что значит уравнение второго порядка
Что значит уравнение второго порядка
Переходим к рассмотрению дифференциальных уравнений второго порядка и дифференциальных уравнений высших порядков. Если Вы смутно представляете, что такое дифференциальное уравнение (или вообще не понимаете, что это такое), то рекомендую начать с урока Дифференциальные уравнения первого порядка. Примеры решений. Многие принципы решения и базовые понятия диффуров первого порядка автоматически распространяются и на дифференциальные уравнения высших порядков, поэтому очень важно сначала разобраться с уравнениями первого порядка.
У многих читателей может быть предубеждение, что ДУ 2-го, 3-го и др. порядков – что-то очень трудное и недоступное для освоения. Это не так. Научиться решать диффуры высшего порядка вряд ли сложнее, чем «обычные» ДУ 1-го порядка. А местами – даже проще, поскольку в решениях активно используется материал школьной программы.
Наиболее популярны дифференциальные уравнения второго порядка. В дифференциальное уравнение второго порядка обязательно входит вторая производная и не входят производные более высоких порядков:
Дифференциальные уравнения третьего порядка в практических заданиях встречаются значительно реже, по моим субъективным наблюдениям в Государственную Думу они бы набрали примерно 3-4% голосов.
В дифференциальное уравнение третьего порядка обязательно входит третья производная и не входят производные более высоких порядков:
Самое простое дифференциальное уравнение третьего порядка выглядит так: – папаша дома, все дети на прогулке.
Аналогичным образом можно определить дифференциальные уравнения 4-го, 5-го и более высоких порядков. В практических задачах такие ДУ проскакивают крайне редко, тем не менее, я постараюсь привести соответствующие примеры.
Дифференциальные уравнения высших порядков, которые предлагаются в практических задачах, можно разделить на две основные группы.
1) Первая группа – так называемые уравнения, допускающие понижение порядка. Налетайте!
2) Вторая группа – линейные уравнения высших порядков с постоянными коэффициентами. Которые мы начнем рассматривать прямо сейчас.
Линейные дифференциальные уравнения второго порядка
с постоянными коэффициентами
В теории и практике различают два типа таких уравнений – однородное уравнение и неоднородное уравнение.
Однородное ДУ второго порядка с постоянными коэффициентами имеет следующий вид:
, где и – константы (числа), а в правой части – строго ноль.
Неоднородное ДУ второго порядка с постоянными коэффициентами имеет вид:
, где и – константы, а – функция, зависящая только от «икс». В простейшем случае функция может быть числом, отличным от нуля.
Какая мысль приходит в голову после беглого взгляда? Неоднородное уравнение кажется сложнее. На этот раз первое впечатление не подводит!
Кроме того, чтобы научиться решать неоднородные уравнения необходимо уметь решать однородные уравнения. По этой причине сначала рассмотрим алгоритм решения линейного однородного уравнения второго порядка:
Для того чтобы решить данное ДУ, нужно составить так называемое характеристическое уравнение:
По какому принципу составлено характеристическое уравнение, отчётливо видно:
вместо второй производной записываем ;
вместо первой производной записываем просто «лямбду»;
вместо функции ничего не записываем.
– это обычное квадратное уравнение, которое предстоит решить.
Существуют три варианта развития событий. Они доказаны в курсе математического анализа, и на практике мы будем использовать готовые формулы.
Характеристическое уравнение имеет два различных действительных корня
Если характеристическое уравнение имеет два различных действите
Лекция по высшей математике»Дифференциальные уравнения второго порядка»(для 26 гр.)
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА
1) ОСНОВНЫЕ ПОНЯТИЯ
Дифференциальное уравнение второго порядка символически можно записать в общем виде следующим образом:
Дифференциальное уравнение второго порядка, разрешенное относительно второй производной, имеет вид:
2) ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО
ПОРЯДКА, ДОПУСКАЮЩИЕ ПОНИЖЕНИЕ ПОРЯДКА
Рассмотрим некоторые типы дифференциальных уравнений второго порядка, которые позволяют понизить порядок уравнения и привести его к уравнениям первого порядка.
2.1. Дифференциальное уравнение вида
Интегрируя еще раз, получим общее решение:
Пример 1. Найти частное решение уравнения при заданных начальных условиях у(х= 0 )= 1 и у'(х= 0 )= 1.
Решение. Последовательно интегрируя, найдем сначала первую производную (промежуточное общее решение):
Интегрируя еще раз, получим общее решение:
2.2. Дифференциальное уравнение вида
Решая это уравнение, найдем общее решение в виде Делая обратную замену получим еще одно дифференциальное уравнение первого порядка:
Разделяя переменные и интегрируя, получим общее решение
Пример 2. Найти общее решение уравнения
Решение. Сделаем подстановку: Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка с разделяющимися переменными:
Разделяем переменные: Интегрируем:
Получаем промежуточное общее решение: или
Делая обратную замену получим еще одно дифференциальное уравнение первого порядка с разделяющимися переменными: или
Интегрируя, получим общее решение:
Пример 3. Найти общее решение уравнения
Решение. Сделаем подстановку: Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка:
Уравнение (2.3) является однородным и решается с помощью подстановки:
Подставляя (2.4) в (2.3), получим дифференциальное уравнение с разделяющимися переменными:
Сокращаем на х и разделяем переменные:
Интеграл в левой части равенства (2.5) вычисляем методом замены переменной:
После интегрирования (2.5) получаем промежуточное общее решение:
Делая обратную замену получим дифференциальное уравнение первого порядка с разделяющимися переменными: или .
Разделяем переменные и интегрируем: (2.6)
Интеграл, стоящий в правой части, вычисляем с помощью формулы интегрирования по частям:
После интегрирования (2.6) получим общее решение:
Пример 4. Найти общее решение уравнения
Решение. Сделаем подстановку: Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка:
Уравнение (2.7) является линейным неоднородным и решается с помощью подстановки:
Подставляя (2.8) в (2.7), получим:
Квадратную скобку приравняем к нулю и решим полученное уравнение с разделяющимися переменными:
Разделяем переменные и интегрируем: Получаем: или
Функцию подставляем в соотношение (2.9):
Делая обратную замену получим дифференциальное уравнение первого порядка с разделяющимися переменными: или
Разделяем переменные и интегрируем:
Интеграл, стоящий в правой части (2.10), вычисляем с помощью формулы интегрирования по частям:
После интегрирования (2.10) получим общее решение:
2.3. Дифференциальное уравнение вида
Исходное уравнение преобразуется в дифференциальное уравнение первого порядка:
где z – искомая функция, у – независимая переменная.
Решая это уравнение, найдем общее решение в виде Делая обратную замену получим еще одно дифференциальное уравнение первого порядка:
Разделяя переменные и интегрируя, получим общее решение
Пример 5. Найти общее решение уравнения
Решение. Сделаем подстановку:
Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка с разделяющимися переменными:
Сокращаем на z ( z ≠0) и разделяем переменные:
Получаем промежуточное общее решение: или
Делая обратную замену получим еще одно дифференциальное уравнение первого порядка с разделяющимися переменными:
Разделяем переменные: Интегрируя, получим общее решение:
3) Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.
Линейные однородные дифференциальные уравнения.
Решения однородного линейного уравнения обладают свойствами:
Если и есть решения уравнения (2), то и функция также будет решением уравнения (2);
Если и есть решения уравнения (2), то их линейная комбинация также будет решением уравнения (2), где и – произвольные постоянные.
Построение общего решения линейного однородного уравнения.
Уравнение (6) называется характеристическим уравнением для уравнения (2). Это уравнение является алгебраическим квадратным уравнением.
Пусть и есть корни этого уравнения. Они могут быть или действительными и различными, или комплексными, или действительными и равными. Рассмотрим эти случаи.
Неоднородные линейные дифференциальные уравнения второго порядка с постоянными коэффициентами и специальной правой частью.
В некоторых случаях частное решение неоднородного уравнения можно найти довольно просто по виду правой части уравнения (1). Рассмотрим случаи, когда это возможно.
Коэффициенты определяются в процессе нахождения частного решения.
Пусть неоднородное уравнение имеет вид (8)
Приравняем коэффициенты при и свободные члены:
Как решать дифференциальные уравнения
Дифференциальные уравнения бывают обыкновенными и в частных производных. В этой статье мы будем говорить об обыкновенных уравнениях и о том, как их решать.
Основные понятия и определения
Определения
Типы уравнений
Алгоритм решения
ОБЯЗАТЕЛЬНО! Чтобы успешно решать дифференциальные уравнения необходимо уметь находить интегралы. Поэтому, если вы забыли данную тему, то её нужно вспомнить!
Дифференциальные уравнения первого порядка
ДУ с разделяющимися переменными
СОВЕТ: Если не удается определить тип диффура первого порядка, то рекомендуем мысленно попытаться разделить переменные иксы от игреков. Возможно перед вами хитрое дифференциальное уравнение с разделяющимися переменными.
Алгоритм нахождения общего решения:
После замены производной игрека исходное уравнение приобретает такой формат:
Навешиваем знак интеграла на левую и правую часть, а затем решаем интегралы:
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
Однородные ДУ
Решается по следующему алгоритму:
Интегрируем обе части:
$$\lambda x \cdot \lambda y + (\lambda y)^2 = (2 (\lambda x)^2 + \lambda x\cdot \lambda y)y’$$
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
Линейные неоднородные ДУ
Алгоритм метода Бернулли:
Алгоритм метода вариации произвольной постоянной:
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
ДУ Бернулли
ДУ в полных дифференциалах
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
Дифференциальные уравнения второго порядка
ДУ допускающие понижение порядка
Дифференциальные уравнения, допускающие понижение порядка бывают двух видов:
Линейные однородные ДУ с постоянными коэффицентами
В зависимости от получившихся корней имеем общее решение в различных видах:
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
Линейные неоднородные ДУ с постоянными коэффициентами
Метод Лагранжа
Данный метод позволяет решать линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами даже в тех, случаях, когда правая часть уравнения не подходит под табличный вид. В этом случае целесообразно применить данный метод решения.
Линейные дифференциальные уравнения второго порядка
Данная статья раскрывает смысл нахождения и алгоритм для общего решения линейных однородных и неоднородных дифференциальных уравнений второго порядка с подробным просмотром их решений.
Нахождение общего решения линейных дифференциальных уравнений
считается одним из общих решений ЛНДУ.
Отсюда следует, что
принимает одно из любых частных решений, y 0 соответствует общему решению ЛОДУ.
Если функции простые, то применяется метод подбора.
Линейно независимые функции y 1 и y 2 находятся из
Решение
По правилу дифференцирования произведения и свойству неопределенного интеграла получаем выражение вида
y ‘ = x · ∫ u ( x ) d x ‘ = x ‘ · ∫ u ( x ) d x + x · ∫ u ( x ) d x ‘ = = ∫ u ( x ) d x + x · u ( x ) = y x + x · u ( x ) y » = ∫ u ( x ) d x + x · u ( x ) ‘ = ∫ u ( x ) d x ‘ + x ‘ · u ( x ) + x · u ‘ ( x ) = = 2 u ( x ) + x · u ‘ ( x )
Производим подстановку в исходное выражение. Запишем равенство вида:
Для решения неоднородного дифференциального уравнения y » + p ( x ) · y ‘ + q ( x ) · y = f ( x ) нужно подбирать y
Решение
Необходимо составить систему линейных уравнений и решить
Чтобы разрешить ее, следует применить метод Крамера. Тогда
Ответ: общим решением для заданного уравнения получим уравнение вида
Итоги
. Если необходимо, то в начале производится подбор y 1 и y 2 для определения общего решения ЛНДУ с помощью применения метода вариации произвольных постоянных.
Что значит уравнение второго порядка
Если коэффициент P 0 ( x ) ≠ 1, то на него можно поделить и после соответствующих переобозначений получить:
Примечание. Частным случаем (8.43) является линейное дифференциальное уравнение 2-го порядка с переменными коэффициентами:
Если в уравнении (8.43) f ( x ) ≡ 0, то оно называется однородным, если f ( x ) ≠ 0, то неоднородным.
Однородное дифференциальное уравнение, соответствующее неоднородному уравнению (8.43), имеет вид:
где ci – константы интегрирования.
– также решение уравнений (8.45) и (8.46).
Рассмотрим одну из функций (8.48) – функцию y = e λx как решение для уравнения (8.46) с постоянными коэффициентами. Продифференцируем ее n раз:
Рассмотрим наиболее распространенный частный случай уравнения (8.46) – его аналог 2-го порядка:
Для данного уравнения характеристическое уравнение (8.50) принимает вид:
Уравнение (8.52) является квадратным относительно λ. В зависимости от дискриминанта D характеристического уравнения рассматривают три случая, приведенных в таблице 8.1.
Пример 8.17. Найти общее решение уравнений:
б) Составляем характеристическое уравнение λ 2 – 16 λ + 64 = 0.
Рассмотрим теперь линейное неоднородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами:
Теорема 8.4. Пусть задано линейное дифференциальное неоднородное уравнение второго порядка с постоянными коэффициентами и п равой частью специального вида
1. Если не является корнем характеристического уравнения соответствующего однородного уравнения, то частное решение уравнения (8.57) имеет вид:
где – многочлены общего вида (с неопределенными коэффициентами).
– многочлены общего вида
Рассмотрим в таблице 8.2 некоторые случаи составления частного решения линейного неоднородного дифференциального уравнения (8.57) по специальному виду его правой части.
является частным решением данного уравнения