что значит представить выражение в виде степени
Степенные выражения (выражения со степенями) и их преобразование
Рассмотрим тему преобразования выражений со степенями, но прежде остановимся на ряде преобразований, которые можно проводить с любыми выражениями, в том числе со степенными. Мы научимся раскрывать скобки, приводить подобные слагаемые, работать с основанием и показателем степени, использовать свойства степеней.
Что представляют собой степенные выражения?
В школьном курсе мало кто использует словосочетание «степенные выражения», зато этот термин постоянно встречается в сборниках для подготовки к ЕГЭ. В большинства случаев словосочетанием обозначаются выражения, которые содержат в своих записях степени. Это мы и отразим в нашем определении.
Степенное выражение – это выражение, которое содержит степени.
Приведем несколько примеров степенных выражений, начиная со степени с натуральным показателем и заканчивая степенью с действительным показателем.
С вопросом о том, что такое степенные выражения, мы разобрались. Теперь займемся их преобразованием.
Основные виды преобразований степенных выражений
В первую очередь мы рассмотрим основные тождественные преобразования выражений, которые можно выполнять со степенными выражениями.
Решение
Решение
Решение
Представим число 9 как степень 3 2 и применим формулу сокращенного умножения:
А теперь перейдем к разбору тождественных преобразований, которые могут применяться именно в отношении степенных выражений.
Работа с основанием и показателем степени
Проводятся преобразования степени и показателя по известным нам правилам отдельно друг от друга. Самое главное, чтобы в результате преобразований получилось выражение, тождественное исходному.
Использование свойств степеней
Применять свойства степеней без ограничений можно в тех случаях, когда основания степеней положительные или содержат переменные, область допустимых значений которых такова, что на ней основания принимают лишь положительные значения. Фактически, в рамках школьной программы по математике задачей учащегося является выбор подходящего свойства и правильное его применение.
При подготовке к поступлению в Вузы могут встречаться задачи, в которых неаккуратное применение свойств будет приводить к сужению ОДЗ и другим сложностям с решением. В данном разделе мы разберем всего два таких случая. Больше информации по вопросу можно найти в теме «Преобразование выражений с использованием свойств степеней».
Решение
Преобразование степенных выражений согласно свойству степеней может производиться как слева направо, так и в обратном направлении.
Решение
Есть еще один способ провести преобразования:
3 1 3 · 7 1 3 · 21 2 3 = 3 1 3 · 7 1 3 · ( 3 · 7 ) 2 3 = 3 1 3 · 7 1 3 · 3 2 3 · 7 2 3 = = 3 1 3 · 3 2 3 · 7 1 3 · 7 2 3 = 3 1 3 + 2 3 · 7 1 3 + 2 3 = 3 1 · 7 1 = 21
Ответ: 3 1 3 · 7 1 3 · 21 2 3 = 3 1 · 7 1 = 21
Решение
Преобразование дробей, содержащих степени
Обычно мы имеем дело с двумя вариантами степенных выражений с дробями: выражение представляет собой дробь со степенью или содержит такую дробь. К таким выражениям применимы все основные преобразования дробей без ограничений. Их можно сокращать, приводить к новому знаменателю, работать отдельно с числителем и знаменателем. Проиллюстрируем это примерами.
Решение
Мы имеем дело с дробью, поэтому проведем преобразования и в числителе, и в знаменателе:
Дроби, содержащие степени, приводятся к новому знаменателю точно также, как и рациональные дроби. Для этого необходимо найти дополнительный множитель и умножить на него числитель и знаменатель дроби. Подбирать дополнительный множитель необходимо таким образом, чтобы он не обращался в нуль ни при каких значениях переменных из ОДЗ переменных для исходного выражения.
Решение
б) Обратим внимание на знаменатель:
Решение
б) Здесь наличие одинаковых множителей неочевидно. Придется выполнить некоторые преобразования для того, чтобы получить одинаковые множители в числителе и знаменателе. Для этого разложим знаменатель, используя формулу разности квадратов:
К числу основных действий с дробями относится приведение к новому знаменателю и сокращение дробей. Оба действия выполняют с соблюдением ряда правил. При сложении и вычитании дробей сначала дроби приводятся к общему знаменателю, после чего проводятся действия (сложение или вычитание) с числителями. Знаменатель остается прежним. Результатом наших действий является новая дробь, числитель которой является произведением числителей, а знаменатель есть произведение знаменателей.
Решение
Начнем с вычитания дробей, которые располагаются в скобках. Приведем их к общему знаменателю:
Теперь умножаем дроби:
Преобразование выражений с корнями и степенями
В задачах встречаются степенные выражения, которые содержат не только степени с дробными показателями, но и корни. Такие выражения желательно привести только к корням или только к степеням. Переход к степеням предпочтительнее, так как с ними проще работать. Такой переход является особенно предпочтительным, когда ОДЗ переменных для исходного выражения позволяет заменить корни степенями без необходимости обращаться к модулю или разбивать ОДЗ на несколько промежутков.
Представьте выражение x 1 9 · x · x 3 6 в виде степени.
Решение
На этом множестве мы имеем право перейти от корней к степеням:
x 1 9 · x · x 3 6 = x 1 9 · x · x 1 3 1 6
Используя свойства степеней, упростим полученное степенное выражение.
x 1 9 · x · x 1 3 1 6 = x 1 9 · x 1 6 · x 1 3 1 6 = x 1 9 · x 1 6 · x 1 · 1 3 · 6 = = x 1 9 · x 1 6 · x 1 18 = x 1 9 + 1 6 + 1 18 = x 1 3
Преобразование степеней с переменными в показателе
Мы можем заменить произведением степени, в показателях которых находится сумма некоторой переменной и числа. В левой части это можно проделать с первым и последним слагаемыми левой части выражения:
Преобразование выражений со степенями и логарифмами
Что значит представить выражение в виде степени
Произведение нескольких одинаковых множителей можно записать в виде степени. Например,
Выражение 5 7 читают по-разному: «Пять в седьмой степени», «Седьмая степень числа пять», «Степень числа пять с показателем семь».
Определение. Степенью числа а с натуральным показателем n, большим 1, называется произведение n множителей, каждый из которых равен а. Степенью числа а с показателем 1 называется само число а.
По определению степени:
Нахождение значения степени называют возведением в степень. Приведем примеры возведения в степень:
При возведении в степень отрицательного числа может получиться как положительное число, так и отрицательное. Например,
Степень отрицательного числа с четным показателем есть число положительное, так как произведение четного числа отрицательных множителей положительно. Степень отрицательного числа с нечетным показателем есть число отрицательное, так как произведение нечетного числа отрицательных множителей отрицательно.
Квадрат любого числа есть число положительное или нуль, т. е. при любом а.
Вычислим значения нескольких выражений, содержащих степени.
Пример 1. Найдем значение выражения :
Пример 2. Найдем значение выражения
УМНОЖЕНИЕ И ДЕЛЕНИЕ СТЕПЕНЕЙ
Выражение а 2 а 3 представляет собой произведение двух степеней с одинаковыми основаниями. Это произведение можно записать в виде степени с тем же основанием:
Мы видим, что произведение а 2 а 3 равно степени с тем же основанием и показателем, равным сумме показателей перемножаемых степеней.
Докажем, что для любого числа а и произвольных натуральных чисел m и n
Для этого, используя определение степени и свойства умножения, представим выражение а m а n сначала в виде произведения множителей, каждый из которых равен а, а затем в виде степени:
Доказанное равенство выражает свойство произведения степеней. Его называют основным свойством степени. Оно распространяется на произведение трех и более степеней.
Отсюда следует правило умножения степеней: при умножении степеней с одинаковыми основаниями основание оставляют прежним, а показатели степеней складывают.
Мы видим, что частное а 7 :а 3 равно степени с тем же основанием и показателем, равным разности показателей делимого и делителя.
Действительно, по основному свойству степени
Значит, по определению частного
Итак, при делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.
Степень с нулевым показателем не была определена. Так как при всяком и любом натуральном n
то считают, что при
Определение. Всякое число (кроме нуля) в нулевой степени равно единице.
Например, 2° — 1, (— 3,5)° =1. Выражение 0° не имеет смысла.
ВОЗВЕДЕНИЕ В СТЕПЕНЬ ПРОИЗВЕДЕНИЯ И СТЕПЕНИ
Выражение является степенью произведения множителей а и b. Это выражение можно представить в виде произведения степеней а и b:
Мы видим, что четвертая степень произведения аb равна произведению четвертых степеней множителей а и b.
Докажем, что для любых а и b и произвольного натурального числа n
По определению степени
Сгруппировав отдельно множители а и множители b, получим :
Воспользовавшись определением степени, находим:
Отсюда следует правило: (пpu возведении в степень произведения возводят в эту степень каждый множитель и результаты перемножают.
Выражение есть степень, основание которой само является степенью. Это выражение можно представить в виде степени с основанием а:
В результате возведения степени а 5 в третью степень мы получили степень с тем же основанием и показателем, равным произведению показателей 5 и 3.
Докажем, что для любого числа а и произвольных натуральных чисел m и n
По определению степени
Согласно основному свойству степени
Заменим сумму произведением mn.
Из равенства следует правило: при возведении степени в степень основание оставляют тем же, а показатели перемножают.
Свойства степени
Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.
Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.
Свойство № 1
Произведение степеней
При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
Данное свойство степеней также действует на произведение трёх и более степеней.
Свойство № 2
Частное степеней
При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.
Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.
Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.
Свойство № 3
Возведение степени в степень
При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.
По свойству возведения степени в степень известно, что при возведении в степень показатели перемножаются, значит:
Свойства 4
Степень произведения
При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.
Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.
То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.
В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.
Например, 4 5 · 3 2 = 4 3 · 4 2 · 3 2 = 4 3 · (4 · 3) 2 = 64 · 12 2 = 64 · 144 = 9216
Пример возведения в степень десятичной дроби.
4 21 · (−0,25) 20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25)) 20 = 4 · (−1) 20 = 4 · 1 = 4
Свойства 5
Степень частного (дроби)
Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.
Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.
Алгебра
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Определение степени с целым показателем
В 7 классе мы уже изучили степень с натуральным показателем. Напомним, что запись a n означает произведение, состоящее из n множителей, каждый из которых равен a:
Число а именуется основанием степени, а n – это показатель степени. Отдельно напомним, что число в первой степени равно самому себе:
Любое число, кроме нуля, возведенное в нулевую степень, дает единицу:
Сам же ноль в нулевую степень возводить нельзя (так же, как и нельзя делить на ноль).
Математики стремятся по возможности расширить используемые ими понятия. Можно ли сделать показатель степени отрицательным числом? Для этого надо дать новое определение степени. При этом важно, чтобы все уже известные нам правила действий со степенями (их умножение и деление) оставались справедливыми.
При делении степеней их показатели вычитаются, например:
8 15 :8 13 = 8 15 – 13 = 8 2 = 64
Теперь попробуем произвести деление в том случае, когда показатель делимого меньше показателя делителя:
8 15 :8 17 = 8 15 – 17 = 8 – 2
Получили отрицательную степень, смысл которой нам пока не понятен. Выполним это же деление с помощью дробей, при этом учтем, что 8 17 = 8 15 •8 2 :
Итак, мы получили, что
Напомним, что обратными называются числа, которые при умножении друг на друга дают единицу. Примерами обратных чисел являются:
Вообще для каждой дроби обратной является «перевернутая дробь», поэтому следующие пары чисел являются обратными:
Теперь покажем, как вычислять отрицательную степень числа, пользуясь определением:
Вообще находить отрицательную степень дроби удобней с помощью формулы
Докажем ее справедливость:
Покажем применение этой формулы:
Отрицательные степени очень удобны при работе с некоторыми выражениями. В частности, любую дробь с их помощью можно записать в виде произведения:
Пример: Запишите в виде произведения дробь
Отдельно заметим, формулу, определяющую отрицательную степень
можно и «перевернуть». В ней число 1 выступает в роли делимого, выражение а n – это делитель, а a – n – это частное. Известно, что делитель можно получить, поделив делимое на частное, то есть верна запись
Это значит, что справедливо не только равенство
Свойства степени с целым показателем
Правила действий со степенями, имеющими целый показатель, не отличаются от тех, которые мы изучали ранее. Напомним их.
Убедимся в этом на нескольких примерах:
Однако эти примеры ещё не являются полноценными доказательствами этого свойства степеней. Приведем общее доказательство для того случая, когда число в натуральной степени умножается на число в отрицательной степени:
Также докажем справедливость этого правила и в том случае, когда перемножаются два числа в отрицательной степени:
Для строгого доказательства заменим операцию деления на умножение. Так как
Здесь мы сначала заменяем степень a n на дробь 1/а – n (по определению отрицательной степени), а потом пользуемся тем, что деление на дробь равносильно умножению на «перевернутую дробь».
Продемонстрируем применение этого правила:
Следующие правила позволяют работать со степенями, у которых различаются основания, но совпадают показатели:
Покажем, как это работает:
Для общего случая доказательство будет выглядеть так:
Это правило можно проиллюстрировать так:
Приведем доказательство этого свойства для отрицательных степеней с целым показателем:
Как видим, свойства степеней с целыми показателями (в частности, с отрицательными), не отличаются от уже изученных нами свойств степеней с натуральными показателями. Единственное исключение – добавляется дополнительное ограничение, согласно которому основанием степени с отрицательным целым показателем не может быть ноль. То есть запись 0 – 3 не имеет смысла, хотя выражение 0 3 имеет смысл:
Рассмотрим несколько заданий, в которых необходимо использовать правила работы со степенями
Пример. Представьте в виде степени выражение
у – 8 •у 10
Решение. При перемножении степеней их показатели следует сложить:
у – 8 •у 10 = у – 8 + 10 = у 2
Пример. Вычислите значение выражения
(10 – 1 ) – 6 : (0,1) – 3
(10 – 1 ) – 6 : (0,1) – 3 = 10 (– 1)•(– 6) : (10 – 1 ) – 3 = 10 6 : 10 3 = 10 6 – 3 = 10 3 = 1000
Пример. Представьте число 3 – 36 в виде степени с основанием 9.
3 – 36 = 3 2•(– 18) = 9 – 18
Пример. Представьте произведение 64v – 3 как степень.
64v – 3 = 4 3 v – 3 = (1/4) – 3 v – 3 = (v/4) – 3
Преобразование выражений с целыми степенями
Ранее мы рассматривали понятие рационального выражения. Так называлось выражение, в котором используются 4 основные арифметические операции (в том числе деление), а также возведение в степень. Однако использование отрицательной степени помогает избавиться от операции деления как ненужной. Например, возможны такие преобразования:
Во всех случаях мы заменили деление на возведение в отрицательную степень.
Рассмотрим несколько примеров по преобразованию выражений со степенями.
Пример. Упростите выражение
Решение. Возведение в степень (– 1) означает, по сути, переворачивание дроби:
Пример. Упростите дробь
Решение. Вынесем в числителе множитель а – 3 за скобки
Пример. Представьте в виде дроби выражение
В данном случае мы воспользовались формулой суммы кубов:
a 3 + b 3 = (a + b)(a 2 – ab + b 2 )
Пример. Упростите выражение
(h 2 + ht + t 2 )(h – 2 + h – 1 t – 1 + t – 2 ) – 1
C учетом этого получаем:
(h 2 + ht + t 2 ) = h 2 t 2 (t – 2 + h – 1 t – 1 + h – 2 ) = h 2 t 2 (h – 2 + h – 1 t – 1 + t – 2 )
Зная это, можно записать
(h 2 + ht + t 2 )(h – 2 + h – 1 t – 1 + t – 2 ) – 1 = h 2 t 2 (h – 2 + h – 1 t – 1 + t – 2 )(h – 2 + h – 1 t – 1 + t – 2 ) – 1
В двух скобках стоят одинаковые выражения, но одно из них в степени (– 1). Такие выражения можно сократить, ведь они являются обратными числами:
h 2 t 2 (h – 2 + h – 1 t – 1 + t – 2 )(h – 2 + h – 1 t – 1 + t – 2 ) – 1 = h 2 t 2
Пример. Докажите тождество
Решение. Преобразуем левую часть:
Стандартный вид числа
В физике и других естественных науках изучаются объекты, чьи характеристики (масса, длина, скорость и т.д.) могут измеряться очень большими или очень малыми величинами. Например, масса атома железа равна 0,0000000000000000000000000927 килограмм, а масса Солнца оценивается в 1988500000000000000000000000000 килограмм. Работать с такими числами достаточно неудобно. Сложно даже сравнивать их между собой, ведь для этого надо подсчитывать количество нулей в каждом числе. Поэтому в науке часто используется особая форма чисел, которую называют стандартным видом числа. Он основан на том, что любое число можно записать как произведение числа a, находящегося в пределах от 1 до 10, и какой-нибудь целой (в том числе отрицательной) степени десятки.
Приведем примеры представления чисел в стандартном виде
912 = 9,12•100 = 9,12•10 2
Покажем случаи, когда порядок равен нулю или меньше него
7,63 = 7,63•1 = 7,63•10 0
0,0875 = 8,75•100 = 8,75•10 – 2
Посмотрите, насколько короче выглядит запись физических величин с использованием стандартного вида:
Пример. Укажите стандартный вид числа 76000000.
Решение. Первой ненулевой цифрой в записи является семерка, поэтому стандартный вид будет выглядеть так:
где n– какое-то целое число, которое нам надо найти. Поставим в исходном числе запятую после семерки:
Видно, что мы отделили запятой 7 разрядов, то есть перенесли запятую на 7 разрядов вправо. Поэтому n равно 7:
Действительно, умножение дробного числа на 10 приводит к смещению запятой на одну позицию влево, поэтому при умножении 7,6 на 10 7 получим 76000000. Наши действия можно проиллюстрировать рисунком:
В случае с числами, меньшими единицы, также надо смотреть на количество разрядов между запятой и первой ненулевой цифрой. Пусть надо представить в стандартном виде десятичную дробь 0,000005605. Значащей частью числа будет 5,605. Для того чтобы получить ее, надо в исходной дроби перенести запятую на 6 разрядов вправо. Поэтому порядок будет равен (– 6):
Теоретически мы можем дописать любое количество нулей, величина дроби от этого не изменится. Порядок числа равен 5, а потому запятую надо перенести на 5 знаков вправо:
2,5600000•10 5 = 256000,00
Теперь лишние нули после запятой и саму запятую можно и убрать:
Обратите внимание, что порядок числа был равен 5, а в итоге мы получили шестизначное число. Можно сформулировать правило: у числа, имеющего в стандартной виде порядок n, в десятичной представлении перед запятой будет стоять (n + 1)знак. Например:
1,23456789•10 6 = 1234567,89
Здесь порядок числа равен 6, а потому перед запятой стоит 7 знаков.
Напомним, что если число целое и, соответственно, в его записи нет запятой, то ее можно искусственно добавить:
Порядок равен (– 4), а потому надо передвинуть запятую на 4 знака влево
Получается, что мы подрисовали слишком много ноликов. Уберем два из нихи получим число в обычной форме:
Вообще, если у числа отрицательный порядок (– n), то первая ненулевая цифра должна оказаться на n-ой позиции после запятой:
Действия с числами в стандартном виде
Стандартный вид чисел удобен тогда, когда есть необходимость сравнивать физические величины, а также перемножать их и делить. Рассмотрим правила сравнения умножения и деления чисел в стандартном виде.
Из двух чисел больше то, у которого больше порядок стандартного вида числа. Так, масса Солнца больше масса Земли, так как у нее порядок равен 30, а у нашей планеты – только 24. Если же порядки одинаковы, то больше то число, у которого больше значащая часть.
Пример. Радиус ядра Солнца оценивается в 1,73•10 8 м, а радиус Юпитера составляет 6,99•10 7 м. Какая из этих величин больше?
Решение. Порядок у радиуса ядра Солнца равен 8, а у Юпитера только 7, поэтому радиус ядра Солнца больше радиуса Юпитера.
Пример. Масса протона составляет 1,673•10 – 27 кг, а масса нейтрона равна 1,675•10 – 27 кг. Какая из этих двух частиц тяжелее?
Решение. У обоих величин одинаковый порядок, равный (– 27). Однако значащая часть у массы нейтрона больше:
Следовательно, нейтрон тяжелее.
Ответ: Нейтрон тяжелее.
Посмотрим, как перемножать числа, находящиеся в стандартном виде. Переставляя множители местами, можно получить:
(a•10 n )•(b•10 m ) = a•b•10 n •10 m = (ab)•10 n+ m
В итоге можно сформулировать правило:
Пример. Земля двигается по своей орбите со средней скоростью 3•10 4 м/с. Какое расстояние она проходит в течение одного невисокосного календарного года (в каждом таком году 31536000 секунд)?
Решение. Переведем количество секунд в году в стандартный вид
31536000 = 3,1536 •10 7
Расстояние (обозначим его как S) равно произведению средней скорости на время:
S = 3•10 4 м/с • 3,1536•10 7 c = 3•3,1536•10 4 + 7 = 9,4608•10 11 м.
Ответ: 9,4608•10 11 м.
(9,5•10 8 )•(1,38•10 – 2 ) = (9,5•1,38)•10 8 + (– 2) = 13,11•10 6
Получили число НЕ в стандартном виде, так как 13,11 > 10. Поэтому следует произвести замену 13,11 = 1,311•10:
13,11•10 6 = 1,311•10•10 6 = 1,311•10 7
Теперь попытаемся поделить два числа, находящихся в стандартном виде:
Видно, что справедливо следующее правило:
Пример. Во сколько раз масса Солнца больше массы Земли?
Решение. Выше мы приводили данные, что масса Солнца оценивается в 1,9885•10 30 кг, а масса нашей планеты составляет 5,97•10 24 кг. Поделим массу звезды на массу планеты:
(1,9885•10 30 ):(5,97•10 24 ) = (1,9885:5,97)•10 30 – 24 ≈0,333•10 6 = 333000
Получили, что Солнце примерно в 333 тысячи раз тяжелее Земли.