Что в физике измеряется в радианах на секунду
РАДИАН В СЕКУНДУ
Смотреть что такое «РАДИАН В СЕКУНДУ» в других словарях:
радиан в секунду — radianas per sekundę statusas T sritis Standartizacija ir metrologija apibrėžtis Kampinio greičio ir kampinio dažnio matavimo vienetas: rad/s. atitikmenys: angl. radian per second vok. Radiant durch Sekunde, n; Radiant pro Sekunde, n rus. радиан… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
радиан на секунду в квадрате — radianas per sekundę kvadratu statusas T sritis Standartizacija ir metrologija apibrėžtis Kampinio pagreičio matavimo vienetas: rad/s². atitikmenys: angl. radian per second squared vok. Radiant durch Quadratsekunde, n; Radiant pro Quadratsekunde … Penkiakalbis aiškinamasis metrologijos terminų žodynas
рад/с — радиан в секунду … Русский орфографический словарь
Приложение. Важнейшие единицы механических величин, пространства и времени — | | | | Обозначения | Содержит единиц | | Величина … … Медицинская энциклопедия
Важнейшие единицы механических величин, пространства и времени — Величина Наименование Размерность Обозначения Содержит единиц СИ русское международное Длина, ширина, высота, толщина метр L м (м) m астрономическая единица а. е. 1 a. e. = 1,49600∙1011 м парсек пк pc … Ветеринарный энциклопедический словарь
важнейшие производные единицы СИ — | | Единица | | … … Энциклопедический словарь
МЕЖДУНАРОДНАЯ СИСТЕМА ЕДИНИЦ — (Systeme International d Unites), система единиц физ. величин, принятая 11 й Генеральной конференцией по мерам и весам (1960). Сокр. обозначение системы SI (в рус. транскрипции СИ). М. с. е. разработана с целью замены сложной совокупности систем… … Физическая энциклопедия
Список физических величин — Размерности физических величин зависят от выбранной системы единиц либо от выбранной системы физических величин. В приведенной таблице показаны размерности физических величин, принятые в СИ. Основные величины Символ Описание Единица измерения в… … Википедия
Круговое движение — У этого термина существуют и другие значения, см. Вращение (значения). О разновидности перекрёстков: см. Круговой перекрёсток. В физике круговое движение это вращение по кругу, т. е. это круговой путь по круговой орбите. Оно может быть… … Википедия
Частота — У этого термина существуют и другие значения, см. Частота (значения). Частота Единицы измерения СИ Гц Чaстота физическая в … Википедия
Радиан
Радиа́н (русское обозначение: рад, международное: rad; от лат. radius — луч, радиус) — основная единица измерения плоских углов в современной математике и физике. Радиан определяется как угловая величина дуги, длина которой равна её радиусу. Таким образом, величина полного угла равна 2 π радиан.
Так как величина угла, выраженная в радианах, равна отношению длины дуги окружности к длине её радиуса, радиан — величина безразмерная. Поэтому обозначение радиана (рад) часто опускается.
Содержание
Связь радиана с другими единицами
Соотношение радиана с другими единицами измерения углов описывается формулой:
Очевидно, 180° = π радиан. Отсюда вытекает тривиальная формула пересчёта из градусов, минут и секунд в радианы и наоборот.
α [рад] = α [°] × ( π / 180); α [°] = α [рад] × (180 / π ),
где α [рад] — угол в радианах, α [°] — угол в градусах
1 рад ≈ 57,295779513° ≈ 57°17′44,806″ ≈ 206265″.
Радианная мера в математическом анализе
При рассмотрении тригонометрических функций в математическом анализе всегда считается, что аргумент выражен в радианах, что упрощает запись.
При малых углах синус и тангенс угла, выраженного в радианах, приблизительно равны самому углу, что удобно при приближённых вычислениях:
Косинус малого угла, выраженного в радианах, приближённо равен:
Радиан в физике
Кратные и дольные единицы
Десятичные кратные и дольные единицы образуются с помощью стандартных приставок СИ, однако используются редко. Так, в миллирадианах, микрорадианах и нанорадианах измеряется угловое разрешение в астрономии. В кратных единицах (килорадианах и т. д.) измеряется набег угловой фазы. Сокращённое обозначение (рад, rad) основной и производных единиц не следует путать с устаревшей единицей измерения поглощённой дозы ионизирующего излучения — рад.
Кратные | Дольные | ||||||
---|---|---|---|---|---|---|---|
величина | название | обозначение | величина | название | обозначение | ||
10 1 рад | декарадиан | дарад | darad | 10 −1 рад | децирадиан | драд | drad |
10 2 рад | гекторадиан | град | hrad | 10 −2 рад | сантирадиан | срад | crad |
10 3 рад | килорадиан | крад | krad | 10 −3 рад | миллирадиан | мрад | mrad |
10 6 рад | мегарадиан | Мрад | Mrad | 10 −6 рад | микрорадиан | мкрад | µrad |
10 9 рад | гигарадиан | Град | Grad | 10 −9 рад | нанорадиан | нрад | nrad |
10 12 рад | терарадиан | Трад | Trad | 10 −12 рад | пикорадиан | прад | prad |
10 15 рад | петарадиан | Прад | Prad | 10 −15 рад | фемторадиан | фрад | frad |
10 18 рад | эксарадиан | Эрад | Erad | 10 −18 рад | атторадиан | арад | arad |
10 21 рад | зеттарадиан | Зрад | Zrad | 10 −21 рад | зепторадиан | зрад | zrad |
10 24 рад | йоттарадиан | Ирад | Yrad | 10 −24 рад | йокторадиан | ирад | yrad |
применять не рекомендуется не применяются или редко применяются на практике |
Примечания
См. также
Полезное
Смотреть что такое «Радиан» в других словарях:
РАДИАН — РАДИАН, угол, образованный пересечением двух радиусов из центра ОКРУЖНОСТИ, при этом длина дуги, ограниченной этими радиусами, равна длине радиуса. Таким образом радиан единица измерения УГЛА, приблизительно равный 57,296°, а углу 360°… … Научно-технический энциклопедический словарь
РАДИАН — Лапландский бог, берущий, по их верованию, души умерших к себе на небо. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. радиан (лат. radius луч, радиус) мат. единица измерения плоских углов, употребляемая в… … Словарь иностранных слов русского языка
РАДИАН — (от лат. radius луч, радиус) (рад, rad), единица плоского угла; 1 рад равен углу между двумя радиусами окружности, длина дуги между к рыми равна радиусу. 1 рад=57°17 44,8 »3,44•103 угл. минут»2,06•105 угл. секунд»63,7g (см. ГРАД). Физический… … Физическая энциклопедия
радиан — а, м. radian m., нем. Radian <лат. лат. radius луч. Угол, соответствующий дуге, длина которой равна ее радиусу. БАС 1. Лекс. Гранат: радиан; СИС 1937: радиа/н … Исторический словарь галлицизмов русского языка
РАДИАН — РАДИАН, радиана, муж. (от лат. radius луч) (мат.). Единица измерения углов, представляющая собою угол, у которого дуга равна радиусу окружности. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
радиан — сущ., кол во синонимов: 3 • единица (830) • рад (7) • угол (27) Словарь синонимов ASIS. В.Н. Тришин … Словарь синонимов
радиан — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN radian … Справочник технического переводчика
Конвертер величин
Перевести единицы: радиан в сутки [рад/сут.] в радиан в год [рад/г.]
Поверхностная плотность заряда
Подробнее об угловой скорости
Общие сведения
Угловая скорость — это векторная величина, определяющая скорость вращения тела относительно оси вращения. Этот вектор направлен перпендикулярно плоскости вращения и определяется с помощью правила буравчика. Угловую скорость измеряют как отношение между углом, на который переместилось тело, то есть угловым смещением, и временем, на это потраченным. В системе СИ угловое ускорение измеряют в радианах в секунду.
Угловая скорость в спорте
Угловая скорость часто используется в спорте. Например, спортсмены уменьшают или увеличивают угловую скорость движения клюшки для гольфа, биты или ракетки, чтобы улучшить результаты. Угловая скорость связана с линейной скоростью так, что из всех точек на отрезке, вращающемся вокруг точки на этом отрезке, то есть вокруг центра вращения, самая отдаленная точка от этого центра движется с самой высокой линейной скоростью. Так, например, если клюшка для гольфа вращается, то конец этой клюшки, больше всего удаленный от центра вращения двигается с самой высокой линейной скоростью. В то же время все точки на этом отрезке движутся с одинаковой угловой скоростью. Поэтому удлиняя клюшку, биту, или ракетку, спортсмен также увеличивает линейную скорость, а соответственно скорость удара, передающуюся мячу, так что он может пролететь на большее расстояние. Укорачивая ракетку или клюшку, даже перехватив ее ниже, чем обычно, наоборот замедляют скорость удара.
В гимнастике, фигурном катании и нырянии также используют угловую скорость. Если спортсмен знает угловую скорость, то легко вычислить количество переворотов и других акробатических трюков во время прыжка. Во время кувырков спортсмены обычно прижимают ноги и руки как можно ближе к корпусу, чтобы уменьшить инерцию и увеличить ускорение, а значит и угловую скорость. С другой стороны, во время ныряния или приземления, судьи смотрят, как ровно спортсмен приземлился. На высокой скорости трудно регулировать направление полета, поэтому спортсмены специально замедляют угловую скорость, немного вытягивая от корпуса руки и ноги.
Спортсмены, которые занимаются метанием диска или молота, тоже контролируют линейную скорость с помощью угловой. Если просто бросить молот, не вращая его по кругу на длинной стальной проволоке, увеличивающей линейную скорость, то бросок будет не таким сильным, поэтому молот сначала раскручивают. Олимпийские спортсмены поворачиваются вокруг своей оси от трех до четырех раз, чтобы увеличить угловую скорость до максимально возможной.
Угловая скорость и хранение данных на оптических носителях
Во время записи данных на оптических носителях, например на компакт дисках (CD), для измерения скорости записи и считывания данных в приводе также используются угловая и линейная скорости. Существует несколько способов записи данных, во время которых используют переменную или постоянную линейную или угловую скорость. Так, например, режим постоянной линейной скорости (по-английски — Constant Linear Velocity или CVL) — один из основных методов записи дисков, при котором данные записывают с одинаковой скоростью по всей поверхности диска. Во время записи в режиме зональной постоянной линейной скорости (по-английски — Zone Constant Linear Velocity или ZCLV) постоянная скорость поддерживается во время записи на определенной части, то есть зоне диска. В этом случае диск замедляет вращение при записи на внешних зонах. Режим частично постоянной угловой скорости (Partial Constant Angular Velocity или PCAV) позволяет осуществлять запись с постепенным увеличением угловой скорости, пока она не достигнет определенного порога. После этого угловая скорость становится постоянной. Последний режим записи — режим постоянной угловой скорости (Constant Angular Velocity или CAV). В этом режиме во время записи по всей поверхности диска поддерживается одинаковая угловая скорость. При этом линейная скорость увеличивается по мере того, как записывающая головка перемещается все дальше и дальше к краю диска. Этот режим используется также при записи грампластинок и в компьютерных жестких дисках.
Угловая скорость в космосе
На расстоянии 35 786 километров (22 236 миль) от Земли находится орбита, на которой вращаются спутники. Это особенная орбита, потому что тела, вращающиеся на ней в одном направлении с Землей, проходят всю орбиту примерно за такое же время, которое требуется Земле, чтобы совершить полный круг вокруг своей оси. Это немного меньше 24 часов, то есть один сидерический день. Так как угловая скорость вращения тел на этой орбите равна угловой скорости вращения Земли, то наблюдателям с Земли кажется, что эти тела не движутся. Такая орбита называется геостационарной.
На эту орбиту обычно выводят спутники, которые отслеживают изменения погоды (метеорологические спутники), спутники, следящие за изменениями в океане и спутники связи, которые обеспечивают телевизионное и радиовещание, телефонную связь и спутниковый Интернет. Геостационарную орбиту часто используют для спутников потому, что антенны, один раз направленные на спутник, не нужно направлять вторично. С другой стороны, с их использованием связаны такие неудобства, как необходимость иметь прямое поле видимости между антенной и спутником. Кроме того, геостационарная орбита находится далеко от Земли и для передачи сигнала необходимо использовать более мощные передатчики, чем те, что используются для передачи с более низких орбит. Сигнал приходит с задержкой приблизительно в 0,25 секунды, что заметно для пользователей. Например, во время трансляции новостей корреспонденты в удаленных районах обычно связываются со студией по спутниковому каналу; при этом заметно, что когда телеведущий задает им вопрос, они отвечают с задержкой. Несмотря на это, спутники на геостационарной орбите широко используются. Например, до недавнего времени связь между континентами осуществлялась, главным образом, с помощью спутников. Сейчас ее в основном заменили межконтинентальные кабели, проложенные по океанскому дну; однако спутниковую связь до сих пор применяют в отдаленных районах. В последние двадцать лет спутники связи также обеспечивают доступ к интернету, особенно в отдаленных местах, где нет наземной инфраструктуры связи.
Срок службы спутника в основном определяется количеством топлива на борту, требуемым для периодической коррекции орбиты. Количество топлива в спутниках ограничено, поэтому когда оно заканчивается, спутники выводят из эксплуатации. Чаще всего их переводят на орбиту захоронения, то есть орбиту, намного выше геостационарной. Это — дорогостоящий процесс; однако если оставлять ненужные спутники на геостационарной орбите, это грозит вероятностью столкновений с другими спутниками. Место на геостационарной орбите ограничено, поэтому старые спутники, оставленные на орбите, будут занимать место, которое мог бы использовать новый спутник. В связи с этим во многих странах существуют нормы, требующие от владельцев спутников подписать договор о том, что в конце эксплуатации спутник будет выведен на орбиту захоронения.
Unit Converter articles were edited and illustrated by Анатолий Золотков
Конвертер величин
Перевести единицы: оборот в минуту [об/мин] в радиан в секунду [рад/с]
Размеры мужской одежды и обуви
Подробнее об угловой скорости
Общие сведения
Угловая скорость — это векторная величина, определяющая скорость вращения тела относительно оси вращения. Этот вектор направлен перпендикулярно плоскости вращения и определяется с помощью правила буравчика. Угловую скорость измеряют как отношение между углом, на который переместилось тело, то есть угловым смещением, и временем, на это потраченным. В системе СИ угловое ускорение измеряют в радианах в секунду.
Угловая скорость в спорте
Угловая скорость часто используется в спорте. Например, спортсмены уменьшают или увеличивают угловую скорость движения клюшки для гольфа, биты или ракетки, чтобы улучшить результаты. Угловая скорость связана с линейной скоростью так, что из всех точек на отрезке, вращающемся вокруг точки на этом отрезке, то есть вокруг центра вращения, самая отдаленная точка от этого центра движется с самой высокой линейной скоростью. Так, например, если клюшка для гольфа вращается, то конец этой клюшки, больше всего удаленный от центра вращения двигается с самой высокой линейной скоростью. В то же время все точки на этом отрезке движутся с одинаковой угловой скоростью. Поэтому удлиняя клюшку, биту, или ракетку, спортсмен также увеличивает линейную скорость, а соответственно скорость удара, передающуюся мячу, так что он может пролететь на большее расстояние. Укорачивая ракетку или клюшку, даже перехватив ее ниже, чем обычно, наоборот замедляют скорость удара.
В гимнастике, фигурном катании и нырянии также используют угловую скорость. Если спортсмен знает угловую скорость, то легко вычислить количество переворотов и других акробатических трюков во время прыжка. Во время кувырков спортсмены обычно прижимают ноги и руки как можно ближе к корпусу, чтобы уменьшить инерцию и увеличить ускорение, а значит и угловую скорость. С другой стороны, во время ныряния или приземления, судьи смотрят, как ровно спортсмен приземлился. На высокой скорости трудно регулировать направление полета, поэтому спортсмены специально замедляют угловую скорость, немного вытягивая от корпуса руки и ноги.
Спортсмены, которые занимаются метанием диска или молота, тоже контролируют линейную скорость с помощью угловой. Если просто бросить молот, не вращая его по кругу на длинной стальной проволоке, увеличивающей линейную скорость, то бросок будет не таким сильным, поэтому молот сначала раскручивают. Олимпийские спортсмены поворачиваются вокруг своей оси от трех до четырех раз, чтобы увеличить угловую скорость до максимально возможной.
Угловая скорость и хранение данных на оптических носителях
Во время записи данных на оптических носителях, например на компакт дисках (CD), для измерения скорости записи и считывания данных в приводе также используются угловая и линейная скорости. Существует несколько способов записи данных, во время которых используют переменную или постоянную линейную или угловую скорость. Так, например, режим постоянной линейной скорости (по-английски — Constant Linear Velocity или CVL) — один из основных методов записи дисков, при котором данные записывают с одинаковой скоростью по всей поверхности диска. Во время записи в режиме зональной постоянной линейной скорости (по-английски — Zone Constant Linear Velocity или ZCLV) постоянная скорость поддерживается во время записи на определенной части, то есть зоне диска. В этом случае диск замедляет вращение при записи на внешних зонах. Режим частично постоянной угловой скорости (Partial Constant Angular Velocity или PCAV) позволяет осуществлять запись с постепенным увеличением угловой скорости, пока она не достигнет определенного порога. После этого угловая скорость становится постоянной. Последний режим записи — режим постоянной угловой скорости (Constant Angular Velocity или CAV). В этом режиме во время записи по всей поверхности диска поддерживается одинаковая угловая скорость. При этом линейная скорость увеличивается по мере того, как записывающая головка перемещается все дальше и дальше к краю диска. Этот режим используется также при записи грампластинок и в компьютерных жестких дисках.
Угловая скорость в космосе
На расстоянии 35 786 километров (22 236 миль) от Земли находится орбита, на которой вращаются спутники. Это особенная орбита, потому что тела, вращающиеся на ней в одном направлении с Землей, проходят всю орбиту примерно за такое же время, которое требуется Земле, чтобы совершить полный круг вокруг своей оси. Это немного меньше 24 часов, то есть один сидерический день. Так как угловая скорость вращения тел на этой орбите равна угловой скорости вращения Земли, то наблюдателям с Земли кажется, что эти тела не движутся. Такая орбита называется геостационарной.
На эту орбиту обычно выводят спутники, которые отслеживают изменения погоды (метеорологические спутники), спутники, следящие за изменениями в океане и спутники связи, которые обеспечивают телевизионное и радиовещание, телефонную связь и спутниковый Интернет. Геостационарную орбиту часто используют для спутников потому, что антенны, один раз направленные на спутник, не нужно направлять вторично. С другой стороны, с их использованием связаны такие неудобства, как необходимость иметь прямое поле видимости между антенной и спутником. Кроме того, геостационарная орбита находится далеко от Земли и для передачи сигнала необходимо использовать более мощные передатчики, чем те, что используются для передачи с более низких орбит. Сигнал приходит с задержкой приблизительно в 0,25 секунды, что заметно для пользователей. Например, во время трансляции новостей корреспонденты в удаленных районах обычно связываются со студией по спутниковому каналу; при этом заметно, что когда телеведущий задает им вопрос, они отвечают с задержкой. Несмотря на это, спутники на геостационарной орбите широко используются. Например, до недавнего времени связь между континентами осуществлялась, главным образом, с помощью спутников. Сейчас ее в основном заменили межконтинентальные кабели, проложенные по океанскому дну; однако спутниковую связь до сих пор применяют в отдаленных районах. В последние двадцать лет спутники связи также обеспечивают доступ к интернету, особенно в отдаленных местах, где нет наземной инфраструктуры связи.
Срок службы спутника в основном определяется количеством топлива на борту, требуемым для периодической коррекции орбиты. Количество топлива в спутниках ограничено, поэтому когда оно заканчивается, спутники выводят из эксплуатации. Чаще всего их переводят на орбиту захоронения, то есть орбиту, намного выше геостационарной. Это — дорогостоящий процесс; однако если оставлять ненужные спутники на геостационарной орбите, это грозит вероятностью столкновений с другими спутниками. Место на геостационарной орбите ограничено, поэтому старые спутники, оставленные на орбите, будут занимать место, которое мог бы использовать новый спутник. В связи с этим во многих странах существуют нормы, требующие от владельцев спутников подписать договор о том, что в конце эксплуатации спутник будет выведен на орбиту захоронения.
Unit Converter articles were edited and illustrated by Анатолий Золотков