Что в 4 степени дает 2401
Таблица степеней
Таблица степеней чисел с 1 до 10. Калькулятор степеней онлайн. Интерактивная таблица и изображения таблицы степеней в высоком качестве.
Калькулятор степеней
С помощью данного калькулятора вы сможете в режиме онлайн вычислить степень любого натурального числа. Введите число, степень и нажмите кнопку «вычислить».
Таблица степеней от 1 до 10
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 n | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 n | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 |
3 n | 3 | 9 | 27 | 81 | 243 | 729 | 2187 | 6561 | 19683 | 59049 |
4 n | 4 | 16 | 64 | 256 | 1024 | 4096 | 16384 | 65536 | 262144 | 1048576 |
5 n | 5 | 25 | 125 | 625 | 3125 | 15625 | 78125 | 390625 | 1953125 | 9765625 |
6 n | 6 | 36 | 216 | 1296 | 7776 | 46656 | 279936 | 1679616 | 10077696 | 60466176 |
7 n | 7 | 49 | 343 | 2401 | 16807 | 117649 | 823543 | 5764801 | 40353607 | 282475249 |
8 n | 8 | 64 | 512 | 4096 | 32768 | 262144 | 2097152 | 16777216 | 134217728 | 1073741824 |
9 n | 9 | 81 | 729 | 6561 | 59049 | 531441 | 4782969 | 43046721 | 387420489 | 3486784401 |
10 n | 10 | 100 | 1000 | 10000 | 100000 | 1000000 | 10000000 | 100000000 | 1000000000 | 10000000000 |
Таблица степеней от 1 до 10
10 10 = 10000000000
Теория
запись читается: «a» в степени «n».
4 6 = 4 × 4 × 4 × 4 × 4 × 4 = 4096
Данное выражение читается: 4 в степени 6 или шестая степень числа четыре или возвести число четыре в шестую степень.
Решение уравнений четвертой степени
Для уравнений четвертой степени применимы все те общие схемы решения уравнений высших степеней, что мы разбирали в предыдущем материале. Однако существует ряд нюансов в решении двучленных, биквадратных и возвратных уравнений, на которых мы хотели бы остановиться подробнее.
Также в статье мы разберем искусственный метод разложения многочлена на множители, решение в радикалах и метод Феррари, который используется для того, чтобы свести решение уравнения четвертой степени к кубическому уравнению.
Решение двучленного уравнения четвертой степени
Для решения этого типа уравнений применяются формулы сокращенного умножения:
Остается лишь найти корни квадратных трехчленов.
Решение
Для начала проведем разложение многочлена 4 x 4 + 1 на множители:
Теперь найдем корни квадратных трехчленов.
Мы получили четыре комплексных корня.
Решение возвратного уравнения четвертой степени
Возвратные уравнения четвертого порядка имеют вид A x 4 + B x 3 + C x 2 + B x + A = 0
A x 4 + B x 3 + C x 2 + B x + A = 0 A x 2 + B x + C + B x + A x 2 = 0 A x 2 + A x 2 + B x + B x + C = 0 A x 2 + 1 x 2 + B x + 1 x + C = 0
Так мы проведи сведение возвратного уравнения четвертой степени к квадратному уравнению.
Решение
Симметрия коэффициентов подсказывает нам, что мы имеем дело с возвратным уравнением четвертой степени. Проведем деление обеих частей на x 2 :
2 x 2 + 2 3 + 2 x + 4 + 6 + 2 3 + 2 x + 2 x 2 = 0
2 x 2 + 2 x 2 + 2 3 + 2 x + 2 3 + 2 x + 4 + 6 + = 0 2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0
Решим полученное квадратное уравнение:
Решим первое уравнение:
Решим второе уравнение:
Решение биквадратного уравнения
Решение
Решение
Используем метод замены y = x 2 для того, чтобы свести исходное биквадратное уравнение к квадратному:
Решение уравнений четвертой степени с рациональными корнями
Алгоритм нахождения рациональных корней уравнения четвертой степени приведен в материале «Решение уравнений высших степеней».
Решение уравнений четвертой степени по методу Феррари
Корни, полученные в ходе вычислений, будут корнями исходного уравнения четвертой степени.
Решение
Что в 4 степени дает 2401
1 1 =1
1 2 =1
1 3 =1
1 4 =1
1 5 =1
1 6 =1
1 7 =1
1 8 =1
1 9 =1
1 10 =1
2 1 =2
2 2 =4
2 3 =8
2 4 =16
2 5 =32
2 6 =64
2 7 =128
2 8 =256
2 9 =512
2 10 =1024
3 1 =3
3 2 =9
3 3 =27
3 4 =81
3 5 =243
3 6 =729
3 7 =2187
3 8 =6561
3 9 =19683
3 10 =59049
4 1 =4
4 2 =16
4 3 =64
4 4 =256
4 5 =1024
4 6 =4096
4 7 =16384
4 8 =65536
4 9 =262144
4 10 =1048576
5 1 =5
5 2 =25
5 3 =125
5 4 =625
5 5 =3125
5 6 =15625
5 7 =78125
5 8 =390625
5 9 =1953125
5 10 =9765625
6 1 =6
6 2 =36
6 3 =216
6 4 =1296
6 5 =7776
6 6 =46656
6 7 =279936
6 8 =1679616
6 9 =10077696
6 10 =60466176
7 1 =7
7 2 =49
7 3 =343
7 4 =2401
7 5 =16807
7 6 =117649
7 7 =823543
7 8 =5764801
7 9 =40353607
7 10 =282475249
8 1 =8
8 2 =64
8 3 =512
8 4 =4096
8 5 =32768
8 6 =262144
8 7 =2097152
8 8 =16777216
8 9 =134217728
8 10 =1073741824
9 1 =9
9 2 =81
9 3 =729
9 4 =6561
9 5 =59049
9 6 =531441
9 7 =4782969
9 8 =43046721
9 9 =387420489
9 10 =3486784401
10 1 =10
10 2 =100
10 3 =1000
10 4 =10000
10 5 =100000
10 6 =1000000
10 7 =10000000
10 8 =100000000
10 9 =1000000000
10 10 =10000000000
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 n | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 n | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 |
3 n | 3 | 9 | 27 | 81 | 243 | 729 | 2187 | 6561 | 19683 | 59049 |
4 n | 4 | 16 | 64 | 256 | 1024 | 4096 | 16384 | 65536 | 262144 | 1048576 |
5 n | 5 | 25 | 125 | 625 | 3125 | 15625 | 78125 | 390625 | 1953125 | 9765625 |
6 n | 6 | 36 | 216 | 1296 | 7776 | 46656 | 279936 | 1679616 | 10077696 | 60466176 |
7 n | 7 | 49 | 343 | 2401 | 16807 | 117649 | 823543 | 5764801 | 40353607 | 282475249 |
8 n | 8 | 64 | 512 | 4096 | 32768 | 262144 | 2097152 | 16777216 | 134217728 | 1073741824 |
9 n | 9 | 81 | 729 | 6561 | 59049 | 531441 | 4782969 | 43046721 | 387420489 | 3486784401 |
10 n | 10 | 100 | 1000 | 10000 | 100000 | 1000000 | 10000000 | 100000000 | 1000000000 | 10000000000 |
Таблица степеней
В таблице степеней содержатся значения натуральных положительных чисел от 1 до 10.
Запись 3 5 читают «три в пятой степени». В этой записи число 3 называют основанием степени, число 5 показателем степени, выражение 3 5 называют степенью.
Показатель степени указывает сколько множителей в произведение, 3 5 =3×3×3×3×3=243
Число в первой и нулевой степени, как состовлять
Свойства степени с натуральным показателем.
Чтобы умножить степени с одинаковыми основаниями мы основания не меняем, а показатели степеней складываем :
например: 7 1.7 · 7 – 0.9 = 7 1.7+( – 0.9) = 7 1.7 – 0.9 = 7 0.8
Чтобы разделить степени с одинаковыми основаниями основание не меняем, а показатели степеней вычитаем :
При расчетах возведения степени в степень основание не меняем, а показатели степеней умножаем друг на друга.
например: (2 3 ) 2 = 2 3·2 = 2 6
Если необходимо рассчитать возведение в степень произведения, то в эту степень возводится каждый множитель
При выполнении расчетов по возведению в степень дроби мы в данную степень возводим числитель и знаменатель дроби
Степень с натуральным показателем, квадрат числа, куб числа
Вторая степень числа, а также третья степень числа имеют свои названия. Вторую степень числа называют квадратом числа, например, 7 2 читается как «семь в квадрате» или «квадрат числа семь». Третья степень числа называется кубом числа, к примеру, 5 3 можно прочитать как «пять в кубе» или сказать «куб числа 5 ».
Таблица степеней от 1 до 10
1 1 = 1
1 2 = 1
1 3 = 1
1 4 = 1
1 5 = 1
1 6 = 1
1 7 = 1
1 8 = 1
1 9 = 1
1 10 = 1
2 1 = 2
2 2 = 4
2 3 = 8
2 4 = 16
2 5 = 32
2 6 = 64
2 7 = 128
2 8 = 256
2 9 = 512
2 10 = 1024
3 1 = 3
3 2 = 9
3 3 = 27
3 4 = 81
3 5 = 243
3 6 = 729
3 7 = 2187
3 8 = 6561
3 9 = 19683
3 10 = 59049
4 1 = 4
4 2 = 16
4 3 = 64
4 4 = 256
4 5 = 1024
4 6 = 4096
4 7 = 16384
4 8 = 65536
4 9 = 262144
4 10 = 1048576
5 1 = 5
5 2 = 25
5 3 = 125
5 4 = 625
5 5 = 3125
5 6 = 15625
5 7 = 78125
5 8 = 390625
5 9 = 1953125
5 10 = 9765625
6 1 = 6
6 2 = 36
6 3 = 216
6 4 = 1296
6 5 = 7776
6 6 = 46656
6 7 = 279936
6 8 = 1679616
6 9 = 10077696
6 10 = 60466176
7 1 = 7
7 2 = 49
7 3 = 343
7 4 = 2401
7 5 = 16807
7 6 = 117649
7 7 = 823543
7 8 = 5764801
7 9 = 40353607
7 10 = 282475249
8 1 = 8
8 2 = 64
8 3 = 512
8 4 = 4096
8 5 = 32768
8 6 = 262144
8 7 = 2097152
8 8 = 16777216
8 9 = 134217728
8 10 = 1073741824
9 1 = 9
9 2 = 81
9 3 = 729
9 4 = 6561
9 5 = 59049
9 6 = 531441
9 7 = 4782969
9 8 = 43046721
9 9 = 387420489
9 10 = 3486784401
10 1 = 10
10 2 = 100
10 3 = 1000
10 4 = 10000
10 5 = 100000
10 6 = 1000000
10 7 = 10000000
10 8 = 100000000
10 9 = 1000000000
10 10 = 10000000000
Возведение числа в нулевую степень
Первая степень числа
Любое число в первой степени равно самому себе, так как показатель степени 1 указывает что число берётся сомножителем всего один раз, то есть оно ни на что не умножается,а просто остаётся без изменений.
Отрицательный показатель степени
Показатели степени могут быть не только положительными, но и отрицательными.
Возведение в степень
Результат возведения в степень называется степенью (также как и само выражение, значение которого вычисляется). В выражении:
2 – это основание степени, 3 – показатель степени, 8 – степень.
a) 11 2 = 11 · 11 = 121;
б) 2 5 = 2 · 2 · 2 · 2 · 2 = 32;
в) 10 4 = 10 · 10 · 10 · 10 = 10000.
Последовательность выполнения расчетов при работе с выражениями содержащими степень.
При выполнении расчетов выражений без скобок, но содержащих степени, в первую очередь производят возведение в степень, потом действия умножение и деление, и лишь потом операции сложения и вычитания.
Если необходимо вычислить выражение содержащие скобки, то сначала в указанном выше порядке делаем вычисления в скобках, а потом оставшиеся действия в том же порядке слева направо.
Очень широко в практических вычислениях для упрощения расчетов используют готовые таблицы степеней.
Теория множеств
Вроде на этом можно остановиться, но есть еще одно элегантное доказательство. Дело в том, что математика, это не только цифры и числовые оси. Есть комбинаторика, теория функций, множество других разделов, где нужно значение 0 в степени 0.
Итак, есть три блогера смежной тематики: Я, Артур Шарифов и Топа. И есть две обалденные темы для ролика, например, искусственный интеллект и космос! Каждый записывает 1 ролик на 1 тему, повторяться, конечно, можно. Вопрос: сколькими вариантами они могут это сделать? Ну то есть все на одну тему, или двое одну, третий другую?
К чему эта задача? В теории множеств есть теорема, согласно которой множество с количеством элементов M можно отобразить на множество с количеством элементов N вот столькими вариантами N в степени M.
Здесь как раз множество блогеров (3 элемента) отображается на множество тем (2 элемента). В итоге получается 8 вариантов.
Если что, вот они все перед вами:
Дело в том, что бывают и пустые множества! И есть только один вариант отображения пустого множества на пустое. А это значит, что 0 в степени 0 и есть единица! Это чисто символическое доказательство, не такое серьезное. Но все равно, логично что, ноль блогеров может записать ноль роликов только одним способом.
Как возвести число в натуральную степень?
Чтобы понять, как возводить различные числа в натуральные степени, рассмотрим несколько примеров:
Таким образом, чтобы возвести число в натуральную степень, достаточно всего лишь умножить его само на себя n раз.
Как возвести число в целую отрицательную степень?
Чтобы возвести отличное от нуля число в отрицательную степень, нужно вычислить значение этого числа в той же положительной степени и разделить единицу на полученный результат.
Теория
Степень числа – это сокращенная запись операции многократного умножения числа самого на себя. Само число в данном случае называется – основанием степени, а количество операций умножения – показателем степени.
запись читается: «a» в степени «n».
«a» – основание степени
«n» – показатель степени
4 6 = 4 × 4 × 4 × 4 × 4 × 4 = 4096
Данное выражение читается: 4 в степени 6 или шестая степень числа четыре или возвести число четыре в шестую степень.
Как возвести число в степень.
Давайте рассмотрим процесс возведения в степень на примере. Пусть нам необходимо возвести число 5 в 3-ю степень. На языке математики 5 — это основание, а 3 — показатель (или просто степень). И записать это можно кратко в таком виде:
Возведение в степень
А чтобы найти значение, нам будет необходимо число 5 умножить на себя 3 раза, т. е.
5 3 = 5 x 5 x 5 = 125
Соответственно, если мы хотим найти значение числа 7 в 5 степени, мы должны число 7 умножить на себя 5 раз, т. е. 7 x 7 x 7 x 7 x 7. Другое дело когда требуется возвести число в отрицательную степень.
Парадокс нуля
Таблица 1. Функция ƒ(x) = x x
x | x x |
1 | 1 |
0,9 | 0,909 |
0,8 | 0,836 |
0,7 | 0,779 |
0,6 | 0,736 |
0,5 | 0,707 |
0,4 | 0,693 |
0,3 | 0,697 |
0,2 | 0,725 |
0,1 | 0,794 |
0,01 | 0,955 |
0,001 | 0,993 |
Как видим, с определенного момента значение x x растет вместе с уменьшением x. В этом нет ничего сверхъестественного, это всего лишь пример действия формулы
Изобразим это на графике
Проверим, вычислив это значение. Преобразуем основание выражения. Получаем:
x x = (e ln x ) x = e x ln x
Пользуемся правилом Лопиталя:
Доказательство получено. Официальная позиция современной математики гласит, что выражение 0 0 – представляет собой неопределенность, то есть не имеет точного значения. Однако на практике, при расчетах, его значение подстраивается под конкретные требования. И чаще всего в этих случаях оно равно единице. Чтобы лучше разобраться с темой нулевой степени, советуем посмотреть видео ниже.
Как пользоваться таблицей степеней числа два?
Степень двойки (n) | Значение степени двойки 2 n | Максимальное число без знака, |
записанное с помощью n бит
Как пользоваться калькулятором степеней
Калькулятор помогает возводить число в степень онлайн. Основанием степени могут быть любые целые числа и десятичные дроби. Показатель степени тоже может быть любой десятичной дробью, однако следует помнить о том, что для отрицательных чисел не определена операция возведения в нецелую степень.
Возведение в степень отрицательного числа
Основание степени (число, которое возводят в степень) может быть любым числом — положительным, отрицательным или нулём.
При возведении в степень положительного числа получается положительное число.
При возведении нуля в натуральную степень получается ноль.
При возведении в степень отрицательного числа в результате может получиться как положительное число, так и отрицательное число. Это зависит от того чётным или нечётным числом был показатель степени.
Рассмотрим примеры возведения в степень отрицательных чисел.
Из рассмотренных примеров видно, что если отрицательное число возводится в нечётную степень, то получается отрицательное число. Так как произведение нечётного количество отрицательных сомножителей отрицательно.
Если же отрицательное число возводится в чётную степень, то получается положительное число. Так как произведение чётного количество отрицательных сомножителей положительно.
Степень с целым показателем
Степень числа a с целым положительным показателем есть не что иное как степень числа a с натуральным показателем: , где n – целое положительное число.
Рассмотрим данное определение степени с целым отрицательным показателем на конкретных примерах: .
Подытожим информацию этого пункта.
Степень числа a с целым показателем z определяется так: