какие знаки математических действий
Равенство и неравенство. Знаки: больше, меньше, равно
Математические знаки
Скорее всего, к первому классу ребенок уже отличает на слух и визуально, что горстка из десяти ягод больше трех штук. Чтобы внедрить в жизнь новые обозначения, посмотрим на знаки «больше», «меньше», «равно» в картинках.
Символ больше (>) — это когда острый нос галочки смотрит направо. Его нужно использовать, когда первое число больше второго:
Символ меньше (
Символ равенства (=) — это когда два коротких отрезка записаны горизонтально и параллельны друг другу. Используем его при сравнении двух одинаковых чисел:
Чтобы ребенку было легче запомнить схожие между собой знаки, можно применить игровой метод. Для этого нужно сравнить числа и определить в каком порядке они стоят. Далее ставим одну точку у наименьшего числа и две — рядом с наибольшим. Соединяем точки и получаем нужный знак. Вот так просто:
Равенство и неравенство
Что такое равенство в математике — это когда одно подобно по количеству другому и между ними можно поставить знак =.
Для примера посмотрим на картинку с изображением геометрических фигур. Справа и слева количество одинаковое, значит можно поставить символ «равно».
Наглядный пример неравенства изображен на картинке ниже. Слева видим три фигуры, а справа — четыре. При этом мы знаем, что три не равно четырем или еще так: три меньше четырех.
Урок в школе зачастую проходит перед учебником, тетрадью и доской. Дома же можно использовать компьютер и некоторые задания выполнять в онлайн-формате. Как найти знаки на клавиатуре? Ответ на картинке:
Типы неравенств
Порядок действий в математике
Основные операции в математике
Порядок вычисления простых выражений
Есть однозначное правило, которое определяет порядок выполнения действий в выражениях без скобок:
Из этого правила становится яснее, какое действие выполняется первым. Универсального ответа нет, нужно анализировать каждый пример и подбирать ход решения самостоятельно.
Что первое, умножение или деление? — По порядку слева направо.
Сначала умножение или сложение? — Умножаем, потом складываем.
Порядок выполнения действий в математике (слева направо) можно объяснить тем, что в нашей культуре принято вести записи слева направо. А необходимость сначала умножить или разделить объясняется самой сутью этих операций.
Рассмотрим порядок арифметических действий в примерах.
Пример 1. Выполнить вычисление: 11- 2 + 5.
В нашем выражении нет скобок, умножение и деление отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычтем два из одиннадцати, затем прибавим к остатку пять и в итоге получим четырнадцать.
Вот запись всего решения: 11- 2 + 5 = 9 + 5 = 14.
Пример 2. В каком порядке выполнить вычисления в выражении: 10 : 2 * 7 : 5?
Чтобы не ошибиться, перечитаем правило для выражений без скобок. У нас есть только умножение и деление — значит сохраняем записанный порядок вычислений и считаем последовательно слева направо.
Сначала выполняем деление десяти на два, результат умножаем на семь и получившееся в число делим на пять.
Запись всего решения выглядит так: 10 : 2 * 7 : 5 = 5 * 7 : 5 = 35 : 5 = 7.
Пока новые знания не стали привычными, чтобы не перепутать последовательность действий при вычислении значения выражения, удобно над знаками арифметический действий расставить цифры, которые соответствуют порядку их выполнения.
Например, в такой последовательности можно решить пример по действиям:
Действия первой и второй ступени
В некоторых учебниках по математике можно встретить разделение арифметических действий на действия первой и второй ступени.
С этими терминами правило определения порядка выполнения действий звучит так:
Если выражение не содержит скобок, то по порядку слева направо сначала выполняются действия второй ступени (умножение и деление), затем — действия первой ступени (сложение и вычитание).
Порядок вычислений в выражениях со скобками
Иногда выражения могут содержать скобки, которые подсказывают порядок выполнения математических действий. В этом случае правило звучит так:
Сначала выполнить действия в скобках, при этом также по порядку слева направо выполняется умножение и деление, затем — сложение и вычитание.
Выражения в скобках рассматриваются как составные части исходного выражения. В них сохраняется уже известный нам порядок выполнения действий.
Рассмотрим порядок выполнения действий на примерах со скобками.
Как правильно решить пример:
Выражение содержит скобки, поэтому сначала выполним действия в выражениях, которые заключены в эти скобки.
Подставляем полученные значения в исходное выражение:
Порядок действий: умножение, деление, и только потом — сложение. Получится:
10 + 2 * 8 : 2 = 10 + 16 : 2 = 10 + 8 = 18.
На этом все действия выполнены.
Можно встретить выражения, которые содержат скобки в скобках. Для их решения, нужно последовательно применять правило выполнения действий в выражениях со скобками. Удобнее всего начинать выполнение действий с внутренних скобок и продвигаться к внешним. Покажем на примере.
Пример 2. Выполнить действия в выражении: 9 + (5 + 1 + 4 * (2 + 3)).
Перед нами выражение со скобками. Это значит, что выполнение действий нужно начать с выражения в скобках, то есть, с 5 + 1 + 4 * (2 + 3). Но! Это выражение также содержит скобки, поэтому начнем сначала с действий в них:
Подставим найденное значение: 5 + 1 + 4 * 5. В этом выражении сначала выполняем умножение, затем — сложение:
5 + 1 + 4 * 5 = 5 + 1 + 20 = 26.
Исходное значение, после подстановки примет вид 9 + 26, и остается лишь выполнить сложение: 9 + 26 = 35.
Ответ: 9 + (5 + 1 + 4 * (2 + 3)) = 35.
Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями
Если в выражение входят степени, корни, логарифмы, синус, косинус, тангенс и котангенс, а также другие функции — их значения нужно вычислить до выполнения остальных действий. При этом важно учитывать правила из предыдущих пунктов, которые задают очередность действий в математике.
Другими словами, перечисленные функции по степени важности можно приравнивать к выражению в скобках.
И, как всегда, рассмотрим, как это работает на примере.
В этом выражении есть степень 62. И нам нужно найти ее значение до выполнения остальных действий. Выполним возведение в степень: 62 = 36.
Подставляем полученное значение в исходное выражение:
Дальше нам уже все знакомо: выполняем действия в скобках, далее по порядку слева направо выполняем сначала умножение, деление, а затем — сложение и вычитание. Ход решения выглядит так:
У нас есть статья «знаки больше, меньше или равно», она может быть полезной для тебя!
Правила обозначения действий для математической формулы
Составлять подобные выражения часто требуется в процессе обучения, написания важных научных работ, а некоторым даже в рамках профессиональной деятельности.
И если с буквенными и числовыми обозначениями все понятно, то вот с «маркировкой» действий иногда возникают проблемы. Каждый из символов имеет право на существование. Но, вместе с этим, использование различных знаков для одного и того же действия в рамках одной работы (контрольной, дипломной, курсовой и т. д.) недопустимо.
Поэтому разграничим области для каждого такого «значка».
Вычитание и сложение
Здесь все относительно просто. Для обозначения действий используются знаки «+» и «-«, которые в большинстве случаев связывают 2 слагаемых (так называют аргументы не только для операции сложения, но и вычитания).
Однако, иногда существует необходимость приписывания унарного (одиночного) знака «-» перед первой переменной (или численным значением) в формуле. Таким образом, с него может начинаться запись математической формулы.
Знак умножения при составлении формулы по математике
Деление в математических формулах
Возведение в степень
К правильному обозначению формул по математике стоит привыкать с самого начала. Нужно знать все способы обозначения действий, а также сферу их использования. И тогда при изучении любой профильной литературы, а также самостоятельном написании формул не возникнет никаких проблем.
Порядок выполнения действий, правила, примеры
Когда мы работаем с различными выражениями, включающими в себя цифры, буквы и переменные, нам приходится выполнять большое количество арифметических действий. Когда мы делаем преобразование или вычисляем значение, очень важно соблюдать правильную очередность этих действий. Иначе говоря, арифметические действия имеют свой особый порядок выполнения.
В этой статье мы расскажем, какие действия надо делать в первую очередь, а какие после. Для начала разберем несколько простых выражений, в которых есть только переменные или числовые значения, а также знаки деления, умножения, вычитания и сложения. Потом возьмем примеры со скобками и рассмотрим, в каком порядке следует вычислять их. В третьей части мы приведем нужный порядок преобразований и вычислений в тех примерах, которые включают в себя знаки корней, степеней и других функций.
Порядок вычисления простых выражений
В случае выражений без скобок порядок действий определяется однозначно:
Смысл этих правил легко уяснить. Традиционный порядок записи слева направо определяет основную последовательность вычислений, а необходимость сначала умножить или разделить объясняется самой сутью этих операций.
Возьмем для наглядности несколько задач. Мы использовали только самые простые числовые выражения, чтобы все вычисления можно было провести в уме. Так можно быстрее запомнить нужный порядок и быстро проверить результаты.
Решение
В нашем выражении скобок нет, умножение и деление также отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычитаем три из семи, затем прибавляем к остатку шесть и в итоге получаем десять. Вот запись всего решения:
Решение
Чтобы дать ответ на этот вопрос, перечитаем правило для выражений без скобок, сформулированное нами до этого. У нас здесь есть только умножение и деление, значит, мы сохраняем записанный порядок вычислений и считаем последовательно слева направо.
Ответ: сначала выполняем деление шести на два, результат умножаем на восемь и получившееся в итоге число делим на три.
Решение
17 − 5 · 6 : 3 − 2 + 4 : 2 = 17 − 10 − 2 + 2
Здесь уже нет ни деления, ни умножения, поэтому делаем оставшиеся вычисления по порядку и получаем ответ:
17 − 10 − 2 + 2 = 7 − 2 + 2 = 5 + 2 = 7
Пока порядок выполнения действий не заучен твердо, можно ставить над знаками арифметических действий цифры, означающие порядок вычисления. Например, для задачи выше мы могли бы записать так:
.
Если у нас есть буквенные выражения, то с ними мы поступаем точно так же: сначала умножаем и делим, затем складываем и вычитаем.
Что такое действия первой и второй ступени
Иногда в справочниках все арифметические действия делят на действия первой и второй ступени. Сформулируем нужное определение.
К действиям первой ступени относятся вычитание и сложение, второй – умножение и деление.
Зная эти названия, мы можем записать данное ранее правило относительно порядка действий так:
В выражении, в котором нет скобок, сначала надо выполнить действия второй ступени в направлении слева направо, затем действия первой ступени (в том же направлении).
Порядок вычислений в выражениях со скобками
Скобки сами по себе являются знаком, который сообщает нам нужный порядок выполнения действий. В таком случае нужное правило можно записать так:
Если в выражении есть скобки, то первым делом выполняется действие в них, после чего мы умножаем и делим, а затем складываем и вычитаем по направлению слева направо.
Что касается самого выражения в скобках, его можно рассматривать в качестве составной части основного выражения. При подсчете значения выражения в скобках мы сохраняем все тот же известный нам порядок действий. Проиллюстрируем нашу мысль примером.
Решение
Теперь нам нужно подставить получившиеся значения в первоначальное выражение:
5 + ( 7 − 2 · 3 ) · ( 6 − 4 ) : 2 = 5 + 1 · 2 : 2
Начнем с умножения и деления, потом выполним вычитание и получим:
5 + 1 · 2 : 2 = 5 + 2 : 2 = 5 + 1 = 6
На этом вычисления можно закончить.
Не пугайтесь, если в условии у нас содержится выражение, в котором одни скобки заключают в себе другие. Нам надо только применять правило выше последовательно по отношению ко всем выражениям в скобках. Возьмем такую задачу.
Решение
Иначе говоря, при вычислении значения выражения, включающего скобки в скобках, мы начинаем с внутренних скобок и продвигаемся к внешним.
Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями
Если у нас в условии стоит выражение со степенью, корнем, логарифмом или тригонометрической функцией (синусом, косинусом, тангенсом и котангенсом) или иными функциями, то первым делом мы вычисляем значение функции. После этого мы действуем по правилам, указанным в предыдущих пунктах. Иначе говоря, функции по степени важности приравниваются к выражению, заключенному в скобки.
Разберем пример такого вычисления.
Решение
Дальше действуем по знакомому алгоритму: считаем, сколько у нас получится в скобках, потом в оставшемся выражении выполняем умножение и деление, а следом – сложение и вычитание.
( 3 + 1 ) · 2 + 36 : 3 − 7 = 4 · 2 + 36 : 3 − 7 = 8 + 12 − 7 = 13
В отдельной статье, посвященной вычислению значений выражений, мы приводим и другие, более сложные примеры подсчетов в случае выражений с корнями, степенью и др. Рекомендуем вам с ней ознакомиться.
Математика
Закажи карту Tinkoff Junior сейчас и получи 200 ₽ на счет
С этой картой можно накопить на мечту, жми ⇒
План урока:
Действие сложение. Знак +
Название компонентов действия сложения. Переместительное свойство сложения
Добрый день! Готов к новому уроку? Сегодня у нас будет очень важное занятие. Мы получим самые драгоценные и сокровенные знания. Без этих знаний невозможно существование науки математики!
В таком сложном деле нам нужны помощники. Мы их найдем в сказочном лесу.
— Догадался? В этом лесу живут настоящие профессионалы по поиску драгоценностей и сокровищ. Это сказочные гномики.
Посмотри на них, какие они веселые и доброжелательные. Гномики улыбаются тебе и желают хорошего настроения на весь урок. Улыбнись им в ответ и давай приступим к занятию.
Гномики целый день работали в шахте. Они искали драгоценные камни.
Посмотри, сколько камней собрал гном Том и гном Тим. Посчитай.
Гном Том собрал 4 камня.
А гном Тим собрал 3 камня.
Чтобы не нести эту тяжесть в руках, они сложили все свои камни в тачку.
Теперь в тачке лежат и камни, которые собрал Том, и камни, которые собрал Тим. Давай-ка мы их все достанем и пересчитаем.
В тачке оказалось 7 камней.
Ого, как много! Как ты думаешь, почему?
Верно, потому что в тачку сложили камни оба гномика. А это всегда будет больше, чем у каждого по отдельности.
Итак, что сделали гномики?
Точно, они сложили свои камни вместе. В математике такое действие тоже называется сложение. Его суть в том, что элементы двух множеств объединяются в одно целое.
Смотри, множество камней Тома и множество камней Тима объединились в тачке в одно множество. При этом в объединенном множестве количество элементов становится больше.
Чтобы узнать результат сложения чисел, нужно пересчитать все элементы и первого, и второго множества вместе.
Гномики сложили камни вместе. А какие еще действия приводят к тому, что предметов становится больше?
Таких действий довольно много. Например, если в добавок к тому, что уже есть, кто-то:
Любое действие, которое ведет к увеличению количества предметов, подразумевает выполнение действия сложения. Часто это действие еще называют «прибавление».
Чтобы записать действие сложение в виде математического выражения, используется специальный знак. Знак сложения выглядит так.
Посмотри, в этом знаке тоже произошло объединение: две палочки соединились в одно целое. Этот знак называется «плюс».
Посмотри, как знак «плюс» пишется в тетради.
Порядок написания следующий.
Потренируйся писать знак плюс в тетради.
Теперь разберемся, как именно надо составлять математическое выражение, описывающее действие сложения. Давай вспомним, что было сначала.
Том собрал 4 камня и Тим собрал 3 камня.
Они вместе высыпали свои камни в тачку, т.е. объединили их. Поэтому мы ставим между числами знак «+».
В результате объединения все камни оказались в тачке. Мы их все пересчитали – в тачке 7 камней. Их ровно столько, сколько было у обоих гномиков вместе. Поэтому между левой и правой частью выражения нужно поставить знак равенства «=».
В тетради надо записать так.
Теперь я расскажу, как называются компоненты действия сложения. Числа, которые обозначают количество элементов в каждом отдельном множестве, называются слагаемые. А число, которое обозначает результат, полученный при объединении этих множеств, называется сумма.
Поскольку левая сторона записи равна правой, то и само выражение тоже называют «сумма». Читают так «сумма чисел 4 и 3».
Поэтому, когда говорят «найди сумму», нужно выполнить действие сложение.
Итак, наше выражение можно прочитать несколькими способами:
Идем дальше. Нам нужно выучить очень важное правило для действия сложения. Давай вернемся к нашим гномикам. Ты же помнишь, что каждый из них положил свои камни в тачку и потом мы их посчитали вместе, т.е. нашли сумму. Как ты думаешь, кто из гномиков первый положил камушки в тачку?
Мы записали, что первое слагаемое четыре. Получается, что первым был гномик Том, а потом гномик Тим.
Теперь давай представим, что порядок был другой. Сначала в тачку положил свои камушки Тим, а потом Том. Значит первое слагаемое – это три, а второе – четыре. Изменится ли от этого общее количество камней в тачке, т.е. наша сумма?
Теперь в тачке три камня Тима и четыре камня Тома. Посчитай их вместе.
Всего камней семь. Ровно столько же, сколько был и первый раз.
Получается, что не важно, кто из гномиков положил камушки первый, а кто второй. Их общее количество не меняется. Значит, сумма не меняется.
Посмотри. И четыре плюс три будет семь, и три плюс четыре тоже будет семь.
В математике это называется переместительное свойство сложения. Оно звучит так: от перестановки слагаемых местами сумма не изменяется. Запишем.
Это переместительное свойство очень пригодится тебе при изучении таблиц сложения. Запомни его!
Чтобы закрепить все, что мы узнали о действии сложения, потренируемся составлять примеры по картинкам.
Посчитай, сколько синих фигур на картинке. Запиши.
Теперь посчитай красные фигуры и запиши.
Нам нужно посчитать их вместе. Это подразумевает объединение всех фигур. А значит, надо выполнить действие сложение. Поэтому поставим между нашими числами знак «плюс».
3 + 2
Теперь нужно пересчитать ВСЕ фигуры ВМЕСТЕ. Сколько у тебя получится?
У меня вышло 5. Уверена, у тебя тоже. Запишем это, поставив сначала знак равенства.
3 + 2 = 5
Вот и все. Ничего сложного.
Теперь рассмотрим, как нужно решать примеры на сложение. Давай прочитаем это выражение.
2 + 4
Можно так «два плюс четыре».
Чтобы найти результат, нужно следовать алгоритму выполнения действия сложения.
Это знак «плюс», значит нужно объединить, посчитать все вместе.
2 + 4 = 6
Вот и все. Теперь ты знаешь, что такое действие сложение, как называются компоненты сложения, а также как составлять и решать примеры, в которых нужно выполнить это действие.
Действие вычитание. Знак-
Название компонентов действия вычитания
Давай продолжим раскрывать тайны науки математики. Ведь есть еще одно очень важное математическое действие, с которым нам обязательно нужно познакомиться.
Итак, гномики закончили свою работу и возвращаются домой.
Дома их ждет Белоснежка.
Она приготовила для гномиков угощение – испекла пирожные. Посчитай, сколько их получилось.
У тебя тоже получилось девять пирожных? Значит, ты посчитал правильно!
Когда гномики пришли домой, каждый из них съел по пирожному. Помнишь, сколько было гномов у Белоснежки? Точно, семь. Они съели столько же пирожных, т.е. тоже семь.
Давай зачеркнем съеденные пирожные.
Мы видим, что осталось совсем мало – всего два пирожных. Наверное, они достанутся Белоснежке.
В математике действие, которое ведет к уменьшению количества предметов, называется вычитание. Его смысл в следующем. Из целого множества удаляется его часть. В итоге остается меньше элементов, чем их было в целом множестве.
Чтобы узнать результат действия вычитания, нужно пересчитать элементы, которые остались.
Давай подумаем, в каких случаях предметов станет меньше. Пирожных стало меньше, потому что гномики съели часть из них. Еще могут быть такие ситуации:
Для того, чтобы записать действие вычитания в виде математического выражения используют специальный знак. Знак вычитания выглядит так.
Он называется «минус».
В тетради знак «минус» пишется так.
Порядок написания знака «минус» следующий.
Потренируйся писать знак «минус» в тетради.
А теперь я расскажу, как составлять математическое выражение, которое описывает действие вычитание.
Вспомни, сколько пирожных было сначала?
Правильно, 9. Запиши.
Гномики съели пирожные и их стало меньше, поэтому ставим знак «минус».
Они съели 7 пирожных. Запишем это число.
9 – 7
Ставим знак равенства и запишем количество пирожных, которые остались. Их оставалось 2.
9 – 7 = 2
В тетради запись выглядит так.
Названия компонентов действия вычитания запомнить довольно легко.
Левая сторона этого выражения тоже называется разность.
Если в задании говорится, что нужно «найти разность чисел», значит, следует составить математическое выражение с действием вычитания.
Такое выражение можно прочитать по-разному.
Закрепим все, что ты узнал о действии вычитания и составим математическое выражение по такой картинке.
Посмотри, сколько всего было шариков у гномика сначала? Запиши.
Что случилось с некоторыми шариками? Сколько таких шаров?
Верно, два шарика сдулись и у гномика шариков осталось меньше. Значит нужно написать «минус два».
5 – 2
Ставим знак равенства и пересчитаем, сколько осталось целых шариков.
5 – 2 = 3
Вот мы и составили выражение.
А теперь разберемся, как нужно решать примеры на вычитание. Например, посчитаем, сколько будет:
Назови уменьшаемое. Выложи столько же кружочков. Их должно быть 6.
Теперь назови вычитаемое. Убери (отодвинь, зачеркни) четыре кружочка.
Пересчитай кружочки, которые остались, и ты узнаешь ответ. Запиши его после знака равенства.
6 – 4 = 2
Мы решили пример на вычитание. Теперь ты знаешь, что обозначает это математическое действие, как называются компоненты вычитания, и как нужно составлять и решать математические выражения с действием вычитания.
Взаимосвязь между действием сложения и действием вычитания
Итак, ты выучил два математических действия: сложение и вычитание. Одно из них используется при объединении предметов в единое множество, а другое при удалении из целого множества его части.
Ты вспомнил, что обозначает каждое действие?
Эти действия связаны между собой, но имеют противоположное значение. При сложении мы получаем больший результат, а при вычитании предметов становится меньше. Вот, например, представь, что у тебя было несколько конфет и тебе дадут еще пару штук. Что получится?
Правильно, у тебя конфет станет больше.
А если ты съешь несколько конфет? Что у тебя останется?
Правильно, у тебя останется меньше конфет.
А теперь давай проверим, какая именно взаимосвязь между действиями сложения и вычитания. Разберем одну ситуацию и составим по ней математическое выражение.
У Белоснежки День рождения. Гномики решили устроить для нее праздник. Посчитай, сколько их всех на картинке.
К Белоснежке на День рождения пришли зверята. Посчитай, сколько их.
Подумай, какое действие мы должны использовать, чтобы составить выражение?
Ну конечно, действие сложение. Ведь теперь их всех вместе стало больше.
Было три, пришло еще пять. Посчитай, сколько теперь всех вместе.
Запишем в виде выражения.
3 + 5 = 8
3 – это первое слагаемое, оно показывает, сколько элементов было в первом множестве.
5 – это второе слагаемое, оно показывает, сколько элементов было во втором множестве.
8 – это сумма, она обозначает количество элементов в общем множестве.
Теперь на полянке и гномики с Белоснежкой (это наше первое множество), и зверята (это второе множество). Они все вместе.
Получается, что на празднике веселились 8 друзей. Когда праздник закончился, зверята ушли домой. Как ты думаешь, какое математическое действие надо использовать в этом случае?
Правильно, действие вычитание. Ведь зверята ушли и на полянке останется меньше друзей.
Итак, 5 зверят ушло. Кто остался? Сколько их?
Верно, остались гномики с Белоснежкой. Их 3.
Составим математическое выражение.
8 – 5 = 3
Мы видим, что если из общего множества (суммы) убрать элементы второго множества (второе слагаемое), то останутся только элементы первого множества (первое слагаемое).
А если было наоборот, из 8 друзей первыми с полянки ушли гномики с Белоснежкой (их 3). Кто на ней останется?
Правильно, останутся зверята. Их 5.
Посмотри, как это запишем.
8 – 3 = 5
Теперь мы из общего множества (суммы) убрали элементы первого множества (первое слагаемое) и остались только элементы второго множества (второе слагаемое).
Итак, у нас получается, что мы при сложении два множества объединяем в одно целое. А если из этого общего множества убрать какое-то одно из составляющих множеств, то останется другое.
В математике это правило взаимосвязи между компонентами сложения звучит так: если из суммы вычесть одно слагаемое, то получим другое слагаемое.
Мы видим, что в примере на сложение есть два слагаемых. Поэтому можно сделать следующий вывод: из одного математического выражения с действием сложения можно составить два выражения с действием вычитания.
8 – 3 = 5
8 – 5 = 3
Это очень важное правило, которое поможет тебе в дальнейшем быстро и легко учить таблицы вычитания.
А на сегодня все. Гномики помогли нам получить очень важные и ценные знания. Нужно обязательно поблагодарить их за это.
В материалах урока использованы кадры из а/ф «Белоснежка и семь гномов», 1937