какие знаки используются для представления чисел в шестнадцатеричной системе счисления

Шестнадцатиричная система исчисления

Шестнадцатеричная система счисления (шестнадцатеричные числа) — позиционная система счисления по целочисленному основанию 16. Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 10 до 15.

Содержание

Применение

Широко используется в низкоуровневом программировании и вообще в компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами. Такое использование началось с системы IBM/360, где вся документация использовала шестнадцатеричную систему, в то время как в документации других компьютерных систем того времени (даже с 8-битными символами, как, например, БЭСМ-6) использовали восьмеричную систему.

В стандарте Юникода номер символа принято записывать в шестнадцатеричном виде, используя не менее 4 цифр (при необходимости — с ведущими нулями).

Способы записи

В математике

В математике систему счисления принято писать в подстрочном знаке. Например, десятичное число 1443 можно записать как 144310 или как 5A316.

В языках программирования

В разных языках программирования для записи шестнадцатеричных чисел используют различный синтаксис:

Перевод чисел из одной системы счисления в другую

Перевод чисел из шестнадцатеричной системы в десятичную

Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.

Например, требуется перевести шестнадцатеричное число 5A3 в десятичное. В этом числе 3 цифры. В соответствии с вышеуказанным правилом представим его в виде суммы степеней с основанием 16:

Перевод чисел из двоичной системы в шестнадцатеричную

Для перевода многозначного двоичного числа в шестнадцатеричную систему нужно разбить его на тетрады справа налево и заменить каждую тетраду соответствующей шестнадцатеричной цифрой.

Источник

Шестнадцатиричная система счисления

В прошлой статье мы с Вами разбирали двоичную и двоично-десятичную систему счисления. С помощью калькулятора Windows мы переводили числа из двоичной системы в десятичную. Представьте себе, что нам надо перевести число из десятичной в двоичную систему счисления. Такое безобидное число, как 9999 в двоичной системе будет выглядеть уже как 10 0111 0000 1111. Не очень то и удобно, так ведь? С такими числами работает только компьютер и другие цифровые девайсы.

Системы счисления

какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Смотреть фото какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Смотреть картинку какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Картинка про какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Фото какие знаки используются для представления чисел в шестнадцатеричной системе счисления

А вам слабо написать программу на единичках и нулях? Я думаю, это не под силу даже самому наяренному программеру в мире. Люди недолго думали и для удобства написания чисел придумали сначала восьмеричную систему счисления, а потом и шестнадцатеричную. Если помните, в двоичной системе счисления только два знака: 1 и 0. В десятичной — 10 знаков: 0 1 2 3 4 5 6 7 8 9, восьмеричной системе счисления используются только 8 знаков: 0 1 2 3 4 5 6 7. В шестнадцатеричной системе счисления знаков целых 16 штук! Чтобы не мудрить, взяли первые 9 знаков от десятичной системы счисления, а остальные от английского алфавита. Итого — 0 1 2 3 4 5 6 7 8 9 A B C D E F — ровненько 16 знаков.

Почему раньше не использовали десятичную систему вместо восьмеричной? Ведь в десятичной было на два знака больше? Все упиралось в байты. Как вы помните, 8 бит — это один Байт. Именно поэтому было удобно использовать восьмеричную и шестнадцатеричную системы счисления, кратную восьмерке, чем десятеричную. В последнее время самая крутая считается шестнадцатеричная система счисления. Именно она в большинстве используется в микроконтроллерах и в других цифровых микросхемах.

Перевод из одной системы счисления в другую

Как же нам переводить числа из одной системы счисления в другую? Здесь все просто, следуем примеру из второй главы, где написано, как использовать калькулятор Windows для перевода чисел из десятичной системы в двоичную. С помощью этого калькулятора мы также можем переводить числа из десятичной системы счисления в двоичную, восьмеричную, шестнадцатеричную и обратно. Запускаем наш калькулятор, пишем от балды число «123» в десятичной системе счисления. Для этого ставим маркер на «Dec» и для красоты «1 байт».

какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Смотреть фото какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Смотреть картинку какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Картинка про какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Фото какие знаки используются для представления чисел в шестнадцатеричной системе счисления

Для того, чтобы перевести это число в двоичную систему счисления, ставим маркер на «Bin» и получаем число «123» в двоичной системе счисления.

какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Смотреть фото какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Смотреть картинку какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Картинка про какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Фото какие знаки используются для представления чисел в шестнадцатеричной системе счисления

Для перевода в восьмеричную систему ставим маркер на «Oct».

какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Смотреть фото какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Смотреть картинку какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Картинка про какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Фото какие знаки используются для представления чисел в шестнадцатеричной системе счисления

Ну и для перевода в шестнадцатеричную систему ставим маркер на «Hex».

какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Смотреть фото какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Смотреть картинку какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Картинка про какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Фото какие знаки используются для представления чисел в шестнадцатеричной системе счисления

Все операции взаимозаменяемы. Это значит, что мы можем перевести число из двоичной в шестнадцатеричную, из восьмеричной в двоичную и так далее. Чтобы не спутать системы счисления и знать, какое число записано, после каждого записанного числа снизу ставится его индекс системы счисления. Например:

7ВС16 — значит число записано в шестнадцатеричной системе счисления

10112 — в двоичной системе

4578 — в восьмеричной системе

998510 — в десятеричной системе.

Источник

От 0 до F: шестнадцатеричные числа

Шестнадцатеричные данные. Это информация внутри вашего компьютера. Но что на самом деле такое шестнадцатеричное число? Что означают странные и непривычно выглядящие шестнадцатеричные числа? Как появилось шестнадцатеричное число? Узнайте больше о шестнадцатеричном формате сегодня.

какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Смотреть фото какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Смотреть картинку какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Картинка про какие знаки используются для представления чисел в шестнадцатеричной системе счисления. Фото какие знаки используются для представления чисел в шестнадцатеричной системе счисления

Что такое шестнадцатеричный?

Шестнадцатеричная система счисления использует шестнадцать символов (от 0 до 9 и от A до F) для образования и представления любого числа. Шестнадцатеричная система используется в компьютерах и калькуляторах. Слово «шестнадцатеричный» часто сокращается до hex, а hex происходит от слова hexagon, то есть шестиугольник, шесть. На английском языке слово «шестнадцатеричный» записывается как hexadecimal и вы можете сразу увидеть логику названия hexa..decimal, поскольку decimal означает (10), а hexa означает 6 (A-F, 6 символов).

Компьютеры часто используют шестнадцатеричные числа в своих внутренних вычислительных системах. Существует прямая связь между двоичными и восьмеричными числами и шестнадцатеричными числами. Чтобы узнать больше о шестнадцатеричной системе счисления с 16 основанием (16 основных элементов, 16 основных чисел), нам нужно немного отступить и сначала изучить двоичную и восьмеричную системы. Если вы раньше не слышали эти термины, не волнуйтесь, это далеко не так сложно, как кажется.

Что такое двоичный?

Двоичные числа, особенно двоичная система счисления, является одной из самых, если не самых простых систем счисления на планете. В двоичном формате есть только два возможных числа (отсюда и термин двоичный, т.е. состоящий из двух вещей), и это ноль (0) и единица (1). Хотя мы используем ноль и единицу для представления двух возможных чисел в этой системе, пожалуйста, поймите, что это всего лишь выбор — точно так же, как я бы использовал буквы латинского алфавита A-Z для представления слов на английском языке или китайских символов для представления слов на китайском языке.

Так как же считать в двоичной системе счисления с двумя основными числами? Все мы знаем, как считать в десятичной системе счисления (десятичная система счисления, которую мы используем каждый день для всех наших выражений количества и т. д.), 0… 1… 2… 3…, но как мы это делаем, если мы даже не можем выйти за рамки 1 к 2? Что произойдёт, когда мы дойдём до 9 и нам нужно будет найти следующее число? Мы добавляем единицу впереди (первая цифра в 10) и сбрасываем нашу вторичную позицию на 0. Мы продолжаем делать это, чтобы считать до 99, а затем делаем то же самое, хотя на этот раз мы сбрасываем две позиции.

Мы можем использовать тот же метод в нашем 2-базовом двоичном вычислении, и это именно то, что мы делаем и как мы считаем. Начнём: 0… 1… 10… 11… 100… 101… 110… 111… 1000…. Не сложно, правда? Если вы ещё не знали, как считать в двоичном формате, поздравляем, теперь вы знаете, как это сделать! В наши дни этому навыку обучают в средней школе. Перейдём к восьмеричному.

Что такое восьмеричный?

До сих пор мы обнаружили, что десятичное число также может быть обозначена как число с основанием 10, потому что оно имеет 10 различных символов для выражения чисел (от 0 до 9), а в число с основанием 2 только ноль и один. Теперь мы представим восьмеричную, ещё одну компьютерно-ориентированную систему счисления, которая имеет 8 возможных символов. Как вы уже догадались, от нуля (0) до семи (7). Вы можете начать понимать, почему существуют такие системы счисления: добро пожаловать в степень двойки: 2 (двоичная) > 4 (полбайта) > 8 (восьмеричная, один байт) > 16 (шестнадцатеричная).

Так что же такое байт? Байт состоит из восьми битов (обычно визуально отображается как 2 набора по 4 бита, хотя для компьютера это просто 8 бит в строке), образующих один байт. Например, 0110 1100 — это действительный байт, состоящий из 8 бит. Это число можно преобразовать в восьмеричное (154), шестнадцатеричное (6C) и десятичное (108). Обратите внимание на то, что чем выше номер основания числа, тем короче его запись, например, 6C в шестнадцатеричной системе записывается как 154 в восьмеричной системе счисления. В двоичной системе счисления запись этого числа будет ещё длиннее.

Байт часто используется для хранения простых буквенно-цифровых символов. Например, буква «A» записывается в двоичном формате как 0100 0001. Обратите внимание, что максимальное значение в байте (например, 1111 1111) равно 255, и, таким образом, существует только 256 возможных комбинаций (+1, поскольку 0 также является возможной опцией) — это все возможные комбинации, которые можно сделать с помощью одного байта. Таким образом, наш ограниченный диапазон от A до Z, даже включая цифры 0-9 и строчные буквы a-z, все вместе легко умещается в один байт, и мы даже можем представить некоторые другие символы, такие как «@» и «!».

Однако, когда речь идёт, например, о китайском с его множеством разных символов, нам может потребоваться два или более байта для хранения наших отдельных символов, то есть многобайтовые символы.

Возвращаясь к восьмеричной системе счисления, как считать восьмеричные числа? Как вы уже догадались, всё происходит как в десятичной и двоичной системах счисления: тот же метод, который мы уже видели, после каждого раунда дописывается ещё одна цифра, а предыдущие цифры сбрасываются на ноль. Только нужно помнить о том, что в восьмеричной системе счисления максимальной (последней) цифрой является 7. Посчитаем вместе: 0… 1… 2… 3… 4… 5… 6… 7… 10… 11… — выглядит немного странно, не так ли? Это потому, что наш разум так настроен думать о 10, ну, как о «10». Но 10 в восьмеричной системе счисления равно 8 в десятичной. Сбивает с толку? Для нас, простых людей, да, восьмеричная система счисления с основанием числа 8 может сбивать с толку. Для компьютера это не проблема.

Подсчёт в шестнадцатеричной системе счисления

Это возвращает нас к счёту в нашей системе счисления с основанием 16: шестнадцатеричной. Теперь мы знаем шаги, которым нужно следовать, и можем сосчитать (пропустим подсчёт от нуля до девяти): 0… пропуск до… 9… A… B… C… D… E… F… 10… 11…. Теперь мы понимаем, что 10 в шестнадцатеричной системе счисления, как и в восьмеричной, имеет другое значение, чем то, что мы можем подумать (исходя из нашей привычки пользоваться десятичной системой счисления), поскольку мы ведём счёт в шестнадцатеричной системе счисления, которая соответствует основанию равному 16, а не десятичной системе счисления, в которой основание равно 10. Число 10 в шестнадцатеричном формате на самом деле равно 16 в десятичном!

Примечательно, что шестнадцатеричный формат, именно потому, что он состоит из 16 оснований, позволяет нам хранить весь байт в двух символах! Мы не можем сделать это с десятичным числом, поскольку двоичное значение 1111 1111 (т.е. 1111111 для компьютера) равно 255 в десятичном формате. Однако в шестнадцатеричном формате оно может быть представлено как FF, который в десятичном виде равен 255. Также обратите внимание, что полбайта, 4 бита, можно сохранить в одном шестнадцатеричном символе.

Подведение итогов

Мы надеемся, что вам понравилось это введение в шестнадцатеричную, нашу 16-символьную или 16-базовую числовую систему, а также в двоичную систему счисления с двумя базовыми числами и восьмеричную систему счисления с основанием числа 8. Мы также узнали, как мы ведём ежедневный счёт в десятичной системе счисления, в нашей очень знакомой десятичной системе счисления используются числа от 0 до 9.

Мы также увидели, что символы, которые мы используем для представления двоичных, восьмеричных, шестнадцатеричных и даже десятичных значений, — это всего лишь символы, которые человечество выбрало для представления этих различных систем счисления. Мы могли бы легко выбрать другие представления для других числовых систем, но повторное использование тех же чисел кажется знакомым и имеет некоторый смысл, особенно в случае двоичной системы «напряжение» и «отсутствие напряжение», представлены нулём и единицей.

Источник

Шестнадцатеричная система счисления

Шестнадцатеричная система счисления, так же как восьмеричная, широко используется в компьютерной науке из-за простоты перевода в нее двоичных чисел. В случае шестнадцатеричной записи числа получаются более компактными.

В качестве алфавита шестнадцатеричной системы счисления используются цифры от 0 до 9 и шесть первых латинских букв – A, B, C, D, E, F. При переводе в десятичную систему буквы заменяются числами 10, 11, 12, 13, 14, 15 соответственно.

При переводе двоичного числа в шестнадцатеричное, первое разбивается на группы по четыре разряда, начиная с конца. В случае, если количество разрядов не кратно четырем, первая четверка дописывается нулями впереди. Каждой четверке соответствует одноразрядное число шестнадцатеричной системы счисления.

10001100101 = 0100 1100 0101 = 4 C 5 = 4C5

В случае обратного перевода шестнадцатеричные цифры заменяются соответствующими четырехразрядными двоичными числами.

Перевод из шестнадцатеричной системы счисления в десятичную выполняется аналогично переводу из двоичной и восьмеричной. Только здесь в качестве основания степени выступает число 16, а цифры от A до F заменяются десятичными числами от 10 до 15.

4C5 = 4 * 16 2 + 12 * 16 1 + 5 * 16 0 = 4 * 256 + 192 + 5 = 1221

Максимальное двухразрядное число, которое можно получить с помощью шестнадцатеричной записи, – это число FF.

FF16 = 15 * 16 1 + 15 * 16 0 = 240 + 15 = 25510

В двоичном представлении FF будет выглядеть как восьмиразрядное число 11111111. Наименьшей рабочей ячейкой компьютерной памяти является байт, который состоит из 8-ми битов. Каждый бит может быть в двух состояниях – «включено» и «выключено». Одному из них сопоставляют ноль, другому – единицу.

Следовательно, в одном байте можно сохранить любое двоичное число в диапазоне от 00000000 до 11111111. В десятичном представлении это числа от 0 до 255. В шестнадцатеричном – от 0 до FF. С помощью шестнадцатеричной системы счисления удобно кратко, с помощью двух цифр-знаков, записывать значения байтов. Например, 0E или F5.

Источник

Шестнадцатеричная система счисления

Шаблон:Системы счисления Шестнадцатеричная система счисления (шестнадцатеричные числа) — позиционная система счисления по целочисленному основанию 16.

Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 1010 до 1510, то есть (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).

Содержание

Применение

В стандарте Юникода номер символа принято записывать в шестнадцатеричном виде, используя не менее 4 цифр (при необходимости — с ведущими нулями ).

Шестнадцатеричный цвет — запись трёх компонент цвета (R, G и B) в шестнадцатеричном виде.

Способы записи

В математике

В математике основание системы счисления принято указывать в десятичной системе в нижнем индексе. Например, десятичное число 1443 можно записать как 144310 или как 5A316.

В языках программирования

В разных языках программирования для записи шестнадцатеричных чисел используют различный синтаксис:

В электронных калькуляторах

Б3-34 и ему подобные используют «-», «L», «C», «Г», «E» « » (space) на их экране. [источник не указан 3095 дней]

Перевод чисел из одной системы счисления в другую

Перевод чисел из шестнадцатеричной системы в десятичную

Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.

Например, требуется перевести шестнадцатеричное число 5A3 в десятичное. В этом числе 3 цифры. В соответствии с вышеуказанным правилом представим его в виде суммы степеней с основанием 16:

5A316 = 3·16 0 +10·16 1 +5·16 2 =
= 3·1+10·16+5·256 = 3+160+1280 = 144310

Перевод чисел из двоичной системы в шестнадцатеричную и наоборот

Для перевода многозначного двоичного числа в шестнадцатеричную систему нужно разбить его на тетрады справа налево и заменить каждую тетраду соответствующей шестнадцатеричной цифрой. Для перевода числа из шестнадцатеричной системы в двоичную нужно заменить каждую его цифру на соответствующую тетраду из нижеприведенной таблицы перевода.

0101101000112 = 0101 1010 0011 = 5A316

Таблица перевода чисел

0hex=0dec=0oct0000
1hex=1dec=1oct0001
2hex=2dec=2oct0010
3hex=3dec=3oct0011
4hex=4dec=4oct0100
5hex=5dec=5oct0101
6hex=6dec=6oct0110
7hex=7dec=7oct0111
8hex=8dec=10oct1000
9hex=9dec=11oct1001
Ahex=10dec=12oct1010
Bhex=11dec=13oct1011
Chex=12dec=14oct1100
Dhex=13dec=15oct1101
Ehex=14dec=16oct1110
Fhex=15dec=17oct1111

См. также

Ссылки

Выделить Шестнадцатеричная система счисления и найти в:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *