какие звезды относятся к горячим по температуре поверхности
Спектральная классификация звезд: зависимость цвета и температуры
Спектральная классификация звезд и зависимость цвета от температуры их поверхности
Цвет звезды определяется разностью между её фотографической и фотовизуальной величинами. По общему соглашению эти шкалы выбраны так, чтобы белая звезда, типа Сириуса, имела в обеих шкалах одну и ту же величину. Разность между фотографической и фотовизуальной величинами называется показателем цвета данной звезды. Для таких голубых звёзд, как Ригель, это число будет отрицательным, так как такие звёзды на обычной пластинке дают большее почернение, чем на чувствительной к жёлтому свету.
Классификация звезд по температуре и цвету
У красных звёзд типа Бетельгейзе показатель цвета доходит до +2-3 звёздных величин. Это измерение цвета одновременно является и измерением поверхностной температуры звезды, причём голубые звёзды оказываются значительно горячее красных.
Поскольку показатели цвета можно довольно легко получить даже для очень слабых звёзд, они имеют большое значение при изучении распределения звёзд в пространстве.
К важнейшим инструментам исследования звезд, относятся спектральные приборы. Даже самый поверхностный взгляд на спектры звезд обнаруживает, что не все они одинаковы. Бальмеровские линии водорода в некоторых спектрах сильны, в некоторых — слабы, в некоторых – вообще отсутствуют.
Какую температуру имеют солнечные пятна? Давайте посмотрим. Подробнее об этом
Вскоре стало ясно, что спектры звёзд можно разделить на небольшое число классов, постепенно переходящих друг в друга. Ныне применяемая спектральная классификация была разработана в Гарвардской обсерватории под руководством Э. Пикеринга.
Вначале спектральные классы обозначались латинскими буквами в алфавитном порядке, но в процессе уточнения классификации установились следующие обозначения для последовательных классов: О, В, A, F, G, К, М. Кроме того, немногочисленные необычные звёзды объединяются в классы R, N и S, а отдельные индивидуумы, совершенно не укладывающиеся в эту классификацию, обозначаются символом PEC (peculiar – особенные).
Интересно отметить, что расположение звёзд по классам является одновременно и расположением по цвету.
Вас может заинтересовать
Расположив спектры в том же порядке, мы видим, как максимум интенсивности излучения сдвигается от фиолетового к красному концу спектра. Это указывает на понижение температуры по мере перехода от класса О к классу М. Место звезды в последовательности определяется скорее температурой её поверхности, чем химическим составом. Принято считать, что химический состав один и тот же для огромного большинства звёзд, но различные температуры и давления на поверхности вызывают большие различия в звёздных спектрах.
Спектральные классы звезд
Голубые звёзды класса О являются самыми горячими. Их температура поверхности достигает 100 000°С. Спектры их легко узнать по присутствию некоторых характерных ярких линий или по распространению фона далеко в ультрафиолетовую область.
Непосредственно за ними следуют голубые звёзды класса В, также весьма горячие (поверхностная температура 25 000°С). Их спектры содержат линии гелия и водорода. Первые слабеют, а последние усиливаются при переходе к классу А.
В классах F и G (типичная звезда класса G — наше Солнце) постепенно усиливаются линии кальция и других металлов, как, например, железа и магния.
В классе К очень сильны линии кальция, появляются также молекулярные полосы.
Класс М включает красные звёзды с поверхностной температурой, меньшей 3000°С; в их спектрах видны полосы окиси титана.
Классы R, N и S относятся к параллельной ветви холодных звёзд, в спектрах которых присутствуют другие молекулярные компоненты.
Для знатока, однако, есть очень большая разница между «холодной» и «горячей» звёздами класса В. В точной классификационной системе каждый класс подразделяется ещё на несколько подклассов. Самые горячие звёзды класса В относятся к подклассу ВО, звёзды со средней для данного класса температурой — к подклассу В5, самые холодные звёзды — к подклассу В9. Непосредственно за ними следуют звёзды подкласса АО.
Звезды рождаются, живут и умирают почти как живые существа. Узнайте больше об эволюции звезд Подробнее об этом
Изучение спектров звёзд оказывается весьма полезным, так как даёт возможность грубо расклассифицировать звёзды по абсолютным звёздным величинам. Например, звезда ВЗ является гигантом с абсолютной звёздной величиной, примерно равной — 2,5. Возможно, правда, что звезда окажется в десять раз ярче (абсолютная величина — 5,0) или в десять раз слабее (абсолютная величина 0,0), так как по одному только спектральному классу невозможно дать более точной оценки.
Устанавливая классификацию звёздных спектров, весьма важно попытаться внутри каждого спектрального класса отделить гиганты от карликов или там, где этого деления не существует, выделить из нормальной последовательности гигантов звёзды, обладающие слишком большой или слишком малой светимостью.
Цвета звезд и их классификация
Какие цвета звезд бывают? На самом деле, они могут быть совершенно разными. Как правило, визуально на небесной сфере мы различаем белые и красные светила.
Хотя многие считают, что звёздные объекты белые, в действительности, это не так. Они бывают голубые, желтые, оранжевые и красные.
Сияние звезд на небе очень красивое и таинственное явление.
Разноцветные звезды
Почему звезды разного цвета
Во-первых, атмосфера Земли искажает реальные цвета звезд.
Во-вторых, нам кажется, что излучение звёздных тел белое из-за нашего восприятия. В основном, это связано с физическими возможностями человека. Потому как в сетчатке наших глаз находятся рецепторы, которые отвечают за цветное зрение. Чем слабее импульс, тем более в тусклом свете мы видим.
На удивление, разнообразные цвета звезд обусловлены не так их составом, их температурой. Как оказалось, нагрев ионизирует определённые элементы, тем самым скрывая их.
Благодаря спектральному анализу астрономы определяют и состав, и температуру объектов. Поскольку атомы отдельного вещества обладают своей пропускной способностью. Например, одни световые волны легко проходят через определенные вещества. А другие, наоборот, не пропускают их. Таким образом можно определить химический состав тела.
Наос (самая горячая звезда)
В любом случае, разница в цветовой гамме зависит от температуры поверхности. Стоит отметить, что в природе всегда существует отношение между энергией и излучаемым светом.
Собственно говоря, на степень нагретости влияет скорость молекулярного движения вещества. А она оказывает влияние на длину световых волн, проходящих через эти вещества. То есть при высокой скорости молекулы движутся быстрее, поверхность становится горячее. В результате волны укорачиваются. И наоборот, холодная среда характеризуется небольшой скоростью, а также удлинёнными волнами.
Как оказалось, излучаемый видимый свет складывается из световых волн. Где короткие проявляются синими, а длинные красными оттенками. Белый же цвет возникает при наложении разных спектральных лучей друг на друга.
Напомним, что диаграмма Герцшпрунга-Рассела отображает все основные характеристики звёзд, которые между собой взаимосвязаны. Как из неё видно, цвета звезд зависят от их температуры по возрастанию.
Диаграмма Герцшпрунга — Рассела
Какого цвета холодные звезды
В действительности, их поверхность нагрета до 3000 градусов. И цвет холодных звезд находится в красном диапазоне. Как правило, это красные гиганты.
Какого цвета самые горячие звезды
Между прочим, чем горячее звёздное тело, тем ближе к голубому. Их разогретость может иметь значения 10-30 тысяч градусов по Цельсию. К тому же, существуют тела с показателями около 100 тысяч градусов. Причем это самые горячие голубые звезды. Также представляют собой гиганты.
Классификация звезд по цвету
Прежде всего, разделение происходит по принципу: от горячих к холодным. Всего выделено 7 групп. В свою очередь, они делятся на категории от 0 до 9, также от самых горячих к самым холодным.
Класс О: голубые
Как уже было сказано, они имеют самую высокую температуру (в среднем 300000°С). Вероятнее всего, возникают из двойных при их слиянии. В итоге, получается одно очень яркое и массивное светило, которое сильно разогрето.
К примеру, к ним относятся Ригель, Тау Большого Пса, Дзета Ориона и другие.
По оценке учёных, это довольно редкие экземпляры в нашей Вселенной.
Класс В: белые и голубые
По большей части, это небольшие тела с нагретой поверхностью от 7 до 200000°С. В эту группу входят Альтаир, Вега и Сириус.
G класс — желтые
Установлено, что желтая звезда обладает температурой поверхности около 60000°С, а масса приблизительно как у Солнца (0,8-1,4).
Из них можно отметить светила Альхита, Дабих, Капелла и другие. Также, например, наше родное Солнце относится к карликам класса G2.
Класс К — оранжевые
В отличие от других, для них характерен нагрев от 4000 до 60000°С. Для примера, известная звезда Альдебаран как раз имеет оранжевый цвет.
М класс — красные
По сравнению с остальными, их поверхность не отличается горячностью (30000°С). А внешняя оболочка богата на углерод. Что важно, многие популярные объекты представляют данный тип. Взять хотя бы Антарес и Бетельгейзе.
Между прочим, во Вселенной наиболее распространены оранжевые и красные светила.
Какие еще бывают светила по цвету
С одной стороны, спектр обладает максимумом в определенном цвете. С другой стороны, при наблюдении это не всегда заметно. Нам кажется, что свет белый, иногда даже красноватый. Конечно, детальный анализ распределения интенсивности электромагнитного излучения показывает реальные свойства небесных объектов. Хотя сейчас многие телескопы также позволяют их различить.
Более того, мы научились распознавать другие виды излучений. Что делает возможным выяснить многие особенности космических тел.
Так, установили, что нейтронные светила излучают рентгеновские лучи. Кроме того, существуют зелёные и фиолетовые тела. Которые мы воспринимаем как белые и голубые соответственно. Правда, их невозможно определить без специальных приборов. Потому что они могут быть лишь в очень тесных двойных системах.
Вдобавок ко всему, цвет звезд, как и все её характеристики, может меняться под влиянием друг друга, внешней среды и стадии эволюции. То есть, все происходящие с ними процессы, так или иначе, влияют и изменяют его.
Помимо всего, визуальное различие тел зависит от чувствительности глаз человека, а также индивидуального восприятия.
Итак, мы узнали какого цвета звезды на небе, причины их различия. Надеюсь, теперь вы сможете ответить на вопрос: какого цвета, например, звезда Бетельгейзе?
При наблюдениях не стоит забывать, что сияющая одним светом звезда, скорее всего, в действительности обладает иным спектром.
Температура звезд и от чего она зависит
Как известно, температура внутри звезд очень высокая. Ведь благодаря ей и запускаются термоядерные реакции. При сжатии молекулярного облака гравитационными силами происходит нагрев, который при достаточной массе молекул всё увеличивается и увеличивается. Так, начинается синтез гелия из водорода или, проще говоря, рождается звезда.
Несмотря на то, что все облака состоят из молекул водорода, они отличаются друг от друга количеством его частиц. В итоге получается разная масса протозвезд. Хотя процесс формирования светил примерно одинаковый.
Главным образом, температура звезд повышается при их начальном образовании, а затем при реакциях, происходящих в их ядре. В свою очередь, тепло, производимое в центральной части светила, поднимается и в его верхние слои (то есть на поверхность). А так как у разных тел она разная в недрах, соответственно, она отличается и на поверхности.
От чего зависит температура звезды
В действительности, она обуславливается двумя основными факторами.
Во-первых, уровнем производимой ядром энергии. По данным учёных, ядро разогревается до 15 млн градусов. Однако излучается только тепло, полученное в результате термоядерных реакций. А вот энергия от гравитационного сжатия остаётся в самом центре.
Температура поверхности звезд напрямую зависит от силы внутренних процессов, а также какие элементы в них задействованы. Например, если происходит синтез не только гелия из водорода, но и синтез с участием тяжёлых элементов, то и излучающая энергия будет в разы больше. Как следствие, поверхностный нагрев увеличится.
А во-вторых, важное значение имеет площадь поверхности, которая излучает внутреннюю энергию. Дело в том, что звёздные объекты производят и в то же время отдают энергию в космическое пространство. И сколько они её отдадут, зависит от внешней оболочки, то есть от излучаемой поверхности.
Когда у звёзд расширяются внешние границы, увеличивается и ядро. А чем оно плотнее, тем горячее. Но так лишь внутри, а снаружи (в фотосфере) такие звезды имеют низкую температуру. Проще говоря, чем больше площадь, тем больше энергетический расход.
Помимо этого, прослеживается связь размеров, масс, светимостей и температур звёздных объектов. К примеру, чем массивнее звёздное тело, тем выше его светимость, а значит и нагрев. Стоит отметить, что температура звезды определяет её цвет. Взаимосвязь характеристик светил отображена на диаграмме Герцшпрунга-Расела.
Диаграмма Герцшпрунга — Рассела
Как видно, спектральные классы отличаются между собой набором характеристик.
Как определить и в чем измеряется температура звезд
Стоит отметить, что для данной характеристики используют эффективную величину нагретости тела. Другими словами, насколько горячий объект, настолько он излучает энергию. В случае со звёздными телами, их накал даёт характеристику светимости.
А вот для определения эффективной температуры звезд применяют закон Стефана-Больцмана. Он гласит, что мощность излучения нагретого тела прямо пропорциональна площади поверхности и температуры четвёртой степени.
P=σST⁴
где σ — это постоянный коэффициент 5,7*10-8,
S — площадь, а P — излучаемая мощность.
На самом деле, определяется температура звезд в Кельвинах (К). Правда, можно перевести в градусы Цельсия (С).
Какие температуры поверхности могут иметь звезды
По оценке учёных, показатели отдельных светил разные. Более холодные обладают теплом 2000-5000 К, средняя температура (у жёлтых и оранжевых) тел составляет 5000-7500 К, а горячие представители достигают значений 7500-80000 К.
Наос (самая горячая звезда)
Какие звезды имеют самую низкую температуру
Наименьшую температуру поверхности имеют звезды красных цветов. Правда, называть их холодными не совсем точно. Потому как их нагретость равняется 2000-3000К.
Звезда Барнарда (одна из самых холодных звёзд)
У какого типа звезд наибольшая температура
Как вы думаете, какая температура на поверхности самых горячих звезд?
Между прочим, наиболее жаркие светила имеют голубой или белый цвет. Хотя самый высокий уровень у синих. Только вдумайтесь, их уровень тепла может достигать 40000К.
Итак, мы выяснили, что температура и размеры звёзд могут быть разными. Вдобавок их характеристики связаны между собой.
Также очевидно, что температура в центре звезды отличается от температуры поверхности, которые они могут иметь. Это лишний раз доказывает, что каждый небесный объект уникален. Даже если одни его свойства схожи с другими телами, обязательно будет отличие в каком-либо другом параметре.
Температура звезды
Возможно, вы не знали, что цвет звезды напрямую зависит от температуры небесного тела. Еще более удивительно, что наиболее холодные – красные, а максимально раскаленные – синие. Но цвет играет роль индикатора, а вот на саму температуру влияет масса. Внимательно изучите нижнюю таблицу и отметьте зависимость цвета звезды от температуры.
Если брать наиболее распространенный вид звезд, то это красные карлики. Их обычная масса достигает 7.5% солнечной (50% – максимум). Из-за этого они расходуют водородный запас очень медленно. Например, красный карлик при массе в 10% от солнечной способен просуществовать 10 триллионов лет. Согласитесь, это приличное число по сравнению с солнечными 12 миллиардами. Поверхностная температура повышается до 3500 Кельвинов.
Зависимость цвета звезды от ее температуры
Солнце – желтый карлик с поверхностной температурой 5800 Кельвинов. Из-за этого большая часть света высвобождается в желтом/белом свете. Пребывает в главной последовательности 4.5 миллиардов лет и пробудет в этой стадии еще примерно 7 миллиардов лет.
График зависимости цвета звезды от температуры ее поверхности
Максимально горячие звезды – синие. Их температурные показатели начинаются с отметки в 10000 К и могут достигать 40000 К. На поверхности накапливается такое огромное количество энергии, что их можно отнести к ультрафиолетовым звездам, чей свет не улавливается без использования техники. Выходит, что вы для определения температуры звезд можете использовать ее цвет, а затем уже ориентироваться по массе и прочим характеристикам.
Температура звезды
Звезды принадлежат к горячейшим объектам Вселенной. Именно высокая температура нашего Солнца сделала возможной жизнь на Земле. Но причина такого сильного нагрева звезд долгое время оставалась неизвестной людям.
Откуда в звезде берется жар?
Разгадка секрета высокой температуры звезды лежит внутри нее. Имеется в виду не только состав светила — в буквальном смысле весь накал звезды исходит изнутри. Ядро — это горячее сердце звезды, в котором происходит термоядерная реакция синтеза, самая мощная из ядерных реакций. Этот процесс является источником энергии для всего светила — тепло из центра поднимается наружу, а затем и в открытый космос.
Материалы по теме
Ядро звезды
Поэтому температура звезды сильно различается в зависимости от места измерения. К примеру, температура в центре ядра нашего Солнца достигает 15 миллионов градусов Цельсия — а уже на поверхности, в фотосфере, жар спадает до 5 тысяч градусов.
Но существует еще и звездная корона, самая верхняя часть атмосферы звезды. Ее температура необычайно высока в сравнении с нагревом нижних слоев — у Солнца она доходит до 900 тысяч – 1 миллиона градусов Цельсия. Точной причины такого скачка ученые еще не знают, но в нем явно замешано магнитное поле Солнца. Оно играют немалую роль в формировании итоговой температуры поверхности звезды — но об этом чуть дальше.
Солнце — это самая рядовая звезда во Вселенной, поэтому ее показатели температуры свойственны большинству видимых звезд. Однако, есть звезды погорячее: раскаленная поверхность звезд — голубых сверхгигантов, таких как Джета в созвездии Кормы, достигает 200 000 °C! Страшно представить, насколько высока температура в их ядре — нагрев переваливает за сотню миллионов градусов по Цельсию. Красные гиганты, наоборот, холоднее — их фотосфера разогревается всего до 2,5–3 тысяч градусов по Цельсию.
Как видно, цвет звезды непосредственно определяется ее температурой — чем горячее звезда, тем ближе ее свет к синему цвету. Критерий цвета-температуры является решающим при распределении звезд по спектральным классам. Также это один из главных факторов расположения светила в диаграмме Герцшпрунга-Рассела — по ней можно найти звезды с похожими характеристиками, а также определить возраст звезды.
Почему температура звезды такая разная?
Первичное объединение атомов водорода — первый шаг процесса ядерного синтеза
Действительно, отличия в нагреве ядра звезды и ее поверхности удивляют. Если бы вся энергия ядра Солнца распределится по звезде равномерно, температура поверхности нашего светила составит несколько миллионов градусов по Цельсию! Не менее поразительные отличия в температуре между звездами разных спектральных классов.
Все дело в том, что температуру звезды определяют два главных фактора: уровень излучения энергии ядром и площадь излучающей поверхности. Рассмотрим их подробнее.
Излучение энергии ядром
Хотя ядро накаляется до 15 миллионов градусов, не вся эта энергия передается соседним слоям. Излучается только то тепло, которое было получено от термоядерной реакции. Энергия гравитационного сжатия, несмотря на свою мощь, остается в пределах ядра. Соответственно, температуру верхних слоев звезды определяет только сила термоядерных реакций в ядре.
Различия тут могут быть качественные и количественные. Если ядро достаточно большое, в нем «сгорает» больше водорода. Этим путем энергию получают молодые и зрелые звезды размеров Солнца, а также голубые гиганты и сверхгиганты. Массивные звезды вроде красных гигантов тратят в ядерной «топке» не только водород, но и гелий, или даже углерод и кислород.
Материалы по теме
Каким образом светит Солнце
Процессы синтеза с ядрами тяжелых элементов дает намного больше энергии. В рамках термоядерной реакции синтеза, энергия получается за счет избыточной массы соединяющихся атомов. Во время протон-протонной реакции, которая происходит внутри Солнца, 6 ядер водорода с атомной массой 1 объединяются в одно ядро гелия с массой 4— грубо говоря, 2 лишних ядра водорода переходят в энергию. А когда «горит» углерод, сталкиваются ядра с массой уже 12 — соответственно, выход энергии куда больше.
Площадь излучающей поверхности
Однако звезды не только генерируют энергию, но и тратят ее. Следовательно, чем больше энергии звезда отдает, тем меньше ее температура. А количество отдаваемой энергии первоочередно определяет площадь излучаемой поверхности.
Истинность этого правила можно проверить даже в быту — белье сохнет быстрее, если его развесить пошире на веревке. А поверхность звезды расширяет ее ядро. Чем оно плотнее, тем выше его температура — и при достижении определенной планке, от накала зажигается водород вне звездного ядра.
Ядра красных гигантов очень плотные, поскольку там очень много гелия. Иногда он уже и сам «зажжен» термоядерной реакцией. Поэтому площадь их поверхности превышает площадь Солнца в десятки тысяч, а то и в миллион раз! Так что фотосфера даже самых больших красных гигантов в два раза холоднее поверхности Солнца.
Восход раскаленного красного гиганта в представлении художника
Различия в температуре на поверхности
Еще один важный пункт — некоторые места на поверхности одной и той же звезды могут иметь разную температуру. Перепады достигают нескольких тысяч градусов Цельсия! Все зависит от способа передачи энергии от ядра звезды. Астрофизики выделяют два основных — лучистый перенос и конвекцию:
Схема движения энергии в звезде солнечного типа
Размещение зон лучистого переноса и конвекции зависит от массы звезды. В звездах, масса которых меньше солнечной, преобладает только конвекция. Массивные светила переносят жар от ядра к внешним слоям конвекцией, а до самой поверхности — лучистым переносом.
У Солнца же все наоборот: энергия от ядра уходит в виде лучей, а потом уже выкидывается на поверхность конвективными потоками звездной плазмы. Там, в фотосфере, энергия Солнца снова превращается в свет — в том числе видимый человеческому глазу.
И именно благодаря конвекции на поверхности Солнца случаются перепады температуры. Места, в которых это происходит, выделяются еще и визуально. Три главных типа — это факелы, пятна и протуберанцы.
Пятна, факелы и протуберанцы
Как и факелы, так и пятна с протуберанцами на Солнце появляются благодаря магнитным полям звезды, пересекающим фотосферу в периоды повышенной активности. Факелы появляются на тех местах, где магнитные линии ускоряют конвективные потоки газов из глубин Солнца. Похожее происхождения имеют и протуберанцы — но зона выхода магнитного поля у них куда уже, а сила магнитных линий — больше. В пятнах, наоборот, магнитное поле тормозит процесс термопередачи — поэтому они тусклее и прохладнее.
В силу близости Солнца к нам, оно остается единственной звездой, на которой наблюдались такие явления. Но так как природа звезд очень схожа, астрономы предполагают наличие пятен и факелов на других светилах.
Похожие статьи
Понравилась запись? Расскажи о ней друзьям!