характеристики и параметры погрешностей
Характеристики погрешностей измерений
Характеристики погрешности измерений, формы их представления определяют методические указания МИ 1317-2004.
В зависимости от области применения и способов выражения используемые характеристики погрешности измерений могут быть разделены на следующие группы (табл. 1):
задаваемые в виде требований или допускаемых значений — нормы характеристик погрешностей измерений;
приписываемые совокупности измерений, выполняемых по определенной (стандартизованной или аттестованной) методике — приписанные характеристики погрешности измерений;
оцениваемые непосредственно в процессе выполнения измерений и обработки их результатов — статистические оценки характеристик погрешностей измерений.
Характеристики первых двух групп являются вероятностными, отражающими вероятностные свойства генеральной совокупности случайной величины — погрешности измерений. В зависимости от назначения результатов измерений, сложности и ответственности решаемых с их использованием задач номенклатура выбираемых характеристик погрешности измерений может быть различной. Однако во всех случаях она должна обеспечивать возможность сопоставления и совместного использования результатов измерений, достоверную оценку качества и эффективности решаемых измерительных задач. Выбираемые характеристики должны быть связаны с соответствующими критериями качества и эффективности решения этих задач.
Способы представления характеристик погрешности измерений
Характеристики погрешности измерений
Рекомендация МИ 1317 – 2004 устанавливает следующие группы характеристик погрешности измерений:
1. Задаваемые в качестве требуемых или допускаемых – нормы характеристик погрешности измерений (нормы погрешности измерений).
2. Приписываемые любому результату измерений из совокупности результатов измерений, выполняемых по одной и той же аттестованной МВИ– приписанные погрешности измерений.
3. Отражающие близость отдельного, экспериментально полученного результата измерений к истинному значению измеряемой величины – статистические оценки характеристик погрешности измерений (статистические оценки погрешности измерений).
Нормы погрешности измерений, а также приписанные характеристики – представляют собой вероятные характеристики (характеристики генеральной совокупности) случайной величины – погрешности измерений. Эти нормы применяют преимущественно при массовых технических измерениях, выполняемых, например, при технологической подготовке производства, в процессе разработки, испытаний и эксплуатации продукции и т.п.
При измерениях, которые выполняются при проведении научно – исследовательских и метрологических работ (определение физических констант; свойств и состава стандартных образцов и т.п.) преимущественно применяют статистические оценки погрешности измерений. Они представляют собой статистические (выборочные) характеристики случайной величины – погрешности измерения.
В тоже время Рекомендация устанавливает следующие альтернативные вероятностные и статистические характеристики погрешности измерений:
1. среднее квадратическое отклонение погрешности измерений;
2. границы, в пределах которых погрешность измерений находится с заданной вероятностью;
3. характеристики случайной и систематической составляющих погрешности измерений.
Характеристики погрешности измерений и их статистическая оценка приведены в таблице 1.
Характеристики погрешности измерений | Статистические оценки (по2.1.3) |
Среднее квадратическое отклонение погрешности измерений | Оценка |
Границы, в которых погрешность измерений находится с заданной вероятностью | Оценка нижней |
Характеристики случайной составляющей погрешности измерений: Среднее квадратическое отклонение нормализованная автокорреляционная функция Характеристики нормализованной автокорреляционной функции (например, интервал корреляции) | Оценка |
Характеристики неисключенной систематической составляющей погрешности измерений: среднее квадратическое отклонение неисключенной систематической составляющей границы, в которых неисключенная систематическая составляющая находится с заданной вероятностью | Оценка |
В таблице 1 приведены обозначения для характеристик абсолютной погрешности измерений. Для обозначения характеристик относительной погрешности букву ∆ заменяют на д.
В особых случаях, например при измерениях, которые нельзя повторить, допускается указывать доверительные границы или расширенную неопределенность для уровня доверия Р и более высоких вероятностей.
Статистические оценки характеристик погрешности измерений представляют одной или при необходимости несколькими характеристиками и указывают их в единицах измерения (абсолютные) или процентах (долях) от результата измерения (относительные).
Измерения
Погрешность средств измерения и результатов измерения.
Погрешности средств измерений – отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие так называемые инструментальные ошибки измерений).
Погрешность результата измерения – отклонение результата измерения от действительного (истинного) значения измеряемой величины.
Инструментальные и методические погрешности.
Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях. Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений. Выбор ошибочной методики возможен из-за несоответствия (неадекватности) измеряемой физической величины и ее модели.
Причиной методической погрешности может быть не учитываемое взаимное влияние объекта измерений и измерительных приборов или недостаточная точность такого учета. Например, методическая погрешность возникает при измерениях падения напряжения на участке цепи с помощью вольтметра, так как из-за шунтирующего действия вольтметра измеряемое напряжение уменьшается. Механизм взаимного влияния может быть изучен, а погрешности рассчитаны и учтены.
Инструментальная погрешность обусловлена несовершенством применяемых средств измерений. Причинами ее возникновения являются неточности, допущенные при изготовлении и регулировке приборов, изменение параметров элементов конструкции и схемы вследствие старения. В высокочувствительных приборах могут сильно проявляться их внутренние шумы.
Статическая и динамическая погрешности.
Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.
Систематическая и случайная погрешности.
Систематическая погрешность измерения – составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же физической величины. Систематические погрешности являются в общем случае функцией измеряемой величины, влияющих величин (температуры, влажности, напряжения питания и пр.) и времени. В функции измеряемой величины систематические погрешности входят при поверке и аттестации образцовых приборов.
Причинами возникновения систематических составляющих погрешности измерения являются:
Случайной погрешностью называют составляющие погрешности измерений, изменяющиеся случайным образом при повторных измерениях одной и той же величины. Случайные погрешности определяются совместным действием ряда причин: внутренними шумами элементов электронных схем, наводками на входные цепи средств измерений, пульсацией постоянного питающего напряжения, дискретностью счета.
Погрешности адекватности и градуировки.
Погрешность градуировки средства измерений – погрешность действительного значения величины, приписанного той или иной отметке шкалы средства измерений в результате градуировки.
Погрешностью адекватности модели называют погрешность при выборе функциональной зависимости. Характерным примером может служить построение линейной зависимости по данным, которые лучше описываются степенным рядом с малыми нелинейными членами.
Погрешность адекватности относится к измерениям для проверки модели. Если зависимость параметра состояния от уровней входного фактора задана при моделировании объекта достаточно точно, то погрешность адекватности оказывается минимальной. Эта погрешность может зависеть от динамического диапазона измерений, например, если однофакторная зависимость задана при моделировании параболой, то в небольшом диапазоне она будет мало отличаться от экспоненциальной зависимости. Если диапазон измерений увеличить, то погрешность адекватности сильно возрастет.
Абсолютная, относительная и приведенная погрешности.
Абсолютная погрешность – алгебраическая разность между номинальным и действительным значениями измеряемой величины. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина, в расчетах её принято обозначать греческой буквой – ∆. На рисунке ниже ∆X и ∆Y – абсолютные погрешности.
Относительная погрешность – отношение абсолютной погрешности к тому значению, которое принимается за истинное. Относительная погрешность является безразмерной величиной, либо измеряется в процентах, в расчетах обозначается буквой – δ.
Приведённая погрешность – погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле
где Xn – нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:
Приведённая погрешность является безразмерной величиной, либо измеряется в процентах.
Аддитивные и мультипликативные погрешности.
Различать аддитивные и мультипликативные погрешности легче всего по полосе погрешностей (см.рис.).
Если абсолютная погрешность не зависит от значения измеряемой величины, то полоса определяется аддитивной погрешностью (а). Иногда аддитивную погрешность называют погрешностью нуля.
Если постоянной величиной является относительная погрешность, то полоса погрешностей меняется в пределах диапазона измерений и погрешность называется мультипликативной (б). Ярким примером аддитивной погрешности является погрешность квантования (оцифровки).
Класс точности измерений зависит от вида погрешностей. Рассмотрим класс точности измерений для аддитивной и мультипликативной погрешностей:
– для аддитивной погрешности:
аддитивная погрешность
где Х – верхний предел шкалы, ∆0 – абсолютная аддитивная погрешность.
– для мультипликативной погрешности:
мультипликативная погрешность
порог чувствительности прибора – это условие определяет порог чувствительности прибора (измерений).
Характеристики и параметры погрешностей
Всероссийский научно-исследовательский институт
оптико-физических измерений
ПОИСК И НАВИГАЦИЯ
МЫ НА YOUTUBE
Погрешности измерений
Основные метрологические термины и определения: по РМГ 29-99 (с изменениями от 04.08.2010) |