сколькими основными физическими параметрами характеризуется звук

Физические характеристики звука

Звук распространяется в любых средах, кроме вакуума. Звук характеризуется следующими физическими характеристиками:

Скорость звука в воздухе v = 330 м/с; в воде v =1500 м/с; близкое к этому значение имеет скорость звука и в мягких тканях организма; в твердых средах (кость) v = 4000 м/с.

Б. Частота звука (ν) – это число колебаний частиц среды, участвующих в волновом процессе, в секунду,.

В. Интенсивность (I) – это энергетическая характеристика звука. По определению – это плотность потока энергии звуковой волны или энергия, переносимая волной в единицу времени через единицу поверхности. Для уха человека важны два значения интенсивности (на частоте 1 кГц):

Г. Звуковое давление (Р)– это давление, дополнительно возникающее при прохождении звуковой волны в среде; оно является избыточным над средним давлением среды.

Физиологически звуковое давление проявляется как давление на барабанную перепонку.

Звуковое давление на пороге болевого ощущения – Рmax = 60 Па.

Между интенсивностью (I) и звуковым давлением (Р) существует связь:

При падении звуковой волны на границу раздела между двух сред возникают явления отражения и преломления звука. Интенсивности отраженной и преломленной волн зависят от соотношения волновых сопротивлений сред.

Интенсивность отраженной волны зависит от коэффициента отражения.

При нормальном падении коэффициент (r) рассчитывается по формуле:

Интенсивность преломления волны зависит от коэффициента пропускания.

Коэффициент пропускания (β) – величина, равная отношению интенсивности прошедшей (преломленной) и падающей волн: β = Iпрош /Iпад

При нормальном падении коэффициент β рассчитывается по формуле:

Чем меньше отличаются волновые сопротивления сред, тем меньшая доля энергии отражается на границе раздела этих сред.

Сумма коэффициентов отражения и преломления равна единице, а их значения не зависят от того порядка, в котором звук проходит данные среды. Например, для перехода звука из воздуха в воду значения коэффициентов такие же, как для перехода в обратном направлении.

Е. Уровень интенсивности (L). При сравнении интенсивности звука удобно пользоваться логарифмической шкалой, т.е. сравнивать не сами величины, а их логарифмы. Для этого используется специальная величина – уровень интенсивности: L = lg (I/I0) = 2 lg (P/P0)

Логарифмический характер зависимости уровня интенсивности от самой интенсивности означает, что при увеличении интенсивности в 10 раз уровень интенсивности возрастает на 1 Б. Один бел большая величина, поэтому на практике используют более мелкую единицу уровня интенсивности – децибел [дБ:] 1 дБ = 0,1 Б.

Уровень интенсивности в децибелах определяется по следующим формулам: LдБ = 10 lg (I/I0); LдБ = 20 lg (P/P0).

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Звук и его характеристики

В этой статье речь пойдёт непосредственно о звуке.

Рассмотрим такие вопросы:

— Что такое звук?

Характеристики звука или свойства и качества.

— Воздействие звука на человеческий слух.

Что такое звук?

Давайте для начала обратимся к Википедии, как же там трактуется слово «звук».

Звук, в широком смысле — упругие волны, распространяющиеся в какой-либо упругой среде и создающие в ней механические колебания; в узком смысле — субъективное восприятие этих колебаний специальными органами чувств животных или человека.

Давайте разбираться. Немного упростим определение. Звук – это волны, которые распространяются в какой-то определенной среде (вода, воздух, камень и т.д.), и создают в ней механические колебания (вибрация), слышимые нами. Звук – это определённого рода давление воздуха. Когда вы хлопаете в ладоши, воздух между ладонями выталкивается и создается звуковая волна. Но ведь звуки бывают различные (писк, гул, шум, хрип и т.д.). Почему так происходит?

Это зависит от характеристик звука.

Характеристики звука

Для начала давайте разберёмся, что такое свойства и качества звука. Свойствами звука называют присущие ему физические особенности, а качествами звука – отражения физических свойств звука в наших ощущениях. Определённое свойство звука отражается в его качестве.

Свойство звукаКачество звука
1ЧастотаВысота
2ПродолжительностьДлительность
3АмплитудаГромкость
4СоставТембр

Рассмотрим характеристики звука на примере синусоидальной волны.

1.Частота (высота) – количество полных колебаний за единицу времени (единица измерения — Герц)

сколькими основными физическими параметрами характеризуется звук. Смотреть фото сколькими основными физическими параметрами характеризуется звук. Смотреть картинку сколькими основными физическими параметрами характеризуется звук. Картинка про сколькими основными физическими параметрами характеризуется звук. Фото сколькими основными физическими параметрами характеризуется звук

сколькими основными физическими параметрами характеризуется звук. Смотреть фото сколькими основными физическими параметрами характеризуется звук. Смотреть картинку сколькими основными физическими параметрами характеризуется звук. Картинка про сколькими основными физическими параметрами характеризуется звук. Фото сколькими основными физическими параметрами характеризуется звук

2. Продолжительность ( длительность) – время, за которое звук из ясно слышимого переходит в абсолютную тишину.

сколькими основными физическими параметрами характеризуется звук. Смотреть фото сколькими основными физическими параметрами характеризуется звук. Смотреть картинку сколькими основными физическими параметрами характеризуется звук. Картинка про сколькими основными физическими параметрами характеризуется звук. Фото сколькими основными физическими параметрами характеризуется звук

3. Амплитуда (громкость) – максимальное значение колебательного движения ( единица измерения – Децибел)

Высокий уровень громкости

сколькими основными физическими параметрами характеризуется звук. Смотреть фото сколькими основными физическими параметрами характеризуется звук. Смотреть картинку сколькими основными физическими параметрами характеризуется звук. Картинка про сколькими основными физическими параметрами характеризуется звук. Фото сколькими основными физическими параметрами характеризуется звук

Низкий уровень громкости

сколькими основными физическими параметрами характеризуется звук. Смотреть фото сколькими основными физическими параметрами характеризуется звук. Смотреть картинку сколькими основными физическими параметрами характеризуется звук. Картинка про сколькими основными физическими параметрами характеризуется звук. Фото сколькими основными физическими параметрами характеризуется звук

Вот вам табличка для ещё более наглядного понимания

ЗвукГромкость, дБ:
Порог слышимости0
Тиканье наручных часов10
Шепот20
Звук настенных часов30
Приглушенный разговор40
Тихая улица50
Обычный разговор60
Шумная улица70
Опасный для здоровья уро­вень75
Пневматический молоток90
Кузнечный цех100
Громкая музыка110
Болевой порог120
Сирена130
Реактивный самолет150
Смертельный уровень180
Шумовое оружие200

4. Состав (тембр) – количество тонов звука, переплетающихся между собой, которые возникают потому, что источник звука колеблется не только целиком, но и по частям ( половинами, третями, четвертями, пятыми и т.д.).

сколькими основными физическими параметрами характеризуется звук. Смотреть фото сколькими основными физическими параметрами характеризуется звук. Смотреть картинку сколькими основными физическими параметрами характеризуется звук. Картинка про сколькими основными физическими параметрами характеризуется звук. Фото сколькими основными физическими параметрами характеризуется звук

Звук пианино

Звук гитары

Звук синтезатора

Воздействие звука на человеческий слух

Для работы со звуком необходимо знать, как этот звук воспринимается человеком и воздействует на него.

Здоровый человек способен воспринимать звук в диапазоне приблизительно от 16 Гц до 20 кГц.

В тоже время мы воспринимаем высокие звуки как более громкие по сравнению с низкими, хотя на самом деле они имеют одинаковую громкость. Этот эффект можно рассмотреть с помощью кривых равной громкости.

сколькими основными физическими параметрами характеризуется звук. Смотреть фото сколькими основными физическими параметрами характеризуется звук. Смотреть картинку сколькими основными физическими параметрами характеризуется звук. Картинка про сколькими основными физическими параметрами характеризуется звук. Фото сколькими основными физическими параметрами характеризуется звук

На графиках мы можем отчетливо проследить разность восприятия громкости низких, средних и высоких звуков (нелинейность восприятия).

При продолжительном прослушивании звука с частотой, скажем, 100 Гц мы можем услышать дополнительные гармоники превышающие основной звук по частоте в два, три раза (200 и 300 Гц). Появление «субъективных гармоник» — еще одно проявление нелинейности восприятия.

Еще один аспект, о котором хотелось бы рассказать – это тот факт, что со временем способность воспринимать высокие звуки падает. Приблизительно каждые десять лет спектр восприятия высоких звуков сужается на 1 кГц.

Также когда вы слушаете два звука одной частоты, один из которых более громкий, то вы будете слышать только громкий звук, а звук с меньшим уровнем громкости просто затеряется и не будет различим. Это проявление так называемого «эффекта маскировки». Примером может служить слишком шумное помещение или вагон метро. Ведь когда вы хотите что-нибудь сказать в такой обстановке вам приходится кричать.

Бинауральный эффект или то, что нужно знать о панорамировании

Как известно, человек имеет два уха, что дает ему возможность воспринимать звук с разных сторон и определять направление звука и приблизительное расстояние до источника звука. Наш мозг воспринимает информацию, полученную из левого и правого ушей и оперируя этими данным делает определенные заключения. В этом собственно и проявляется бинауральный эффект.

Бинауральный эффект на разных частотах неравномерен. На низких частотах он практически неощутим. Ведь слушая только бас мы неспособны определить направление, расстояние до источника и другие параметры. На средних частотах определение параметров сигнала осуществляется на основе разности фаз между восприятием левого и правого ушей, а на высоких частотах – за счет сравнения силы сигнала, поступающего с разных сторон.

Таким образом с помощью стерео мы можем расположить звуки в пространстве и сделать их более живыми.

На мой взгляд понимание основ восприятия звука важный аспект для написания музыкальных композиций.

Посмотрите видео «Звук и его характеристики».

Источник

Урок 1. Свойства звука

сколькими основными физическими параметрами характеризуется звук. Смотреть фото сколькими основными физическими параметрами характеризуется звук. Смотреть картинку сколькими основными физическими параметрами характеризуется звук. Картинка про сколькими основными физическими параметрами характеризуется звук. Фото сколькими основными физическими параметрами характеризуется звукЧтобы разобраться в основах теории музыки и освоить музыкальную грамоту, нам требуется понимать, что такое звук. Собственно, звук – это основа музыки, без него музыка будет невозможна.

Кроме того, нужно получить представление о нотно-октавной системе. Это все напрямую связано со свойствами звука.

Содержание:

Как видите, на первом уроке нас ждет обширная программа, и мы уверены, что вы с ней справитесь! Так что приступим.

Физические свойства звука

Для начала изучим свойства звука с точки зрения физики:

Звук – это физическое явление, представляющее собой механические волновые колебания, которые распространяются в той или иной среде, чаще в воздухе.

Звук имеет физические свойства: высоту, силу (громкость), звуковой спектр (тембр).

Основные физические свойства звука:

Высота определяется частотой колебаний и выражается в герцах (Гц).
Сила звука (громкость) определяется амплитудой колебаний и выражается в децибелах (дБ).
Звуковой спектр (тембр) зависит от дополнительных колебательных волн или обертонов, что образуются одновременно с основными колебаниями. Это хорошо слышно в музыке и пении.

Термин «обертон» происходит от двух английских слов: оver – «над», tone – «тон». От их сложения получается слово overtone или «обертон». Человеческий слух способен воспринимать звуки с частотой колебаний 16-20 000 герц (Гц) и громкостью 10-130 дБ.

Чтобы было проще ориентироваться, скажем, что 10 дБ – это шелест, а 130 дБ – это звук взлетающего самолета, если вы его слышите вблизи. 120-130 дБ – это уровень болевого порога, когда человеческому уху уже некомфортно слышать звук.

В плане высоты комфортным считается диапазон от 30 Гц примерно до 4000 Гц. К этой теме мы еще вернемся, когда будем говорить про музыкальную систему и звукоряд. Сейчас важно запомнить, что высота звука и громкость звука – это принципиально разные вещи. А пока поговорим про свойства музыкального звука.

Свойства музыкального звука

Чем отличается музыкальный звук от любого другого? Это звук с одинаковыми и равномерно повторяющимися (т.е. периодическими) волновыми колебаниями. Звук с непериодическими, т.е. неодинаковыми и неравномерно повторяющимися колебаниями, не относят к музыкальному. Это шум, свист, вой, шелест, грохот, писк и многие другие звуки.

Другими словами, музыкальный звук обладает всеми теми же свойствами, что и любой другой, т.е. имеет высоту, громкость, тембр, но, только определенное сочетание этих свойств позволяет отнести звук к музыкальному. Что еще, кроме периодичности, имеет значение для музыкального звука?

Во-первых, музыкальным считается не весь слышимый диапазон, о чем мы будем подробнее говорить дальше. Во-вторых, для музыкального звука важна его длительность. Та или иная длительность звука на определенной высоте позволяет сделать акцент в музыке или, наоборот, оставить звучание плавным. Короткий звук в конце позволяет поставить логическую точку в музыкальном произведении, а длительный – оставить ощущение недосказанности у слушателей.

Собственно длительность звука зависит от продолжительности волновых колебаний. Чем дольше идут волновые колебания, тем дольше слышится звук. Чтобы понять взаимосвязь длительности музыкального звука и его остальных характеристик, стоит остановиться на таком аспекте как источник музыкального звука.

Источники музыкального звука

Основными источниками музыкального звука являются музыкальные инструменты и певческий голос. Гипотетически сыграть мелодию можно даже на пеньке от спиленного дерева, но для удобства и универсализации пояснений мы остановимся на традиционных способах музыкального звукоизвлечения.

Если звук извлекается с помощью музыкального инструмента, его основные физические характеристики никак не зависят от длительности звука. Звук на нужной высоте будет идти ровно столько времени, сколько вы будете держать нажатой нужную клавишу синтезатора. Звук с заданной громкостью будет идти до тех пор, пока вы не уменьшите или не увеличите громкость на синтезаторе или комбоусилителе звука электрогитары.

Если же речь идет о певческом голосе, тут свойства музыкального звука взаимодействуют сложнее. Когда легче удержать звук на нужной высоте, не потеряв его силу? Тогда, когда вы тянете звук долго или когда вам нужно его дать буквально на секунду? Тянуть музыкальный звук долго, не теряя качество звучания, его высоту и силу – это особое искусство. Если вы хотите обрести красивый голос и научиться петь, рекомендуем изучить наш онлайн-курс «Развитие голоса и речи».

Музыкальная система и звукоряд

Для более глубокого понимания свойств музыкального звука нам понадобятся еще несколько понятий. В частности, такие как музыкальная система и звукоряд:

Музыкальная система – это совокупность используемых в музыке звуков определенной высоты.
Звукоряд – это звуки музыкальной системы, идущие в восходящем или нисходящем порядке.

Современная музыкальная система включает в себя 88 звуков разной высоты. Они могут быть исполнены в восходящем или нисходящем порядке. Наиболее наглядная демонстрация взаимосвязи музыкальной системы и звукоряда – это клавиатура фортепиано.

88 клавиш фортепиано (36 черных и 52 белых – потом объясним, почему так) охватывают звуки высотой от 27,5 Гц до 4186 Гц. Такие акустические возможности достаточны, чтобы исполнить любую мелодию, комфортную для человеческого уха. Звуки за пределами данного диапазона в современной музыке практически не используются.

Звукоряд построен на определенных закономерностях. Звуки, частота которых различается в 2 раза (в 2 раза выше или ниже), воспринимаются на слух как сходные. Чтобы было удобнее ориентироваться, в теорию музыки введены такие понятия как ступени звукоряда, октава, тон и полутон.

Ступени звукоряда, октава, тон и полутон

Каждый музыкальный звук звукоряда именуется ступенью. Расстояние между сходными звуками (ступенями звукоряда), отличающими по высоте в 2 раза, называется октавой. Расстояние между соседствующими звуками (ступенями) – полутоном. Полутона в пределах октавы равны (запомните, это важно). Два полутона образуют тон.

Основным ступеням звукоряда присвоены названия. Это «до», «ре», «ми», «фа», «соль», «ля», «си». Как вы поняли, это 7 нот, которые нам известны с детства. На клавиатуре фортепиано их можно найти, нажимая белые клавиши:

сколькими основными физическими параметрами характеризуется звук. Смотреть фото сколькими основными физическими параметрами характеризуется звук. Смотреть картинку сколькими основными физическими параметрами характеризуется звук. Картинка про сколькими основными физическими параметрами характеризуется звук. Фото сколькими основными физическими параметрами характеризуется звук

На цифры и латинские буквы пока не смотрите. Смотрите на клавиатуру и подписанные ступени звукоряда, они же ноты. Вы видите, что белых клавиш 52, а названий ступеней только 7. Это как раз связано с тем, что ступеням, которые имеют сходное звучания из-за отличия по высоте ровно в 2 раза, присвоены одинаковые названия.

Если мы нажмем подряд 7 клавиш фортепиано, 8-я по счету клавиша будет называться точно так, как та, которую мы нажали первой. И, соответственно, выдавать похожий звук, но на вдвое большей или меньшей высоте, смотря в какую сторону мы двигались. Точные частоты настройки фортепиано можно посмотреть в специальной таблице.

Здесь требуется еще одно уточнение по терминам. Октавой именуется не только расстояние между сходными звуками (ступенями звукоряда), отличающими по высоте в 2 раза, но и 12 полутонов от ноты «до».

Можно встретить и другие определения термина «октава», используемые в теории музыки. Но, т.к. цель нашего курса – дать основы музыкальной грамотности, мы не будем уходить глубоко в теорию, а ограничимся теми практическими знаниями, которые вам потребуются для обучения музыке и вокалу.

Для наглядности и пояснения прикладных значений термина снова воспользуемся клавиатурой фортепиано и увидим, что октава – это 7 белых клавиш и 5 черных.

Зачем нужны черные клавиши на фортепиано

Тут мы, как обещали ранее, объясним, почему у фортепиано 52 белых клавиши и только 36 черных. Это поможет лучше разобраться со ступенями звукоряда и полутонами. Дело в том, что расстояния в полутонах между основными ступенями звукоряда различаются. Например, между ступенями (нотами) «до» и «ре», «ре» и «ми» мы видим 2 полутона, т.е. черную клавишу между двумя белыми, а между «ми» и «фа» только 1 полутон, т.е. белые клавиши идут подряд. Точно так всего 1 полутон между ступенями «си» и «до».

Итого 5 ступеней (нот) имеют расстояния в 2 полутона, а две ступени (ноты) – расстояние в 1 полутон. Получается следующая арифметика:

Так мы получили 12 полутонов в октаве. Клавиатура фортепиано вмещает 7 полных октав и еще 4 полутона: 3 слева (там, где самые низкие звуки) и 1 справа (высокий звук). Считаем все полутона и клавиши, за них отвечающие:

Так мы получили суммарное количество клавиш фортепиано. Разбираемся дальше. Мы уже выучили, что в каждой октаве 7 белых клавиш и 5 черных. За пределами полных 7 октав у нас еще 3 белых и 1 черная клавиша. Считаем сначала белые клавиши:

Теперь считаем черные клавиши:

Вот наши черные клавиши в количестве 36 штук и белые клавиши в количестве 52 штук.

Думается, что со ступенями звукоряда, октавами, тонами и полутонами вы разобрались. Запомните эту информацию, т.к. она вам пригодится уже на следующем уроке, когда мы перейдем к подробному изучению нотной грамоты. А еще эта информация понадобится на последнем уроке, когда мы будем учиться играть на фортепиано.

Уточним еще один момент. Закономерности построения звукоряда одинаковы для всех музыкальных звуков, извлекаются ли они при помощи фортепиано, гитары или певческого голоса. Клавиатуру фортепиано для объяснения материала мы использовали исключительно ввиду большей наглядности.

Точно так мы воспользуемся фортепиано, чтобы подробнее разобраться с нотно-октавной системой. Это нужно сделать на сегодняшнем уроке, т.к. на следующем мы перейдем к нотной грамоте и записи нот на нотном стане.

Нотно-октавная система

В целом диапазон потенциально слышимых человеческим ухом звуков охватывает почти 11 октав. Т.к. наш курс посвящен музыкальной грамоте, нас интересуют только музыкальные звуки, т.е. примерно 9 октав. Чтобы было проще запомнить октавы и соответствующие им диапазоны звуковысотности, рекомендуем идти сверху вниз, т.е. от верхнего диапазона звуков к нижнему. Звуковысотность в герцах по каждой октаве для удобства запоминания укажем в двоичной системе.

Октавы (названия) и диапазоны:

Прочие октавы в контексте музыкальных звуков рассматривать не имеет смысла. Так, самая высокая нота у мужчин – это «фа диез» 5-й октавы (5989 Гц), и установлен данный рекорд Амирхоссейном Молаи 31 июля 2019 года в городе Тегеран (Иран) [Guinness World Records, 2019]. Певец Димаш из Казахстана дотягивается до ноты «ре» в 5-й октаве (4698 Гц). А звуки высотой ниже 16 Гц человеческое ухо воспринимать не может. Полную таблицу соответствия нот частотам и октавам вы можете изучить по нижеследующей картинке:

сколькими основными физическими параметрами характеризуется звук. Смотреть фото сколькими основными физическими параметрами характеризуется звук. Смотреть картинку сколькими основными физическими параметрами характеризуется звук. Картинка про сколькими основными физическими параметрами характеризуется звук. Фото сколькими основными физическими параметрами характеризуется звук

Фиолетовым цветом выделена 1-я нота первой октавы, т.е. нота «до», а зеленым – нота «ля» первой октавы. Именно на нее, т.е. на частоту 440 Гц, по умолчанию предустановленны все тюнеры для измерения высоты звука.

Ноты в октаве: варианты обозначения

Сегодня используются разные способы, чтобы обозначить принадлежность ноты (высоты звука) к разным октавам. Самый простой способ – записать названия нот, как они есть: «до», «ре», «ми», «фа», «соль», «ля», «си».

Второй вариант – это так называемая «нотация Гельмгольца». Такой способ предполагает обозначение нот латинскими буквами, а принадлежность к октаве – цифрами. Начнем с нот.

Ноты по Гельмгольцу:

Также важно отметить, что нота «си» иногда может обозначаться не буквой B, а буквой H. Буква H традиционна для классическомй музыки, а буква B считается более современным вариантом. В нашем курсе вы найдете обе вариации, поэтому помните, что и B, и H означают ноту «си».

Теперь к октавам. Ноты в первой-пятой октавах записываются маленькими латинскими буквами и обозначаются цифрами от 1 до 5. Ноты малой октавы – маленькими латинскими буквами без цифр. Запомните ассоциацию: малая октава – маленькие буквы. Ноты большой октавы записываются большими латинскими буквами. Запомните: большая октава – большие буквы. Ноты контроктавы и субконтроктавы записываются большими буквами и цифрами 1 и 2 соответственно.

Ноты в октавах по Гельмгольцу:

Если кого-то удивляет, почему первая нота октавы обозначается не первой буквой латинского алфавита, расскажем, что когда-то давно отсчет начинали с ноты «ля», за которой и закрепили обозначение А. Однако потом решили начинать октавный счет с ноты «до», за которой уже закрепилось обозначение С. Во избежание путаницы в нотных записях, решили сохранить буквенные обозначения нот, как есть.

Более подробно с нотацией Гельмгольца и другими его идеями вы можете ознакомиться в его работе, доступной на русском языке под названием «Учение о слуховых ощущениях как физиологическая основа для теории музыки» [Г. Гельмгольц, 2013].

И, наконец, научная нотация, которую разработало «Американское акустическое общество» в 1939 году и которая тоже актуальна до сих пор. Ноты обозначаются заглавными латинскими буквами, а принадлежность к октаве – цифрами от 0 до 8.

Научная нотация:

Обратите внимание, что цифры не совпадают с названиями октав от первой до пятой. Это обстоятельство часто вводит в заблуждение даже производителей специализированных программ для музыкантов. Поэтому в случае сомнений всегда проверяйте звучание и высоту ноты тюнером. Для этого скачайте мобильное приложение Pano Tuner и разрешите ему доступ к микрофону.

Осталось добавить, что впервые система научной нотации была обнародована в июльском номере The Journal of the Acoustical Society of America (журнале «Американского акустического общества») [The Journal of the Acoustical Society of America, 1939].

Теперь обобщим все принятые на сегодняшний день системы обозначения нот для каждой октавы. Для этого еще раз продублируем уже знакомую вам картинку с клавиатурой фортепиано и обозначениями ступеней звукоряда (нот), но уже с рекомендацией обращать внимание на цифровые и буквенные обозначения:

сколькими основными физическими параметрами характеризуется звук. Смотреть фото сколькими основными физическими параметрами характеризуется звук. Смотреть картинку сколькими основными физическими параметрами характеризуется звук. Картинка про сколькими основными физическими параметрами характеризуется звук. Фото сколькими основными физическими параметрами характеризуется звук

И, наконец, для максимально полного понимания базовых сведений теории музыки, нам следует разобраться с разновидностями тонов и полутонов.

Разновидности тонов и полутонов

Сразу скажем, что с прикладной точки зрения, для игры на музыкальных инструментах или обучения вокалу вам эти сведения особо не пригодятся. Однако термины, обозначающие виды тонов и полутонов, могут встретиться в специальной литературе. Поэтому о них нужно иметь представление, чтобы не останавливаться на непонятных моментах во время чтения литературы или углубленного изучения музыкального материала.

Тон (виды):

Полутон (виды):

Как видите, названия повторяются, так что запомнить будет нетрудно. Итак, разбираемся!

Диатонический полутон (виды):

Некоторые примеры вы можете увидеть на картинке:

сколькими основными физическими параметрами характеризуется звук. Смотреть фото сколькими основными физическими параметрами характеризуется звук. Смотреть картинку сколькими основными физическими параметрами характеризуется звук. Картинка про сколькими основными физическими параметрами характеризуется звук. Фото сколькими основными физическими параметрами характеризуется звук

Хроматический полутон (виды):

сколькими основными физическими параметрами характеризуется звук. Смотреть фото сколькими основными физическими параметрами характеризуется звук. Смотреть картинку сколькими основными физическими параметрами характеризуется звук. Картинка про сколькими основными физическими параметрами характеризуется звук. Фото сколькими основными физическими параметрами характеризуется звук

Диатонический тон (виды):

сколькими основными физическими параметрами характеризуется звук. Смотреть фото сколькими основными физическими параметрами характеризуется звук. Смотреть картинку сколькими основными физическими параметрами характеризуется звук. Картинка про сколькими основными физическими параметрами характеризуется звук. Фото сколькими основными физическими параметрами характеризуется звук

Хроматический тон (виды):

сколькими основными физическими параметрами характеризуется звук. Смотреть фото сколькими основными физическими параметрами характеризуется звук. Смотреть картинку сколькими основными физическими параметрами характеризуется звук. Картинка про сколькими основными физическими параметрами характеризуется звук. Фото сколькими основными физическими параметрами характеризуется звук

Уточним, что примеры взяты из учебника Варфоломея Вахромеева «Элементарная теория музыки» и для наглядности изображены на клавиатуре фортепиано, т.к. нотный стан мы будем изучать только на следующем уроке, а понятия тона и полутона нам нужны уже сейчас [В. Вахромеев, 1961]. В целом, мы еще неоднократно будем обращаться к трудам этого великого российского педагога и музыковеда на протяжении нашего курса.

К слову, в 1984 году за несколько месяцев до своей смерти Варфоломей Вахромеев был награжден Орденом Святого равноапостольного князя Владимира 2-й степени за составленный им «Учебник церковного пения» для духовных школ РПЦ. Учебник выдержал несколько переизданий уже после его смерти [В. Вахромеев, 2013].

И, наконец, последнее, о чем нужно поговорить в теме «Свойства звука», это энгармонизм звуков. Ранее вы узнали, что полутона в пределах октавы равны. Поэтому звук, сниженный на полутон относительно основной ступени, будет равен по высоте звуку, повышенному на полутон относительно ступени, стоящей двумя полутонами ниже.

Проще говоря, ля-бемоль (А♭) и соль-диез (G♯‎) одной и той же октавы звучат идентично. Точно так в пределах октавы одинаково прозвучат соль-бемоль (G♭) и фа-диез (F♯‎), ми-бемоль (Е♭) и ре-диез (D♯‎), ре-бемоль (D♭)и до-диез (С♯‎) и т.д. Явление, когда одинаковые по высоте звуки имеют разные названия и обозначаются разными символами, называется энгармонизмом звуков.

Для простоты восприятия мы продемонстрировали это явление на примере ступеней (нот), между которыми имеется 2 полутона. В других случаях, когда между основными ступенями всего 1 полутон, это менее наглядно. К примеру, фа-бемоль (F♭) – это чистая нота ми (Е), а ми-диез (Е♯‎) – это чистая нота фа (F). Тем не менее в специальной литературе по теории музыки могут встретиться и такие обозначения как фа-бемоль (F♭) и ми-диез (Е♯‎). Вы теперь знаете, что они значат.

Сегодня вы изучили основные физические свойства звука вообще и свойства музыкального звука в частности. Вы разобрались с музыкальной системой и звукорядом, ступенями звукоряда, октавами, тонами и полутонами. Также вы разобрались в нотно-октавной системе и теперь готовы пройти проверочный тест по материалу урока, в который мы включили наиболее важные с практической точки зрения вопросы.

Тест на усвоение материала урока

Если вы хотите проверить свои знания по теме данного урока, можете пройти небольшой тест, состоящий из нескольких вопросов. В каждом вопросе правильным может быть только 1 вариант. После выбора вами одного из вариантов, система автоматически переходит к следующему вопросу. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что вопросы каждый раз разные, а варианты перемешиваются.

Напоминаем, что для полноценной работы сайта вам необходимо включить cookies, javascript и iframe. Если вы ввидите это сообщение в течение долгого времени, значит настройки вашего браузера не позволяют нашему порталу полноценно работать.

А теперь переходим к разбору нотной грамоты.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *