статические параметры применяются для
Статические параметры
Эта погрешность является мультипликативной составляющей полной погрешности. Иногда указывается соответствующим числом ЕМР.
Погрешности полной шкалы и смещения нуля АЦП могут быть уменьшены либо подстройкой аналоговой части схемы, либо коррекцией вычислительного алгоритма цифровой части устройства.
Погрешности линейности характеристики преобразования не могут быть устранены такими простыми средствами, поэтому они являются важнейшими метрологическими характеристиками АЦП.
Дифференциальной нелинейностью АЦП в данной точке k характеристики преобразования называется разность между значением кванта преобразования hk и средним значением кванта преобразования h. В спецификациях на конкретные АЦП значения дифференциальной нелинейности выражаются в долях ЕМР или процентах от полной шкалы. Для характеристики, приведенной на рис. 25,
Температурная нестабильность АЦ-преобразователя характеризуется температурными коэффициентами погрешности полной шкалы и погрешности смещения нуля.
Статические характеристики и параметры измерительных устройств
В общем случае состояние (режим работы) измерительного устройства, при котором значения входного Х и выходного Y сигналов не изменяются, называют статическими (стационарными или равновесными).
Статической характеристикой измерительного устройства называют функциональную зависимость выходного сигнала от входного в статическом режиме работы указанного устройства. Более точно статическую характеристику можно определить как зависимость информативного параметра выходного сигнала от информативного параметра его входного сигнала в статическом режиме. Статическая характеристика описывается в общем случае некоторым нелинейным уравнением (уравнением преобразования):
Для измерительных преобразователей, а также измерительных приборов с неименованной шкалой или шкалой, отградуированной в единицах, отличных от измеряемой величины, статическую характеристику принято называть функцией преобразования. Для измерительных приборов иногда статическую характеристику называют характеристикой шкалы.
Определение статической характеристики cвязано с выполнением градуировки, поэтому для всех средств измерений используют понятие градуировочной характеристики, под которым понимают зависимость между значениями величин на выходе в ходе средства измерений, составленную в виде таблицы, графика или формулы.
Рис. 1.4. Статическая характеристика измерительного устройства
На рис. 1.4 показаны виды статических характеристик измерительных устройств. За исключением специальных случаев, основное требование, предъявляемое к статической характеристике измерительных устройств, сводится к получению линейной зависимости между выходной и входной величинами. На практике это требование реализуется в общем случае только с некоторой принятой заранее погрешностью.
Кроме статической характеристики для определения метрологических свойств измерительных устройств используется ряд параметров.
На рис. 1.4 на статической характеристике 1 графически представлены упомянутые понятия диапазона показаний, диапазона измерений, диапазона измерений нижнего Хн и Yн и верхнего Хв и Yв пределов измерений (см. также рис. 1.3).
Диапазон показаний – область значений шкалы, ограниченная конечным и начальным значениями шкалы.
Диапазон измерений (рабочая часть шкалы) – область значений измеряемой величины (на шкале прибора), для которой нормированы допускаемые погрешности средств измерений (см параграф 1.6).
В частном случае указанные диапазоны могут совпадать.
Примечательно к измерительным устройствам вообще диапазон измерений часто называют рабочим диапазоном преобразований – наибольшее значение диапазона измерений. Нижний предел измерений – наименьшее значение диапазона измерений.
Из сказанного следует, что диапазон измерений определяется разностью значений верхнего и нижнего пределов измерений (Xв–Xн; Yв–Yн). Для количественной оценки влияния на выходной сигнал измерительного устройства входного сигнала в произвольной точке (рис. 1.4) статической характеристики служит предел отношения приращения ΔY выходного сигнала к приращению ΔХ входного сигнала, когда последнее стремится к нулю, т. д. произвольная выбранной точке
(1.2) |
Применительно к измерительным приборам этот параметр называют чувствительностью и определяют как отношение измерения сигнала на выходе измерительного прибора к вызывающему его изменению измеряемой величины. Графически она определяется тангенсом угла наклона касательной (рис. 1.4), приведенной к выбранной точке A статической характеристики.
Если статическая характеристика измерительного прибора нелинейна (кривая 1 на рис. 1.4), то его чувствительность будет различной в разных точках характеристики, а шкала прибора – неравномерной. Приборы с линейной (прямая 2 на рис. 1.4) или пропорциональной (прямая 3 на рис. 1.4) статической характеристикой имеет неизменную в любой точке шкалы чувствительность и равномерную шкалу.
У измерительных преобразователей статическая характеристика, как правило, является линейной:
Здесь К – коэффициент преобразования (или при использовании преобразователя в системах автоматического регулирования – коэффициент передачи), определяемы как отношение сигнала на выходе измерительного преобразователя, отражающего измеряемую величину, к вызывающему его сигналу на выходе преобразователя.
Для измерительных приборов важным параметром является цена деления, определяемая как разность значения величин, соответствующих двум соседним отметкам шкалы. Физически цена деления определяется количеством единиц входной величины, содержащихся в одном делении шкалы измерительного прибора.
Цена деления однозначно связана с числом делений n шкалы измерительного прибора. Последнее в свою очередь связано с погрешностью измерительного прибора, обычно представляемой его классом точности (см параграф 1.6). Число делений шкалы измерительного прибора, как правило, в первом приближении определяется из соотношения
(1.4) |
При выполнении условия (1.4) число делений шкалы выбирают таким, чтобы цена деления составляла целое число единиц измеряемой величины.
В научно-технической литературе используется понятие порога чувствительности (порога реагирования) измерительного устройства, под которым понимают то наименьшее изменение входного сигнала, которое вызывает уверенно фиксируемое изменение выходного сигнала.
Как правило, наблюдатель, осуществляющий измерение, уверенно может заметить смещение стрелки на половину деления шкалы, поэтому порог чувствительности можно считать равным половине цены деления, а если учесть при этом соотношение (1.4), то в первом приближении порог чувствительности равен классу точности Λ.
Одним из важнейших условий получения корректных результатов измерений является учет взаимодействия измерительных устройств между собой и с объектом измерений.
При подключении измерительного устройства или преобразователя к объекту измерений последний потребляет некоторую энергию или мощность от объекта. Аналогичная ситуация имеет место при подключении измерительного прибора или преобразователя к выходу предыдущего по цепи измерения преобразователя. Это определяет необходимость учитывать свойства измерительных устройств отбирать или отдавать энергию через свои входные или выходные цепи.
В качестве характеристики указанного свойства принято использовать для измерительных устройств понятие входного импеданса (полного или кажущегося сопротивления), а для измерительных преобразователей – понятия входного и выходного импедансов. В общем случае под импедансом Z понимают отношение обобщенной силы N к обусловленной ею обобщенной скорости W:
В настоящее время понятие входного и выходного импедансов широко используется для электрических измерительных устройств. При этом импеданс определяется как отношение напряжения к току. Применительно к измерительным устройствам для неэлектрических величин в каждом отдельном случае требуется проведение исследований для установления наиболее целесообразной формы представления входного и выходного импедансов.
Статические характеристики и параметры средств измерений
Отдельные виды и типы средств измерений обладают своими специфическими свойствами. Вместе с тем средства измерений имеют некоторые общие свойства, которые позволяют сопоставлять средства между собой.
Различают статические и динамические свойства средства измерений. Статические свойства средства измерений проявляются при статическом режиме его работы, т. е. когда выходной сигнал средства считается неизменным при измерении; динамические свойства — при динамическом режиме работы средства измерений, при котором выходной сигнал средства изменяется во времени при его использовании.
Функция преобразования (статическая характеристика преобразования) — функциональная зависимость между информативными параметрами выходного и входного сигналов средства измерений. Функцию преобразования, принимаемую для средства измерения (типа) и устанавливаемую в научно-технической документации на данное средство (тип), называют номинальной функцией преобразования средства (типа).
Важной характеристикой является чувствительность средства измерений, под которой понимают отношение приращения выходного сигнала Δy средства измерений к вызвавшему это приращение изменению входного сигнала Δх. В общем случае чувствительность
При нелинейной статической характеристике преобразования чувствительность зависит от х, при линейной характеристике чувствительность постоянна. У измерительных приборов при постоянной чувствительности шкала равномерная, т. е. длина всех делений шкалы одинакова. Деления шкалы — участки шкалы, на которые делят шкалу с помощью отметок.
Характеристикой прибора является постоянная прибора C=1/S.
Чувствительность не следует смешивать с порогом чувствительности, под которым понимают наименьшее изменение входной величины, обнаруживаемое с помощью данного средства измерений. Порог чувствительности выражают в единицах входной величины.
Характеристикой средства измерений является диапазон измерений — область значений измеряемой величины, для которой нормированы допускаемые погрешности средства измерений. Диапазон измерений ограничивается наибольшим и наименьшим значениями диапазона измерений. С целью повышения точности измерений диапазон измерений средства измерений может быть разбит на несколько поддиапазонов. При переходе с одного поддиапазона на другой некоторые составляющие основной погрешности уменьшаются, что приводит к повышению точности измерений. При нормировании допускают для каждого поддиапазона свои предельные погрешности. Область значений шкалы, ограниченную начальными и конечными значениями шкалы, называют диапазоном показаний.
Характеристикой для измерительных приборов является цена деления шкалы — разность значений величины, соответствующих двум соседним отметкам шкалы. Для средств измерений, выдающих результаты измерений в цифровом коде; указывают цену единицы младшего разряда (единицы младшего разряда цифрового отсчетного устройства), вид выходного кода (двоичный, двоично-десятичный) и число разрядов кода.
Для оценки влияния средства измерений на режим работы объекта исследования указывают входное полное сопротивление Zвх. Входное сопротивление влияет на мощность, потребляемую от объекта исследования средством измерений. Допустимая нагрузка на средство измерений зависит от выходного полного сопротивления Zвых средства измерений. Чем меньше выходное сопротивление, тем больше допустимая нагрузка на средство измерений.
Важнейшей характеристикой средства измерений является погрешность, которую оно вносит в результат измерения, или, как принято говорить, погрешность средства измерений.
Для измерительных преобразователей погрешность может быть определена как по входу, так и по выходу преобразователя. Погрешность преобразователя по входу
Погрешность преобразователя по выходу
Погрешности средства измерений зависят от внешних условий (влияющих величин), поэтому их принято делить на основную н дополнительные. Основной погрешностью средства измерений называют погрешность в условиях, принятых за нормальные для данного средства. Дополнительные погрешности средства измерений возникают при отклонении влияющих величин от нормальных значений (нормальных областей значений).
Если статическая характеристика преобразования средства измерений имеет вид
y = F(x, ξ1, ξ2, …, ξn), где у — выходная величина; х— входная величина; ξ1, ξ2, …, ξn — влияющие величины, то изменение выходной величины Δy определяется не только изменением измеряемой величины Δх, но и изменениями влияющих величин
В этом выражении второй и последующие члены правой части являются составляющими погрешности. Если изменения влияющих величин находятся в пределах нормальных условий, то все указанные составляющие входят в состав основной погрешности. При отклонении влияющих величин за пределы нормальных условий приращения указанных составляющих образуют дополнительные погрешности от изменения величин ξ1, ξ2, …, ξn.
Функции называют функциями влияния, в которых ξ1норм, ξ2норм, …, ξтнорм, — нормальные значения влияющих величин;
ξ1, ξ2, …, ξn — влияющие величины, для которых определяют дополнительные погрешности. Производные называют коэффициентами влияния.
Погрешности средств измерений могут иметь систематические и случайные составляющие. Случайные составляющие приводят к неоднозначности показаний. Поэтому случайные составляющие погрешностей средств измерений стараются сделать незначительными по сравнению с другими составляющими. Большинство серийных измерительных приборов обладает этим свойством. Однако в приборах высокой чувствительности и точности случайная составляющая может быть соизмерима с систематической.
Важной характеристикой. средств измерений является вариация выходного сигнала, под которой понимают разность между значениями информативного параметра выходного сигнала, соответствующими одному и тому же действительному значению входной величины при двух направлениях медленных изменений входной величины в процессе подхода к выбранному значению входной величины.
По зависимости от измеряемой величины погрешности средства измерений разделяют на аддитивные и мультипликативные.
Аддитивные (абсолютные) погрешности не зависят от измеряемой величины. Мультипликативные (абсолютные) погрешности изменяются пропорционально измеряемой величине. Могут быть составляющие, имеющие более сложную зависимость от измеряемой величины, например, так называемые погрешности от нелинейности статической характеристики преобразования.
Различают погрешности конкретного экземпляра средства измерений и погрешности типа средств измерений. Тип средств измерений — совокупность средств измерений, имеющих одинаковые устройство, функциональное назначение и нормируемые характеристики.
Погрешность конкретного средства измерений характеризует только данный экземпляр средства измерений. Такая погрешность, обычно известная только для средств измерений, изготовленных в единичном экземпляре, или малой партией, или для специально поверенных средств измерений. Погрешность типа средств измерений характеризует всю совокупность экземпляров данного типа, погрешность любого экземпляра данного типа не может превышать погрешности типа. Для приборов массового производства указывается погрешность типа.
Важным качеством средств измерений является их способность сохранять свои свойства во времени. Для контроля метрологических свойств средства измерений должны периодически поверяться. Межповерочный интервал определяется нестабильностью свойств и допустимым изменением метрологических свойств средств измерений.
Статические параметры и характеристики
Если известны те или иные показатели элемента, то можно оценить свойство этого элемента. В автоматике и телемеханике свойства элементов оцениваются разными показателями, связанными с входными и выходными величинами.
Функциональная зависимость выходной величины Y от входной X, выраженная математически или графически, называется статической характеристикой элемента Y=f(X).
Элементы, имеющие не зависящие от времени параметры и линейные статические характеристики, называются линейными, а имеющие нелинейные характеристики — нелинейными элементами.
По статической характеристике можно определить вид элемента (датчик, реле). Так, например, если статическая характеристика элемента непрерывна, т. е. величина Y находится в определенной непрерывной зависимости от величины X (рис. 5.1), то такой элемент называют источником первичной информации или датчиком.
Если статическая характеристика элемента изменяется скачком, т. е. практически осуществляется включение или отключение при достижении входной величиной Х определенных, заранее установленных значений, то такой элемент называется реле (рис. 5.2).
В зависимости от природы контролируемой входной величины X реле называются электрическими, тепловыми, оптическими. По наименованию входной величины X реле имеет уточняющий термин: реле уровня, реле скорости, реле тока, реле напряжения и т. д.
Коэффициент передачи элемента представляет собой отношение » выходной величины элемента Y к входной величине X, т. е. K=Y/X.
У элементов с линейной статической характеристикой коэффициент передачи — величина постоянная, а у элементов с нелинейной — переменная, зависящая от X. Если входная и выходная величины элемента имеют одинаковую физическую природу, т. е. одинаковые размерности, то коэффициент передачи размерности не имеет и его называют коэффициентом усиления. При разных размерностях входной и выходной величин коэффициент передачи элемента имеет размерность. Применительно к датчику коэффициент передачи называют также чувствительностью. Чем больше К, тем больше выходной сигнал элемента при том же изменении входной величины и тем меньше нужно будет усиливать выходной сигнал до требуемого значения.
Порог чувствительности — это наименьшее (по абсолютному значению) значение входного сигнала, способное вызвать изменение выходного сигнала. Интервал между значением входного сигнала, не оказывающего воздействия на значение выходного сигнала, и значением входного сигнала, оказывающего воздействие на значение выходного сигнала, называется зоной нечувствительности— . Чем больше
, тем хуже элемент. Например, у электродвигателя порог чувствительности равен напряжению трогания двигателя.
Погрешность элемента появляется из-за неточной тарировки: или градуировки (вследствие разброса параметров) элементов в процессе их изготовления (в пределах установленных допусков). В результате погрешности происходит отклонение характеристики элемента от заданной «идеальной» статической характеристики. Погрешность элемента может также возникнуть в результате изменения его внутренних свойств (старение, износ) или внешних факторов (воздействие температуры, влажности, питающего напряжения). ‘j
Различают абсолютную, относительную и приведенную погрешности. Под абсолютной погрешностью элемента понимают разность между полученным Yп и действительным Y значениями выходной величины, т. е. .
Действительное номинальное значение выходной величины — это идеальное значение выходной величины при отсутствии погрешности.
Абсолютная погрешность имеет размерности выходной величины. Она может быть положительной и отрицательной.
Относительная погрешность дает более полное представление о нестабильности статической характеристики. Она представляет собой отношение абсолютной погрешности к действительному значению выходной величины элемента, выраженной в относительных единицах или процентах:
,
где Δ — абсолютная погрешность; Y — действительное значение выходной величины элемента.
По мере уменьшения номинального значения выходной величины при неизменном значении абсолютной погрешности относительная погрешность увеличивается.
Приведенная погрешность чаще всего характеризует элементы автоматики. Под приведенной погрешностью понимают отношение абсолютной погрешности к разности предельных значений выходной величины, выраженной в относительных единицах или процентах, т. е.
где Yмакс и Yмин — максимальное и минимальное значения выходной величины элемента; А— абсолютная погрешность.
При определении погрешности элемента выходную величину измеряют несколько раз, затем определяют среднее арифметическое выходной величины, которое принимается за тарировочное значение. Выбирают наибольшую разность между измеренным и тарировочным значениями Δ макс. Далее по формуле находят погрешность элемента:
,
где — разность между измеренным и тарировочным значениями; Yмин — значение выходной величины элемента;
и
— погрешности (приведенные) образцовых приборов, используемых для измерения входной и выходной величин элемента при тарировке.
Погрешность, которая возникает при нормальных условиях эксплуатации, называется основной погрешностью. Условия эксплуатации элемента не всегда совпадают с нормальными, поэтому к основной погрешности элемента Добавляется погрешность, называемая дополнительной.