 Ξ± + cos 2 Ξ± = R 2

sin 2 Ξ± + cos 2 Ξ± = 1

ВригономСтрия: Π’Π°Π±Π»ΠΈΡ†Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

0 Β°30 Β°45 Β°60 Β°90 Β°sin Ξ±01 22 23 21cos Ξ±13 22 21 20tg Ξ±03 313Π½Π΅Ρ‚ctg Ξ±Π½Π΅Ρ‚313 30

ВригономСтрия: градусы ΠΈ Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹

Как пСрСвСсти градусы Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹, Π° Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ Π² градусы? Как ΠΈ ΠΊΠΎΠ³Π΄Π° Π²ΠΎΠ·Π½ΠΈΠΊΠ»Π° градусная ΠΌΠ΅Ρ€Π° ΡƒΠ³Π»Π°? Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ ΠΈ радианная ΠΌΠ΅Ρ€Π° ΡƒΠ³Π»Π°? Π˜Ρ‰ΠΈΡ‚Π΅ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹ Π² этом Π²ΠΈΠ΄Π΅ΠΎ!

ВригономСтрия: Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ привСдСния

ВригономСтрия Π½Π° окруТности ΠΈΠΌΠ΅Π΅Ρ‚ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ закономСрности. Если Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π΄Π°Π½Π½Ρ‹ΠΉ рисунок,

ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ:

sin 180 Β° = sin ( 180 Β° βˆ’ 0 Β° ) = sin 0 Β°

sin 150 Β° = sin ( 180 Β° βˆ’ 30 Β° ) = sin 30 Β°

sin 135 Β° = sin ( 180 Β° βˆ’ 45 Β° ) = sin 45 Β°

sin 120 Β° = sin ( 180 Β° βˆ’ 60 Β° ) = sin 60 Β°

cos 180 Β° = cos ( 180 Β° βˆ’ 0 Β° ) = βˆ’ cos 0 Β°

cos 150 Β° = cos ( 180 Β° βˆ’ 30 Β° ) = βˆ’ cos 30 Β°

cos 135 Β° = cos ( 180 Β° βˆ’ 45 Β° ) = βˆ’ cos 45 Β°

cos 120 Β° = cos ( 180 Β° βˆ’ 60 Β° ) = βˆ’ cos 60 Β°

Рассмотрим Ρ‚ΡƒΠΏΠΎΠΉ ΡƒΠ³ΠΎΠ» Ξ² :

Для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚ΡƒΠΏΠΎΠ³ΠΎ ΡƒΠ³Π»Π° Ξ² = 180 Β° βˆ’ Ξ± всСгда Π±ΡƒΠ΄ΡƒΡ‚ справСдливы ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ равСнства:

sin ( 180 Β° βˆ’ Ξ± ) = sin Ξ±

cos ( 180 Β° βˆ’ Ξ± ) = βˆ’ cos Ξ±

tg ( 180 Β° βˆ’ Ξ± ) = βˆ’ tg Ξ±

ctg ( 180 Β° βˆ’ Ξ± ) = βˆ’ ctg Ξ±

ВригономСтрия: Π’Π΅ΠΎΡ€Π΅ΠΌΠ° синусов

Π’ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ стороны ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ синусам ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΡ… ΡƒΠ³Π»ΠΎΠ².

a sin ∠ A = b sin ∠ B = c sin ∠ C

ВригономСтрия: Π Π°ΡΡˆΠΈΡ€Π΅Π½Π½Π°Ρ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° синусов

ΠžΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ стороны ΠΊ синусу ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΡƒΠ³Π»Π° Ρ€Π°Π²Π½ΠΎ Π΄Π²ΡƒΠΌ радиусам описанной Π²ΠΎΠΊΡ€ΡƒΠ³ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° окруТности.

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R

ВригономСтрия: Π’Π΅ΠΎΡ€Π΅ΠΌΠ° косинусов

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ стороны Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π΅Π½ суммС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² Π΄Π²ΡƒΡ… Π΄Ρ€ΡƒΠ³ΠΈΡ… сторон минус ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ этих сторон Π½Π° косинус ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ.

a 2 = b 2 + c 2 βˆ’ 2 b c β‹… cos ∠ A

b 2 = a 2 + c 2 βˆ’ 2 a c β‹… cos ∠ B

c 2 = a 2 + b 2 βˆ’ 2 a b β‹… cos ∠ C

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΈΠ· ΠžΠ“Π­

ΠœΠΎΠ΄ΡƒΠ»ΡŒ гСомСтрия: задания, связанныС с Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ΅ΠΉ.

ВригономСтрия: ВригономСтричСскиС уравнСния

Π­Ρ‚ΠΎ Ρ‚Π΅ΠΌΠ° 10-11 классов.

Из сСрии Π²ΠΈΠ΄Π΅ΠΎ Π½ΠΈΠΆΠ΅ Π²Ρ‹ ΡƒΠ·Π½Π°Π΅Ρ‚Π΅, ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠ΅ тригономСтричСскиС уравнСния, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Π΅ тригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π·Π°Ρ‡Π΅ΠΌ ΠΎΠ½ΠΈ Π½ΡƒΠΆΠ½Ρ‹ ΠΈ ΠΊΠ°ΠΊ ΠΈΡ… ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ. Если Π²Ρ‹ ΠΏΠΎΠΉΠΌΡ‘Ρ‚Π΅ эти Π±Π°Π·ΠΎΠ²Ρ‹Π΅ Ρ‚Π΅ΠΌΡ‹, Ρ‚ΠΎ вскорС смоТСтС Π±Π΅Π· ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π»ΡŽΠ±Ρ‹Π΅ тригономСтричСскиС уравнСния любого уровня слоТности!

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Бинус, косинус, тангСнс ΠΈ котангСнс: опрСдСлСния Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹, Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹

Данная ΡΡ‚Π°Ρ‚ΡŒΡ посвящСна Π±Π°Π·ΠΎΠ²Ρ‹ΠΌ понятиям ΠΈ дСфинициям Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π’ Π½Π΅ΠΉ рассмотрСны опрСдСлСния основных тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ: синуса, косинуса, тангСнса ΠΈ котангСнса. РазъяснСн ΠΈ ΠΏΡ€ΠΎΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ ΠΈΡ… смысл Π² контСкстС Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ.

Бинус, косинус, тангСнс ΠΈ котангСнс. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡ

Π˜Π·Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎ опрСдСлСния тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠΌ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… являСтся ΡƒΠ³ΠΎΠ», Π²Ρ‹Ρ€Π°ΠΆΠ°Π»ΠΈΡΡŒ Ρ‡Π΅Ρ€Π΅Π· ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ сторон ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

Π”Π°Π½Π½Ρ‹Π΅ опрСдСлСния Π΄Π°Π½Ρ‹ для острого ΡƒΠ³Π»Π° ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°!

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

Π’ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ ABC с прямым ΡƒΠ³Π»ΠΎΠΌ Π‘ синус ΡƒΠ³Π»Π° А Ρ€Π°Π²Π΅Π½ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊΠ°Ρ‚Π΅Ρ‚Π° BC ΠΊ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π΅ AB.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡ синуса, косинуса, тангСнса ΠΈ котангСнса ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ значСния этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΏΠΎ извСстным Π΄Π»ΠΈΠ½Π°ΠΌ сторон Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

Π£Π³ΠΎΠ» ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π°

Π’ Π΄Π°Π½Π½ΠΎΠΌ контСкстС ΠΌΠΎΠΆΠ½ΠΎ Π΄Π°Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ синуса, косинуса, тангСнса ΠΈ котангСнса ΡƒΠ³Π»Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΠΌ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΡƒΡŽ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π² Π½Π°Ρ‡Π°Π»Π΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

Бинус (sin) ΡƒΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π°

ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ практичСских ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² Π½Π΅ говорят «ΡΠΈΠ½ΡƒΡ ΡƒΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π° Ξ± «. Π‘Π»ΠΎΠ²Π° «ΡƒΠ³ΠΎΠ» ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π°» просто ΠΎΠΏΡƒΡΠΊΠ°ΡŽΡ‚, подразумСвая, Ρ‡Ρ‚ΠΎ ΠΈΠ· контСкста ΠΈ Ρ‚Π°ΠΊ понятно, ΠΎ Ρ‡Π΅ΠΌ ΠΈΠ΄Π΅Ρ‚ Ρ€Π΅Ρ‡ΡŒ.

Числа

Как Π±Ρ‹Ρ‚ΡŒ с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ синуса, косинуса, тангСнса ΠΈ котангСнса числа, Π° Π½Π΅ ΡƒΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π°?

Бинус, косинус, тангСнс, котангСнс числа

Бинусом, косинусом, тангСнсом ΠΈ котангСнсом числа t называСтся число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ соотвСтствСнно Ρ€Π°Π²Π½ΠΎ синусу, косинусу, тангСнсу ΠΈ котангСнсу Π² t Ρ€Π°Π΄ΠΈΠ°Π½.

НапримСр, синус числа 10 Ο€ Ρ€Π°Π²Π΅Π½ синусу ΡƒΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ 10 Ο€ Ρ€Π°Π΄.

БущСствуСт ΠΈ Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ синуса, косинуса, тангСнса ΠΈ котангСнса числа. Рассмотрим Π΅Π³ΠΎ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅.

Π›ΡŽΠ±ΠΎΠΌΡƒ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ числу t ставится Π² соотвСтствиС Ρ‚ΠΎΡ‡ΠΊΠ° Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ окруТности с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π² Π½Π°Ρ‡Π°Π»Π΅ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Бинус, косинус, тангСнс ΠΈ котангСнс ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ Ρ‡Π΅Ρ€Π΅Π· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ этой Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ, ΠΊΠΎΠ³Π΄Π° связь числа ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° окруТности установлСна, ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΠΌ ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ синуса, косинуса, тангСнса ΠΈ котангСнса.

ПослСдниС опрСдСлСния находятся Π² соотвСтствии ΠΈ Π½Π΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡Π°Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ, Π΄Π°Π½Π½ΠΎΠΌΡƒ Π² Π½Π°Ρ‡Π°Π»Π΅ это ΠΏΡƒΠ½ΠΊΡ‚Π°. Π’ΠΎΡ‡ΠΊΠ° Π½Π° окруТности, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ числу t, совпадаСт с Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΡ‚ Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ° послС ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π° Π½Π° ΡƒΠ³ΠΎΠ» t Ρ€Π°Π΄ΠΈΠ°Π½.

ВригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΡƒΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΈ числового Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Из контСкста ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ понятно, с ΠΊΠ°ΠΊΠΈΠΌ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠΌ тригономСтричСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (ΡƒΠ³Π»ΠΎΠ²ΠΎΠΉ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ ΠΈΠ»ΠΈ числовой Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚) ΠΌΡ‹ ΠΈΠΌΠ΅Π΅ΠΌ Π΄Π΅Π»ΠΎ.

Бвязь ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ sin, cos, tg ΠΈ ctg ΠΈΠ· Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΈ Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ВСрнСмся ΠΊ Π΄Π°Π½Π½Ρ‹ΠΌ Π² самом Π½Π°Ρ‡Π°Π»Π΅ опрСдСлСниям ΠΈ ΡƒΠ³Π»Ρƒ Π°Π»ΡŒΡ„Π°, Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΌΡƒ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… ΠΎΡ‚ 0 Π΄ΠΎ 90 градусов. ВригономСтричСскиС опрСдСлСния синуса, косинуса, тангСнса ΠΈ котангСнса ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ ΡΠΎΠ³Π»Π°ΡΡƒΡŽΡ‚ΡΡ с гСомСтричСскими опрСдСлСниями, Π΄Π°Π½Π½Ρ‹ΠΌΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ сторон ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ПокаТСм это.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

Π’ соотвСтствии с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈΠ· Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, синус ΡƒΠ³Π»Π° Ξ± Ρ€Π°Π²Π΅Π½ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚Π° ΠΊ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π΅.

sin Ξ± = A 1 H O A 1 = y 1 = y

Аналогично соотвСтствиС ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ для косинуса, тангСнса ΠΈ котангСнса.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ВригономСтрия простыми словами

ΠžΡ„ΠΈΡ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ объяснСниС Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΏΠΎΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π² ΡƒΡ‡Π΅Π±Π½ΠΈΠΊΠ°Ρ… ΠΈΠ»ΠΈ Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΈΠ½Ρ‚Π΅Ρ€Π½Π΅Ρ‚ сайтах, Π° Π² этой ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΌΡ‹ Ρ…ΠΎΡ‚ΠΈΠΌ ΠΎΠ±ΡŠΡΡΠ½ΠΈΡ‚ΡŒ ΡΡƒΡ‚ΡŒ Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ «Π½Π° ΠΏΠ°Π»ΡŒΡ†Π°Ρ…».

Для удобства Ρ€Π°Π±ΠΎΡ‚Ρ‹ с тригономСтричСскими функциями Π±Ρ‹Π» ΠΏΡ€ΠΈΠ΄ΡƒΠΌΠ°Π½ тригономСтричСский ΠΊΡ€ΡƒΠ³, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ прСдставляСт собой ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ с Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΌ радиусом (r = 1).

Π’ΠΎΠ³Π΄Π° ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ радиуса Π½Π° оси X ΠΈ Y (OB ΠΈ OA’) Ρ€Π°Π²Π½Ρ‹ ΠΊΠ°Ρ‚Π΅Ρ‚Π°ΠΌ построСнного Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠžΠΠ’, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ Ρ€Π°Π²Π½Ρ‹ значСниям синуса ΠΈ косинуса Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π°.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

ВангСнс ΠΈ котангСнс ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ΡΡ соотвСтстсвСнно ΠΈΠ· Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² OCD ΠΈ OC’D’, построСнных ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎ исходному Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΡƒ OAB.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

Для упрощСния обучСния тригономСтричСским функциям Π² школС ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΠ΄ΠΎΠ±Π½Ρ‹Π΅ ΡƒΠ³Π»Ρ‹ Π² 0Β°, 30Β°, 45Β°, 60Β° ΠΈ 90Β°.

ЗначСния тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‚ΡΡ ΠΊΠ°ΠΆΠ΄Ρ‹Π΅ 90Β° ΠΈ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… случаях мСняя Π·Π½Π°ΠΊ Π½Π° ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ.

Достаточно Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ значСния Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π²Π°ΠΆΠ½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ² ΠΈ ΠΏΠΎΠ½ΡΡ‚ΡŒ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏ ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ для Π±ΠžΠ»ΡŒΡˆΠΈΡ… ΡƒΠ³Π»ΠΎΠ².

ЗначСния тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ
для ΠΏΠ΅Ρ€Π²ΠΎΠΉ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈ ΠΊΡ€ΡƒΠ³Π° (0Β° – 90Β°)

ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏ ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π° Π·Π½Π°ΠΊΠΎΠ² тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

Π£Π³ΠΎΠ» ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, Ρ‚Π°ΠΊ ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. ΠžΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΡƒΠ³ΠΎΠ» считаСтся ΡƒΠ³ΠΎΠ», ΠΎΡ‚ΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ Π² ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡƒΡŽ сторону.

Π’ Π²ΠΈΠ΄Ρƒ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ полная ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ составляСт 360Β°, значСния тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΡƒΠ³Π»ΠΎΠ², ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰ΠΈΡ… ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ радиуса, РАВНЫ.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

Для Π»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ понимания ΠΈ запоминания Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ΡΡŒ динамичСским ΠΌΠ°ΠΊΠ΅Ρ‚ΠΎΠΌ тригономСтричСского ΠΊΡ€ΡƒΠ³Π° Π½ΠΈΠΆΠ΅. НаТимая ΠΊΠ½ΠΎΠΏΠΊΠΈ Β«+Β» ΠΈ «–» значСния ΡƒΠ³Π»Π° Π±ΡƒΠ΄ΡƒΡ‚ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Ρ‚ΡŒΡΡ ΠΈΠ»ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ‚ΡŒΡΡ соотвСтствСнно.

ВригономСтричСский ΠΊΡ€ΡƒΠ³

Π£Π³Π»Ρ‹ Π² Ρ€Π°Π΄ΠΈΠ°Π½Π°Ρ…

Π§Ρ‚ΠΎΠ±Ρ‹ Π·Π°ΠΊΡ€Π΅ΠΏΠΈΡ‚ΡŒ свои знания ΠΈ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ сСбя, Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ΡΡŒ ΠΎΠ½Π»Π°ΠΉΠ½-Ρ‚Ρ€Π΅Π½Π°ΠΆΠ΅Ρ€ΠΎΠΌ для запоминания Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

1.2.1 Бинус, косинус, тангСнс, котангСнс ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π°

Π’ΠΈΠ΄Π΅ΠΎΡƒΡ€ΠΎΠΊ: Бинус, косинус, тангСнс ΠΈ котангСнс ΡƒΠ³Π»Π°

ЛСкция: Бинус, косинус, тангСнс, котангСнс ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π°

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинусБинус, косинус ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π°

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

Бинусом ΡƒΠ³Π»Π° Π΄Π°Π½Π½ΠΎΠΉ окруТности, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ радиусом-Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ОР, являСтся ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚ΠΎΡ‡ΠΊΠΈ Π  Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° окруТности.

Π’ΠΎ Π΅ΡΡ‚ΡŒ, для получСния значСния синуса Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° Π°Π»ΡŒΡ„Π° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒΡΡ с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ΠΎΠΉ Π£ Π½Π° плоскости.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

Π’ΠΎ Π΅ΡΡ‚ΡŒ, для получСния значСния косинуса Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° Π°Π»ΡŒΡ„Π° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒΡΡ с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ΠΎΠΉ Π₯ Π½Π° плоскости.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

ВангСнсом ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° считаСтся ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ синуса ΠΊ косинусу.

Если Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, Ρ‚ΠΎ это ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚Π° ΠΊ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰Π΅ΠΌΡƒ. Если ΠΆΠ΅ Ρ€Π΅Ρ‡ΡŒ ΠΈΠ΄Π΅Ρ‚ ΠΎ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ окруТности, Ρ‚ΠΎ это ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΊ абсциссС.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинускакиС значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

Будя ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΠΌ, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ½ΡΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ тангСнс Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ, Ссли Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ абсциссы Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΈ ΡƒΠ³Π»Π΅ Π² 90 градусов. ВсС ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ значСния тангСнс ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ ΠΌΠΎΠΆΠ΅Ρ‚.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

ВангСнс ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π² ΠΏΠ΅Ρ€Π²ΠΎΠΉ ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ окруТности, Π° Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΈ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ являСтся ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинускакиС значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° находится Π² Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»Π΅ Π΄Ρ€ΠΎΠ±ΠΈ, Ρ‚ΠΎ котангСнс Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΈ ΡƒΠ³Π»Π΅ Π°Π»ΡŒΡ„Π°, Ρ€Π°Π²Π½ΠΎΠΌ Π½ΡƒΠ»ΡŽ градусов.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

ΠšΠΎΡ‚Π°Π½Π³Π΅Π½Ρ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Ρ‚Π΅ ΠΆΠ΅ значСния Π² чСтвСртях Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ окруТности, Ρ‡Ρ‚ΠΎ ΠΈ тангСнс.

ВсС пСрСчислСнныС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½Ρ‹ΠΌΠΈ. ΠšΠΎΡΠΈΠ½ΡƒΡ ΠΈ синус ΠΈΠΌΠ΅ΡŽΡ‚ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ 360 градусов, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ 2Пи, Π° тангСнс ΠΈ котангСнс 180 градусов, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Пи.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Бвойства синуса, косинуса, тангСнса ΠΈ котангСнса

Π’ этой ΡΡ‚Π°Ρ‚ΡŒΠ΅ Π±ΡƒΠ΄ΡƒΡ‚ рассмотрСны Ρ‚Ρ€ΠΈ основных свойства тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ: синуса, косинуса, тангСнса ΠΈ котангСнса.

Π—Π½Π°ΠΊΠΈ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΏΠΎ чСтвСртям

Часто Π² матСматичСском тСкстС ΠΈΠ»ΠΈ Π² контСкстС Π·Π°Π΄Π°Ρ‡ΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡ‚Ρ€Π΅Ρ‚ΠΈΡ‚ΡŒ Ρ„Ρ€Π°Π·Ρƒ: «ΡƒΠ³ΠΎΠ» ΠΏΠ΅Ρ€Π²ΠΎΠΉ, Π²Ρ‚ΠΎΡ€ΠΎΠΉ, Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ ΠΈΠ»ΠΈ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈ». Π§Ρ‚ΠΎ это Ρ‚Π°ΠΊΠΎΠ΅?

Для наглядности ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΡŽ.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

Π’Π΅ΠΏΠ΅Ρ€ΡŒ рассмотрим Π·Π½Π°ΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ синус, косинус, тангСнс ΠΈ котангСнс Π² зависимости ΠΎΡ‚ Ρ‚ΠΎΠ³ΠΎ, Π² ΠΊΠ°ΠΊΠΎΠΉ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈ Π»Π΅ΠΆΠΈΡ‚ ΡƒΠ³ΠΎΠ».

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

Бвойство пСриодичности

ΠŸΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΡƒΠ³Π»Π° Π½Π° Ρ†Π΅Π»ΠΎΠ΅ число ΠΏΠΎΠ»Π½Ρ‹Ρ… ΠΎΠ±ΠΎΡ€ΠΎΡ‚ΠΎΠ² значСния синуса, косинуса, тангСнса ΠΈ котангСнса Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° ΠΎΡΡ‚Π°ΡŽΡ‚ΡΡ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ.

Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΡƒΠ³Π»Π° Π½Π° Ρ†Π΅Π»ΠΎΠ΅ число ΠΎΠ±ΠΎΡ€ΠΎΡ‚ΠΎΠ² ΠΌΡ‹ всСгда Π±ΡƒΠ΄Π΅ΠΌ ΠΏΠΎΠΏΠ°Π΄Π°Ρ‚ΡŒ ΠΈΠ· Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ A Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ окруТности Π² Ρ‚ΠΎΡ‡ΠΊΡƒ A 1 с ΠΎΠ΄Π½ΠΈΠΌΠΈ ΠΈ Ρ‚Π΅ΠΌΠΈ ΠΆΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ. БоотвСтствСнно, Π½Π΅ Π±ΡƒΠ΄ΡƒΡ‚ ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ ΠΈ значСния синуса, косинуса, тангСнса ΠΈ котангСнса.

ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈ Π΄Π°Π½Π½ΠΎΠ΅ свойство записываСтся Ρ‚Π°ΠΊ:

sin Ξ± + 2 Ο€ Β· z = sin Ξ± cos Ξ± + 2 Ο€ Β· z = cos Ξ± t g Ξ± + 2 Ο€ Β· z = t g Ξ± c t g Ξ± + 2 Ο€ Β· z = c t g Ξ±

КакоС ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ это свойство? Бвойство пСриодичности, ΠΊΠ°ΠΊ ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ привСдСния, часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для вычислСния Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ синусов, косинусов, тангСнсов ΠΈ котангСнсов Π±ΠΎΠ»ΡŒΡˆΠΈΡ… ΡƒΠ³Π»ΠΎΠ².

sin 13 Ο€ 5 = sin 3 Ο€ 5 + 2 Ο€ = sin 3 Ο€ 5

Бвойства синусов, косинусов, тангСнсов ΠΈ котангСнсов ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ²

Π’Π½ΠΎΠ²ΡŒ обратимся ΠΊ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ окруТности.

ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ значСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ косинус

ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт свойство синусов, косинусов, тангСнсов ΠΈ котангСнсов ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ².

Бвойство синусов, косинусов, тангСнсов ΠΈ котангСнсов ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ²

Богласно этому свойству, справСдливы равСнства

РассмотрСнноС свойство часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ практичСских Π·Π°Π΄Π°Ρ‡ Π² случаях, ΠΊΠΎΠ³Π΄Π° Π½ΡƒΠΆΠ½ΠΎ ΠΈΠ·Π±Π°Π²ΠΈΡ‚ΡŒΡΡ ΠΎΡ‚ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π·Π½Π°ΠΊΠΎΠ² ΡƒΠ³Π»ΠΎΠ² Π² Π°Π³Ρ€ΡƒΠΌΠ΅Π½Ρ‚Π°Ρ… тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *